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Abstract: The dominating paradigm of Data Warehouse design is the star schema (Kimball, 1996). The main debate 
within the scientific community for years has been not whether this paradigm is really the only way, but, 
rather, on its details (e.g. “to snowflake or not to snowflake” – Kimball et al., 1998). Shifting the emphasis 
of the discourse entirely within the star schema paradigm prevents the search for better alternatives. We 
argue that the star schema paradigm is an artefact of the transactional perspective and does not account for 
the analytic perspective. The most popular formalized method for deriving the star schema (Golfarelli et al., 
1998) underlines just that by taking only the entity-relationship-model (ERM) as an input. Although this 
design approach follows the natural data and work-flow, it does not necessarily offer the best performance. 
The main thrust of our argument is that the query model should be used on a par with the ERM as a starting 
point in the data warehouse design process. The rationale is that the end design should reflect not just the 
structure inherent in the data model, but also that of the expected workload. Such approach results in a 
schema which may look very different than the traditional star schema but the performance improvement it 
may achieve justifies going off-the-beaten track.  

1 INTRODUCTION 

The purpose of a data warehouse is to store data 
which is not involved in current transactions. Such 
data is not expected to change often and this is why 
(Inmon, 1996) refers to this data as “time-invariant”. 
The “time-invariance” is reflected in the star schema 
paradigm which dominates the data warehouse 
modelling since the emergence of the data 
warehouse concept. The star schema refers to one or 
more fact tables and several dimension tables which 
are connected to the fact table(s) via foreign key 
relations. The “time-invariance” allows a relaxation 
of the restrictions of the normalized schema design 
to merge data connected via functional 
dependencies. A well-formalised method of deriving 
such a schema was proposed (Golfarelli et al., 1998) 
and now is the standard technique of data warehouse 
modelling. It takes as input the entity-relationship 
model from which the data originates and involves 
iterative pruning and merging which result in a de-
normalized scheme. This technique, however, is 
only a half-step in the process of emancipating the 
data warehouse design from that of the database 
design. What is missing in the picture is the query 
model. The possibility for queries is the only 
rationale for the existence of data warehouses - if we 
are not going to manipulate the data, than the only 

other meaningful use is to read it. On this 
background, it is strange that the currently most 
popular method does not consider the query 
workload. An important assumption underlies this 
omission. It is that we either already know what will 
be queried (and this is exactly what is put together in 
the fact tables) or that there is no way to know it. 
Needless to say, real life offers less clearly cut 
situations. While sometimes the workload is really 
well known in advance (this is the case with many 
commercial reporting applications) in most cases 
only vague ideas about the workload exist. For such 
applications the ubiquitous star schema may, 
actually, be a suboptimal solution. In this paper we 
focus on this case and propose an alternative design 
approach which incorporates both the underlying 
data model and whatever expectations about the 
workload might exist. We show that such an 
approach results in dramatic performance 
improvement compared to the classical star schema 
using the same amount of storage. We propose a 
simple yet efficient algorithm which can be used to 
derive such a schema. Our paper is organised as 
follows: in Part 2 we present our method, in Part 3 
we compare the runtime performance of our method 
to that of the traditional star schema design using the 
TPC-H benchmark, in Part 4 we give brief account 
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of the related literature, in Part 5 we give conclusion 
and outlook. 

2 CONSTRUCTING A 
FRAGMENTED SCHEMA 

Proto-queries as “vague queries” 
 
As already discussed, in many cases the data 
warehouse designer has only vague expectations 
about the future workload. These expectations may 
be based on one or more of the following sources: 
• past workload traces 
• metadata (attributes fitting logically together) 
• domain expertise. 

To keep the setting as general as possible, we 
assume that only probabilistic attribute associations 
are available at this stage. This means that no 
preferences exist for specific attribute values (i.e. the  
January sales are more interesting and likely to be 
queried than the May sales). These expectations are 
formalized as a set Q of “proto-queries” qi, each 
weighted by the probability pi of its occurrence.   
 
Trade-off between storage and performance 
 
In an ideal world the tables in the final model 
exactly match the future queries. But in reality there 
is a sizeable mismatch resulting in joins (when the 
query includes attributes not in the same table) or 
overhead I/O (when the table includes attributes 
which do not appear in the same query) both of 
which have negative impact on the performance.  
One solution to avoid them is to create a table for 
each proto-query. The problem is that even for 
modest entity-relationship and query models this 
approach would require too much storage. Ideally, 
we would “translate” both the joins and the overhead 
I/O into one single unit which we would aim to 
minimize while satisfying the storage constraint. 
However, there is no constant “exchange rate” 
between the joins and the excessive I/O in terms of 
the read operations involved or the resulting query 
duration. Therefore, to simplify the problem, we will 
regard the number of joins as a constant which is 
determined by both the query and entity-relationship 
model (i.e. the number of joins is the same as in the 
case where the queries are executed against the 
original ERM). So the only thing which we aim to 
optimize is the excessive I/O.  
 
