
A NEW LOOK INTO DATA WAREHOUSE MODELLING

Nikolay Nikolov
European Bioinformatics Institute, Wellcome Trust Genome Campus – Hinxton, Cambridge, United Kingdom

Keywords: Data Warehouse modelling.

Abstract: The dominating paradigm of Data Warehouse design is the star schema (Kimball, 1996). The main debate
within the scientific community for years has been not whether this paradigm is really the only way, but,
rather, on its details (e.g. “to snowflake or not to snowflake” – Kimball et al., 1998). Shifting the emphasis
of the discourse entirely within the star schema paradigm prevents the search for better alternatives. We
argue that the star schema paradigm is an artefact of the transactional perspective and does not account for
the analytic perspective. The most popular formalized method for deriving the star schema (Golfarelli et al.,
1998) underlines just that by taking only the entity-relationship-model (ERM) as an input. Although this
design approach follows the natural data and work-flow, it does not necessarily offer the best performance.
The main thrust of our argument is that the query model should be used on a par with the ERM as a starting
point in the data warehouse design process. The rationale is that the end design should reflect not just the
structure inherent in the data model, but also that of the expected workload. Such approach results in a
schema which may look very different than the traditional star schema but the performance improvement it
may achieve justifies going off-the-beaten track.

1 INTRODUCTION

The purpose of a data warehouse is to store data
which is not involved in current transactions. Such
data is not expected to change often and this is why
(Inmon, 1996) refers to this data as “time-invariant”.
The “time-invariance” is reflected in the star schema
paradigm which dominates the data warehouse
modelling since the emergence of the data
warehouse concept. The star schema refers to one or
more fact tables and several dimension tables which
are connected to the fact table(s) via foreign key
relations. The “time-invariance” allows a relaxation
of the restrictions of the normalized schema design
to merge data connected via functional
dependencies. A well-formalised method of deriving
such a schema was proposed (Golfarelli et al., 1998)
and now is the standard technique of data warehouse
modelling. It takes as input the entity-relationship
model from which the data originates and involves
iterative pruning and merging which result in a de-
normalized scheme. This technique, however, is
only a half-step in the process of emancipating the
data warehouse design from that of the database
design. What is missing in the picture is the query
model. The possibility for queries is the only
rationale for the existence of data warehouses - if we
are not going to manipulate the data, than the only

other meaningful use is to read it. On this
background, it is strange that the currently most
popular method does not consider the query
workload. An important assumption underlies this
omission. It is that we either already know what will
be queried (and this is exactly what is put together in
the fact tables) or that there is no way to know it.
Needless to say, real life offers less clearly cut
situations. While sometimes the workload is really
well known in advance (this is the case with many
commercial reporting applications) in most cases
only vague ideas about the workload exist. For such
applications the ubiquitous star schema may,
actually, be a suboptimal solution. In this paper we
focus on this case and propose an alternative design
approach which incorporates both the underlying
data model and whatever expectations about the
workload might exist. We show that such an
approach results in dramatic performance
improvement compared to the classical star schema
using the same amount of storage. We propose a
simple yet efficient algorithm which can be used to
derive such a schema. Our paper is organised as
follows: in Part 2 we present our method, in Part 3
we compare the runtime performance of our method
to that of the traditional star schema design using the
TPC-H benchmark, in Part 4 we give brief account

540
Nikolov N. (2007).
A NEW LOOK INTO DATA WAREHOUSE MODELLING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 540-543
DOI: 10.5220/0002347205400543
Copyright c© SciTePress

of the related literature, in Part 5 we give conclusion
and outlook.

2 CONSTRUCTING A
FRAGMENTED SCHEMA

Proto-queries as “vague queries”

As already discussed, in many cases the data
warehouse designer has only vague expectations
about the future workload. These expectations may
be based on one or more of the following sources:
• past workload traces
• metadata (attributes fitting logically together)
• domain expertise.

To keep the setting as general as possible, we
assume that only probabilistic attribute associations
are available at this stage. This means that no
preferences exist for specific attribute values (i.e. the
January sales are more interesting and likely to be
queried than the May sales). These expectations are
formalized as a set Q of “proto-queries” qi, each
weighted by the probability pi of its occurrence.

Trade-off between storage and performance

In an ideal world the tables in the final model
exactly match the future queries. But in reality there
is a sizeable mismatch resulting in joins (when the
query includes attributes not in the same table) or
overhead I/O (when the table includes attributes
which do not appear in the same query) both of
which have negative impact on the performance.
One solution to avoid them is to create a table for
each proto-query. The problem is that even for
modest entity-relationship and query models this
approach would require too much storage. Ideally,
we would “translate” both the joins and the overhead
I/O into one single unit which we would aim to
minimize while satisfying the storage constraint.
However, there is no constant “exchange rate”
between the joins and the excessive I/O in terms of
the read operations involved or the resulting query
duration. Therefore, to simplify the problem, we will
regard the number of joins as a constant which is
determined by both the query and entity-relationship
model (i.e. the number of joins is the same as in the
case where the queries are executed against the
original ERM). So the only thing which we aim to
optimize is the excessive I/O.

