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Abstract: Many human action definitions have been provided in the field of human computer interaction studies. These
distinctions could be considered merely semantical as human actions are all carried out performing sequences
of body postures. In this paper we propose a human action classifier based on volumetric reconstructed se-
quences (4-D data) acquired from a multi-viewpoint camera system. In order to design the most general action
classifier possible, we concentrate our attention in extracting only posture-dependent information from volu-
metric frames and in performing action distinction only on the basis of the sequence of body postures carried
out in the scene. An Invariant Shape Descriptor (ISD) is used in order to properly describe the body shape
and its dynamic changes during an action execution. The ISD data is then analyzed in order to extract suitable
features able to meaningfully represent a human action independently from body position, orientation, size
and proportions. The action classification is performed using a supervised recognizer based on the Hidden
Markov Models (HMM) theory. Experimental results, evaluated using an extensive action sequence dataset
and applying different training conditions to the HMM-based classifier, confirm the reliability of the proposed
approach.

1 INTRODUCTION

Gestures and actions are among the principal ways
through which a human being interacts with reality.
Many human action definitions have been provided in
the field of human computer interaction studies. In
(Nespoulous and Perron, 1986), e.g., four different
dichotomies were defined in order to provide a clas-
sification of different types of human action, namely
the act-symbol (with material purpose or communica-
tive), opacity-transparency (having cultural depen-
dent or universal meaning), semiotic-multisemiotic
(autonomous or supported by other communication
channels) and centrifugal-centripetal (intentional or
not). These distinctions could be considered merely
semantical if we provide a lower level definition of
human action, namely, a sequence of body posture.
Thus, a particular set of postures can form a time pat-

tern that conveys information about the action per-
formed.

When humans are involved in action classifica-
tion the input data that they receive is merely visual:
the postures performed by the actor are recognized
on the basis of images. A group of action recogni-
tion researchers took this consideration as the start-
ing point to developvision-based systemsusing input
from camera devices for their automatic classification
purpose. E.g. in (Aggarwal and Cai, 1997) and in
(Gavrila, 1999) it is possible to find exhaustive and
yet valid surveys of the possible directions that can be
followed in vision-based human motion studies and
human action recognition.

Despite the ability of the human brain to recog-
nize postures only on the basis of image data, infor-
mation on body joints configuration is 3-D in nature.
The natural way of dealing with posture representa-
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tion is, thus, in the 3-D environment (Mikić et al.,
2001). In the work presented in this paper we use
a multi-camera input device and a 3-D Visual-Hull
reconstruction technique (Laurentini, 1994) in order
to provide volumetric information to the system (see
Subsect. 2.1). In this way, problems such as viewpoint
dependence, motion ambiguities and self-occlusions
are inherently solved before the body posture track-
ing stage.

Frame-by-frame 3-D representations of the scene
(4-D data) in terms of voxels (volumetric pixels) have
been the input data from which extracting posture-
dependent features (Cuzzolin et al., 2004). In the
SubSect. 2.3 we introduce a method for performing
the tracking of body postures throughout an action se-
quence, mainly based on the dynamic adaptation of
the technique used by Cohen and Li (Cohen and Li,
2003) for static posture estimation. Through exper-
imental sessions, we developed a technique able to
extract a posture-dependent signal, independent from
actor’s position, orientation, size and voxel-set reso-
lution.

The second stage of this research work has been
mainly dedicated to the implementation of a reliable
pattern recognition algorithm in the context of human
action classification (see Subsect. 2.4). The similarity
with the speech recognition problem can be quite ob-
vious at this point: it is possible to consider postures
as the atoms of actions in the same way as phonemes
are often considered the bricks that form words. In
other words, the same well-studied approaches used
for speech recognition can be followed also in action
recognition projects. Therefore, during this work it
has been developed a context-based recognition al-
gorithm based on the Hidden Markov Models theory
(Rabiner, 1989), a technique already studied and ap-
plied in many speech recognition researches.