Data Warehouse modelling as a knapsack problem 
 
This optimization task is an instance of the knapsack 
problem, a NP-hard problem (Martello et al., 1996). 

We address it with a simple but effective greedy 
heuristic which takes as an input the set of all table 
fragments F and their storage requirements.  
 
The Fragment: intersection of a query and a table 
 
A table fragment fij is defined as the intersection 
between the attributes of a table ti from the set T of 
all tables from the ERM and the attributes accessed 
by a proto-query qj (fij = ti ∩ qj,, ti ∈  T, qi ∈  Q). 
Fragments produced as intersection of the same table 
with different queries are called related fragments. 
 
Greedy merge of related fragments 
 
The main idea of the algorithm GreedyMerge (fig. 1) 
is to iteratively pair-wise merge related fragments 
which are closest to each other until a storage 
constraint is met. 
 

algorithm  GreedyMerge  
input: available storage, set of all fragments F  
output: table definitions  
1. until (storage constraint is satisfied) loop  
2. {for all pairs of related fragments in F  
4.     {ComputeMergeBenefit  
5.       merge (pair with max MergeBenefit)} 

Figure 1: Pseudocode of the GreedyMerge algorithm. 

MergeBenefit as closeness metric 
 
The closeness metric MergeBenefit computed by the 
ComputeMergeBenefit algorithm (line 4, fig. 1) is the 
ratio of the storage S saved and the increase in I/O 
overhead I caused by the merge of the pair of related 
fragments fij and fik, weighted by the probabilities of 
their proto-queries. Both S and I are sums of length 
in bytes of attributes, S of the attributes shared by fij 
and fik, I of those not shared (fig.2).  
 

Algorithm ComputeMergeBenefit 
Input: fragments fij ≠ fik (fij,fik - related, i.e. corresp. to 
           same table ti but to diff. proto-queries qj, and  qk) 
Output: MergeBenefit(fij, fik) 
Let Odb be the row overhead (DBMS-specific) 
      pj be the probability of proto-query qj 

la be the length of attribute a in bytes 
S = Odb // min. storage saving = row overhead 

1. for all attributes a ∈  fij 
2. { if (a ∉ fik) {I = I + la } else { S = S + la }}  
3. for all attributes a ∈  fik  
4. { if (a ∉ fij)   {I = I + la }}  
5. return pj* pk*(S/I)    //I=0 only if fij ≡ fik 

Figure 2: Pseudocode of ComputeMergeBenefit. 

The code displayed in fig. 2 is a slightly simplified 
version as it implies that the fragments are “single” 
(i.e. correspond to only one proto-query). As the 
algorithm progresses, however, “combined” 
fragments emerge which consist of several related 
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single fragments (each corresponds to an 
intersection of the same table with a different proto-
query) and so when the fragments fij is a combined 
fragment, then lines 3-4 change: 
 

3.    for all attributes a ∈  fik  
  3.5. { for all constituent fragments of fij 
  4.        { if (a ∉ fij)   {I = I + la }}  

Figure 3: Computing the overhead I/O in case of a 
combined fragment. 

The same change applies to lines to lines 1-2 when 
fik is a combined fragment. 
 
The GreedyMerge algorithm has complexity of 
O(q3)t where q is the number of proto-queries and t 
– the number of tables in the ERM which means that 
even for quite big models, the algorithm takes only 
seconds to finish. Depending on the value of the 
storage constraint its output could be the original 
ERM (if the storage constraint is too low for any 
redundancy) or a table model consisting of the full 
set of F (if the storage is enough to materialize all 
fragments). 

3 TPC-H AS EXAMPLE 

Constructing the Star schema for the comparison 
 
We tested our method using the TPC-H benchmark 
(TPC-H, 2002). We constructed a star schema by 
merging the tables Lineitem, Orders, PartSupp in a 
single table (LOPS), adding the Nation and Region 
data to the Supplier and Customer tables (tables 
SNR, CNR) and adding a table for the time 
dimension (fig. 4). We also let the Oracle 10G 
analyze the schema and by providing the TPC-H 
queries as input for its Index Advisor we let it also 
construct all the indexes it considered useful. 

 
Figure 4: Star schema based on the TPC-H schema. 