Data Warehouse modelling as a knapsack problem

This optimization task is an instance of the knapsack
problem, a NP-hard problem (Martello et al., 1996).

We address it with a simple but effective greedy
heuristic which takes as an input the set of all table
fragments F and their storage requirements.

The Fragment: intersection of a query and a table

A table fragment fij is defined as the intersection
between the attributes of a table ti from the set T of
all tables from the ERM and the attributes accessed
by a proto-query qj (fij = ti ∩ qj,, ti ∈ T, qi ∈ Q).
Fragments produced as intersection of the same table
with different queries are called related fragments.

Greedy merge of related fragments

The main idea of the algorithm GreedyMerge (fig. 1)
is to iteratively pair-wise merge related fragments
which are closest to each other until a storage
constraint is met.

algorithm GreedyMerge
input: available storage, set of all fragments F
output: table definitions
1. until (storage constraint is satisfied) loop
2. {for all pairs of related fragments in F
4. {ComputeMergeBenefit
5. merge (pair with max MergeBenefit)}

Figure 1: Pseudocode of the GreedyMerge algorithm.

MergeBenefit as closeness metric

The closeness metric MergeBenefit computed by the
ComputeMergeBenefit algorithm (line 4, fig. 1) is the
ratio of the storage S saved and the increase in I/O
overhead I caused by the merge of the pair of related
fragments fij and fik, weighted by the probabilities of
their proto-queries. Both S and I are sums of length
in bytes of attributes, S of the attributes shared by fij
and fik, I of those not shared (fig.2).

Algorithm ComputeMergeBenefit
Input: fragments fij ≠ fik (fij,fik - related, i.e. corresp. to
 same table ti but to diff. proto-queries qj, and qk)
Output: MergeBenefit(fij, fik)
Let Odb be the row overhead (DBMS-specific)
 pj be the probability of proto-query qj

la be the length of attribute a in bytes
S = Odb // min. storage saving = row overhead

1. for all attributes a ∈ fij
2. { if (a ∉ fik) {I = I + la } else { S = S + la }}
3. for all attributes a ∈ fik
4. { if (a ∉ fij) {I = I + la }}
5. return pj* pk*(S/I) //I=0 only if fij ≡ fik

Figure 2: Pseudocode of ComputeMergeBenefit.

The code displayed in fig. 2 is a slightly simplified
version as it implies that the fragments are “single”
(i.e. correspond to only one proto-query). As the
algorithm progresses, however, “combined”
fragments emerge which consist of several related

A NEW LOOK INTO DATA WAREHOUSE MODELLING

541

single fragments (each corresponds to an
intersection of the same table with a different proto-
query) and so when the fragments fij is a combined
fragment, then lines 3-4 change:

3. for all attributes a ∈ fik
 3.5. { for all constituent fragments of fij
 4. { if (a ∉ fij) {I = I + la }}

Figure 3: Computing the overhead I/O in case of a
combined fragment.

The same change applies to lines to lines 1-2 when
fik is a combined fragment.

The GreedyMerge algorithm has complexity of
O(q3)t where q is the number of proto-queries and t
– the number of tables in the ERM which means that
even for quite big models, the algorithm takes only
seconds to finish. Depending on the value of the
storage constraint its output could be the original
ERM (if the storage constraint is too low for any
redundancy) or a table model consisting of the full
set of F (if the storage is enough to materialize all
fragments).

3 TPC-H AS EXAMPLE

Constructing the Star schema for the comparison

We tested our method using the TPC-H benchmark
(TPC-H, 2002). We constructed a star schema by
merging the tables Lineitem, Orders, PartSupp in a
single table (LOPS), adding the Nation and Region
data to the Supplier and Customer tables (tables
SNR, CNR) and adding a table for the time
dimension (fig. 4). We also let the Oracle 10G
analyze the schema and by providing the TPC-H
queries as input for its Index Advisor we let it also
construct all the indexes it considered useful.

Figure 4: Star schema based on the TPC-H schema.

Constructing the Fragmented schema

As input for the GreedyMerge algorithm we
generated the fragment set F by treating all TPC-H
queries as proto-queries (ignoring the WHERE,
ORDER and GROUP-clauses) all weighted with
probability 1. The result was a set F of 288
fragments which would occupy approximately 4

times more storage than the original TPC-H schema.
We started the GreedyMerge algorithm with the 288
fragments as input and with the storage occupied by
the tables and indexes of the star schema as a storage
constraint, so both the star schema and the
fragmented star schema occupied the same storage.
Due to the storage of the star schema being only 1/3
of the storage occupied by the 288 fragments, most
of them had to be merged. The storage constraint
was met and GreedyMerge terminated when there
were only 10 fragments left out of the initial 288.
Seven were, in fact, original tables (Order, Partsupp,
Part, Supplier, Customer, Nation, Region,), the
remaining three being different overlapping sets of
Lineitem attributes. The first (L1) was the fragment
corresponding to query 19 which seems to have least
in common with any of the other queries accessing
Lineitem and so remained “single”, fragment L2
combined the Lineitem columns needed for queries
12, 4, 21, and fragment L3 combined the Lineitem
attributes needed for queries 3, 5, 7, 8, 9 , 10, 14, 15,
17, 18, 20. Both L1 and L2 fragments have one or
more attribute in common with L3 but no common
attribute with each other. Strange as this scheme
might seem, its overhead for the whole TPC-H
workload is just 37% of the overhead I/O of the star
schema – an excellent result given that both occupy
the same storage.