1.1 Possible Applications

Potential applications of this type of research projects
can be easily found in the fields of automatic video
surveillance systems (Collins et al., 2000) and (May-
bank and Tan, 2000), human-computer gestural inter-
action researches (Li et al., 1998), (Segen and Kumar,
1999), (Yang and Ahuja, 1999) and (Cui and Weng,
1996), motion based medical diagnosis (Lakany et al.,
1999), (K̈ohle et al., 1997) and (Meyer et al., 1997),
robot skill learning. Automatic recognition and clas-
sification of suspicious movements (Ivanov et al.,
1998) and gaits (Little and Boyd, 1998), (Shutler
et al., 2000), (Huang et al., 1999) and (Cunado et al.,
1998) in sensitive areas is perhaps one of the most
important recent needs demanding for applications at

the cutting edge of human action recognition technol-
ogy. Furthermore the market of video games control
devices would benefit from the development of ges-
tures and movements control systems (Freeman et al.,
1996) and some industrial products are yet in this di-
rection (Geer, 2004).

2 OVERVIEW OF THE SYSTEM

2.1 4-d Data From Multiple View
Acquisition

In order to perform a 3-D reconstruction procedure
using a multiple view of the scene, the system has to
distinguish the actor silhouette from the rest of the
image. A background subtraction technique is used
in order to provide this kind of segmentation. Once
the object silhouette is extracted for each view, the so
called Visual-Hull volumetric reconstructionof the
scene shot by cameras is computed frame-by-frame
before any tracking procedure. In this method, 3-D
reconstruction is performed using thevolume inter-
sectionapproach, which recovers the volumetric de-
scription of the object from multiple silhouettes by
back projecting from each viewpoint the correspond-
ing silhouette for perspective projections (Laurentini,
1994) (Fig. 1). The intersection volume is then sam-
pled regularly across the three dimensions in order to
generate a volume made of binary voxels (ON/OFF).
Body posture tracking is then computed directly on
volumetric action sequence frames (Fig. 2).

Figure 1: Volumetric intersection. Example of voxel-set
creation by 3-D intersection of visual hulls projected from
segmented edges.
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2.2 Exploiting 4-d Data Information

The 4-D data used for our human action recogni-
tion purpose (see Fig. 2) contain multiple informa-
tion, both related to space and time. Taking into ac-
count only the spatial data (instantaneous body vol-
umetric reconstruction), it is possible to distinguish
various action-dependent and action-independent in-
formation. Thebody posture(body joints configura-
tion), body positionandorientation (with respect to
the reference frame of the acquisition system) belong
to the first category, whereas the particular body size
and proportions of the actor and the volumetric frame
resolution belong to the latter. On the other hand,
the time data related to the performed action can be
divided intoposture sequence information, execution
time warping, action iterations(if the same action is
repeated several times during an action sequence ac-
quisition) andaction concatenation(if different ac-
tions are executed consecutively during a sequence).
During the development of an action recognizer that
could be as general as possible, we considered the
spatial information related toposturesand the time
information related toposture sequenceas the low-
est level data on the basis of which it is possible to
classify a human action. All the other types of action-
dependent data contain higher semantical information
that can be exploited depending on the specific recog-
nition task. E.g. the body orientation can be used if
the actor is pointing at a particular direction, or the
body position can be important if there is an interac-
tion with the environment. Time information related
to execution time warping can be related to different
ways of performing a sequence of postures in differ-
ent action instances and, therefore, it could be poten-
tially used for gait analysis. Eventually, the recogni-
tion of the number of action iterations and the analysis
of action concatenation can be considered as a natu-
ral extension of the system proposed in this article, in
which we assume to have input sequences each one
containing the execution of only one type of action,
possibly repeated several times.

2.3 Posture-Dependent Features

2.3.1 Invariant Shape Descriptor

The core of our body posture tracking procedure is
based on the method proposed by Cohen and Li in
(Cohen and Li, 2003). They used the Shape De-
scriptor to compute features suitable for static pos-
ture recognition. Our purpose was slightly different
because we needed features to perform classification
of human actions. Thus,our shape description had

Figure 2: 4-D data. Example of 4-D data regarding a “kick”
action. The frame 42 is viewed from five different perspec-
tives.

to represent meaningfully not only body postures, but
also their frame-by-frame dynamic changes.