Constructing the Fragmented schema 
 
As input for the GreedyMerge algorithm we 
generated the fragment set F by treating all TPC-H 
queries as proto-queries (ignoring the WHERE, 
ORDER and GROUP-clauses) all weighted with 
probability 1. The result was a set F of 288 
fragments which would occupy approximately 4 

times more storage than the original TPC-H schema. 
We started the GreedyMerge algorithm with the 288 
fragments as input and with the storage occupied by 
the tables and indexes of the star schema as a storage 
constraint, so both the star schema and the 
fragmented star schema occupied the same storage. 
Due to the storage of the star schema being only 1/3 
of the storage occupied by the 288 fragments, most 
of them had to be merged. The storage constraint 
was met and GreedyMerge terminated when there 
were only 10 fragments left out of the initial 288. 
Seven were, in fact, original tables (Order, Partsupp, 
Part, Supplier, Customer, Nation, Region,), the 
remaining three being different overlapping sets of 
Lineitem attributes. The first (L1) was the fragment 
corresponding to query 19 which seems to have least 
in common with any of the other queries accessing 
Lineitem and so remained “single”, fragment L2 
combined the Lineitem columns needed for queries 
12, 4, 21, and fragment L3 combined the Lineitem 
attributes needed for queries 3, 5, 7, 8, 9 , 10, 14, 15, 
17, 18, 20. Both L1 and L2 fragments have one or 
more attribute in common with L3 but no common 
attribute with each other. Strange as this scheme 
might seem, its overhead  for the whole TPC-H 
workload is just 37% of the overhead I/O of the star 
schema – an excellent result given that both occupy 
the same storage. 
 
Comparing the read performance of the Star schema  
and the Fragmented Schema 
 
We measured the performance of both schemes by 
running the benchmark against them on a standard 
PC (1.50GHz Processor, 1GB RAM) running under 
Windows XP with Oracle 10g. The TPC-H data used 
had a scale factor 1 (1GB).  

 
Figure 5: Comparison of the performance of the Star 
schema and the Fragmented schema on the TPC-H 
benchmark. 
 
The result showed a significant advantage of the 
fragmented schema over the star schema (873 sec 
average duration of the TPC-H benchmark vs. 3176 
sec. for the star schema, i.e. the fragmented schema 
is 3.6 times faster). The extent of this superiority 
was surprising for us. We analysed the individual 
queries and their execution plans and found out that 
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approximately 54% of the difference in the average 
runtimes is due to the DBMS optimizer choosing to 
use index with the star schema where table scan is 
faster. We let the DBMS re-analyze the star schema 
using a large sample (20%) of the data but, the 
behaviour of the optimizer remained unaffected. We 
don’t have explanation for it, but even discounting 
these 54% as a result of some inconsistency within 
the Oracle 10g optimizer (e.g. wrong selectivity 
estimates), the remaining advantage of the 
fragmented schema over the star schema is still 
impressive.  
 
Comparing the update performance of the Star 
schema  and the Fragmented Schema 
 
We updated 10% of the tuples in the LOPS table of 
the star schema and the L1, L2 and L3 fragments of 
the fragmented schema. Again, the fragmented 
schema offered better performance, however the 
difference was negligible – only 8% faster than the 
star scheme. 

4 RELATED LITERATURE 

Related literature includes works on data warehouse 
modelling - (Golfarelli et al., 1998; Kimball et al., 
1998; Bizarro et al., 2002), vertical partitioning - 
(Papadomano-lakis et al., 2004; Agrawal et al., 
2004) and new storage models – (Stonebraker et al., 
2005). Our work differs from them through one or 
more of the following: 
• we use query model as input; 
• we use overlapping partitioning instead of disjoint 

partitioning; 
• we focus on reducing the overhead I/O, and not 

on minimizing the joins; 
• our method allows for storage constraint; 
• we focus on the read performance; 
• our method is accommodated within the existing 

database technology. 
We will treat the relevant literature in more detail in 
a full text variant of this paper. 

5 CONCLUSIONS AND 
OUTLOOK 

We think that the current paradigm of data 
warehouse modelling commits the mistake of 
ignoring important information about the future 
workload. In this way many opportunities for 
performance improvement are wasted. We propose a 

simple, yet effective algorithm to derive a more 
query-responsive data warehouse schema. The 
schema created in this way was found to offer more 
than 3 times better read performance using the same 
storage as a star scheme.  
 
We are at the start of our research and many 
questions are open – “Are there algorithms which 
construct even more effective schema (e.g. merge 
not just two fragments at a time but more or merge 
unrelated fragments)?”, “Can any performance 
guarantees be established using reasonable 
assumptions (e.g. self-similarity of the attribute 
network)?” and others. We hope that other 
researchers will find these questions as interesting as 
we do. 
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