Comparing the read performance of the Star schema
and the Fragmented Schema

We measured the performance of both schemes by
running the benchmark against them on a standard
PC (1.50GHz Processor, 1GB RAM) running under
Windows XP with Oracle 10g. The TPC-H data used
had a scale factor 1 (1GB).

Figure 5: Comparison of the performance of the Star
schema and the Fragmented schema on the TPC-H
benchmark.

The result showed a significant advantage of the
fragmented schema over the star schema (873 sec
average duration of the TPC-H benchmark vs. 3176
sec. for the star schema, i.e. the fragmented schema
is 3.6 times faster). The extent of this superiority
was surprising for us. We analysed the individual
queries and their execution plans and found out that

ICEIS 2007 - International Conference on Enterprise Information Systems

542

approximately 54% of the difference in the average
runtimes is due to the DBMS optimizer choosing to
use index with the star schema where table scan is
faster. We let the DBMS re-analyze the star schema
using a large sample (20%) of the data but, the
behaviour of the optimizer remained unaffected. We
don’t have explanation for it, but even discounting
these 54% as a result of some inconsistency within
the Oracle 10g optimizer (e.g. wrong selectivity
estimates), the remaining advantage of the
fragmented schema over the star schema is still
impressive.

Comparing the update performance of the Star
schema and the Fragmented Schema

We updated 10% of the tuples in the LOPS table of
the star schema and the L1, L2 and L3 fragments of
the fragmented schema. Again, the fragmented
schema offered better performance, however the
difference was negligible – only 8% faster than the
star scheme.

4 RELATED LITERATURE

Related literature includes works on data warehouse
modelling - (Golfarelli et al., 1998; Kimball et al.,
1998; Bizarro et al., 2002), vertical partitioning -
(Papadomano-lakis et al., 2004; Agrawal et al.,
2004) and new storage models – (Stonebraker et al.,
2005). Our work differs from them through one or
more of the following:
• we use query model as input;
• we use overlapping partitioning instead of disjoint

partitioning;
• we focus on reducing the overhead I/O, and not

on minimizing the joins;
• our method allows for storage constraint;
• we focus on the read performance;
• our method is accommodated within the existing

database technology.
We will treat the relevant literature in more detail in
a full text variant of this paper.

5 CONCLUSIONS AND
OUTLOOK

We think that the current paradigm of data
warehouse modelling commits the mistake of
ignoring important information about the future
workload. In this way many opportunities for
performance improvement are wasted. We propose a

simple, yet effective algorithm to derive a more
query-responsive data warehouse schema. The
schema created in this way was found to offer more
than 3 times better read performance using the same
storage as a star scheme.

We are at the start of our research and many
questions are open – “Are there algorithms which
construct even more effective schema (e.g. merge
not just two fragments at a time but more or merge
unrelated fragments)?”, “Can any performance
guarantees be established using reasonable
assumptions (e.g. self-similarity of the attribute
network)?” and others. We hope that other
researchers will find these questions as interesting as
we do.

ACKNOWLEDGEMENTS

I would like to thank Peter Stoehr for his support.

REFERENCES

Agrawal, S., et al., 2004: Integrating Vertical and Hori-
zontal Partitioning into Automated Physical Database
Design. Proc. 2004 SIGMOD Int. Conf. on Manag. of
Data.

Bizarro, P., Madeira, H., 2002: Adding a Performance-
Oriented Perspective to Data Warehouse Design.
Proc. of 4th Int. Conf. on Data Warehousing and
Knowledge Discovery (DaWaK).

Golfarelli, M. et al., 1998 Conceptual Design of Data
Warehouses from E/R Schemes. In Proc. 32th HICSS.

Inmon, W., 1996. Building the data warehouse, John
Wiley & Sons, Inc. New York, NY, USA.

Kimball, R., 1996. The data warehouse toolkit: practical
techniques for building dimensional data warehouses,
John Wiley & Sons, Inc. New York, NY, USA.

Kimball, R. et al., 1998. The data warehouse lifecycle
toolkit, John Wiley & Sons, Inc. New York, NY, USA.

Martello, S., Toth, P., 1990. Knapsack problems:
algorithms and computer implementations, John
Wiley & Sons, Inc. New York, NY, USA.

Papadomanolakis E., Ailamaki, A., 2004: AutoPart:
Automating Schema Design for Large Scientific
Databases Using Data Partitioning. Proc. 16th Int.
Conf. on Scient. and Stat. Datab. Manag. (SSDBM).

Stonebraker, M. et al., 2005. C-Store: A Column-oriented
DBMS. Proc of the 31st Int. Conf. on Very Large
Databases (VLDB).

TPC-H Standard Specification Revision 2.1.0, 2002.
http://www.tpc.org

A NEW LOOK INTO DATA WAREHOUSE MODELLING

543