The procedure starts from the first frame of a se-
quence (3-D frame from 4-D data) containing the hu-
man body volume (e.g. Frame 1 in Fig. 2 ). The al-
gorithm needs a definition of areference shapecon-
sisting of avertically oriented cylinder. It is adapted
to theactor’s heightand itsaxis passes through the
body 3-D centroid(Fig. 3 (b)).

(a) (b)

Figure 3: Example of Invariant Shape Descriptor reference
shape. In (a) the body horizontal projection silhouette is
used to adapt the base circle. In (b) it is shown the refer-
ence cylinder surface. Each voxel is represented only by its
central point.
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The use of the cylinder allows the discrimination
between different orientations of the object (body)
with respect to the horizontal plane. The base of the
adopted cylinder is themajor circle inscribed inside
the projection of the body ON-voxels on the horizon-
tal plane (Fig. 3 (a)). The main advantages of this
choice will be explained later.

Once the reference shape surface is gauged on the
current voxel-set, it is possible to apply the 3-D Shape
Descriptor algorithm: the reference cylinder surface
is sampled into a numberS of control points (ps,
s ε {1, . . . ,S}). S is a user-defined parameter cho-
sen according to computational cost and representa-
tion accuracy criteria.

For each control pointps:

• Define a spherical coordinates system(ρ,θ,ϕ)
with origin fixed in theps location where: 0≤
ρ ≤ ρmax, 0 ≤ θ ≤ π rad and 0≤ ϕ ≤ 2π. θ = 0
corresponds to the vertical direction,ϕ = 0 is the
direction of the segment orthogonal to the cylin-
der axis passing throughps and ρmax is a value
higher than the maximum distance of voxels from
the control points.

• Sample uniformly the polar coordinates into parts,
respectivelySρ, Sθ andSϕ. This way we obtain a
set of coordinate values{(ρi ,θ j ,ϕk)}.

• Assign to ps a 3-D spherical histogramfs ini-
tially represented by a zero-valued matrix with
Sρ ×Sθ ×Sϕ dimensions.

• For each elementary volume in spherical coordi-
nates, defined by a particular(ρi ,θ j ,ϕk), count
how many ON-voxels are contained and store this
number in the corresponding histogram location
fs(i, j,k).

The 3-D Shape Descriptor F(i, j,k) is a spheri-
cal histogram obtained summing up the correspond-
ing values taken from all the histograms of the control
points and normalizing these quantities to the maxi-
mum value obtained:

F(i, j,k) =
S

∑
s=1

fs(i, j,k)

maxi, j,k

(

∑S
l=1 fl

(

i, j,k
)) (1)

The Shape DescriptorF(i, j,k) is invariant (In-
variant Shape Descriptor) with respect tobody posi-
tion in the voxel-set cartesian frame of reference. The
reference cylinder, in fact,follows the body centroid
movements. Furthermore, theuse of control points ly-
ing on the cylindrical surfaceallows invariance with
respect tobody orientation. The particular procedure
we used toadapt the reference cylinder to the human
bodyaims to make the system invariant with respect
to thebody size and proportionsof the actor who

is performing the posture. Thefinal normalization of
the Shape Descriptor valuesremoves the proportional
relation to how many voxels the body volume is made
up (volumetric frame resolution) and possible effects
due todifferent sizes of volumesin spherical coor-
dinates, derived from the use of different reference
cylinders.

After having computed the cylindrical surface, the
cylinder follows the motion of the body centroid but
its size remains unchanged for the rest of the se-
quence. This way we obtain an harmonious varia-
tion of features throughout the motion. In our ex-
periments, as suggested in (Cohen and Li, 2003), we
sampled the spherical coordinates ten times each, ob-
taining a spherical histogram that contains 1000 bins
(see Fig. 4).

Figure 4: Invariant Shape Descriptor (ISD). Example of
ISD spherical histograms computed for 3 frames of a “kick”
action sequence. Control point locations (in blue) are shown
in the volumetric plots (left).
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2.3.2 Feature Selection and Dimensionality
Reduction

Following the described method, an Invariant Shape
DescriptorF(i, j,k) is computed for each frame of
an action sequence. In order to reliably reduce the
dimensionality associated with the data contained in
the ISD spherical histogram (1000 bins), we applied
the Principal Component Analysis in the ISD data do-
main.

First, F(i, j,k) values (Sρ × Sθ × Sϕ values) are
collected in vectors (one for each volumetric frame),
that are again collected into matrices (one for each
action sequence) having a dimensionality of 1000×
number of frames.

Figure 5: Action sequence feature matrices. Eight exam-
ples of action sequence feature matrices. It is possible to
notice the similarities between two instances of the same
actions and, on the other hand, the dissimilarities existing
among instances of different actions.

Eigenvalue analysis is performed directly on the
covariance of the matrices computed from theac-
tion sequence data-set used for system training(the
ones used to train the HMM-based classifier block).
Eventually, the Karhunen-Loève transform is applied
projecting every computed ISD data matrix onto the
first 30 principal directions (corresponding to the
first 30 eigenvectors). Therefore, through a 30×
number of framesfeature matrix we represent an ac-
tion sequence (eight examples are provided in Fig. 5,
where each action begins and ends with the same
standing up position, with arms hanging on the hips).

2.4 Posture Sequence Classification

In order to design a human action classifier able to
exploit the information contained in the extracted fea-
tures, it is necessary to:

• to provide a system able to classify a 30×
number of framesfeature matrix into an action
category out of a predefined set;

• to provide an action classifier that aims to be in-
sensitive to slight differences in gesture execution
time warping, to the number of action repetitions
and to the initial posture of the sequence;

In the recognition engine design for this research
project we applied one of the most popular context-
dependent recognizers to the problem of human
actions classification, namely, the Hidden Markov
Model classifier. Hidden Markov Models have been
widely used for speech recognition applications and
their practical implementations for action recognition
purposes are still limited. Therefore, our references
are mainly based on speech recognition applications:
one of the most important for this work has been the
article published by L. Rabiner (Rabiner, 1989).

The main idea behind the HMM-based classifier
design is to compute a model out of an action training
set (a set of sequences containing instances belong-
ing to the same action class) and store the model pa-
rameter in a database. Once a model is computed for
any available action class, these models are used as a
bank of Maximum Likelihood parallel receivers able
to classify new feature matrices (classification of new
sequences).

2.4.1 The Application of Hidden Markov Models

Starting from HMM theory (Rabiner, 1989), we de-
fined HMM parameters suitable for modeling a given
action sequence (see Fig 6):

• The states of an action modelN are associated
semantically to theprincipal body postures that
form an action. In this first implementation of the
system, we preferred to maintain a fixed number
of states. After some experiments, we found that
5 is a suitable state number given the action class
considered so far.

• The type of the observation per stateSj is rep-
resented by a shape descriptor feature vector that
ranges continuously in a 30-dimensional space.

Ot = xt =









x1
x2
...

x30









t

30= features number

(2)

SIGMAP 2007 - International Conference on Signal Processing and Multimedia Applications

410



• The state transition probability matrix A =
{ai, j}, that is the probability of having a particular
posture in the next time instant given the previous
one:

ai, j = P(qt = Sj |qt−1 = Si) 1≤ i, j ≤ N (3)

• The observation probability density function of
having the feature vector xt in stateSj :

p(xt |Sj) 1≤ j ≤ N (4)

is parameterized through aGaussian Mixture
Model (GMM):

p(xt |Sj) =
M

∑
m=1

c jm N(xt ,µjm,σ jm) (5)

where the number of gaussian mixtures is chosen
empirically according to the multi-modality of the
p(xt |Sj) probability density function of the train-
ing data-set.

• The initial state probability vector Π = {πi}.
We decided to keep the valuesπi fixed during the
Baum-Welch procedure, an iterative procedure
based on the Expectation Maximization mecha-
nism, suitable for finding the HMM parameter
values such that the likelihood of the training se-
quences having the HMM model assigned to that
action class is locally maximized (Rabiner, 1989).
Moreover, we consideredequal initial probabil-
ity for all the states:

πi = P(q1 = Si) =
1
N

1≤ i ≤ N

In fact, in this work we consider a gesture as a
sequence of postures, but independently from the
point of the sequence the action performed by the
actor in the scene begins.

3 EXPERIMENTAL RESULTS

In order to perform a full evaluation of the classifi-
cation system performance, we collected up to 500
4-D action sequences and for each one we extracted
the corresponding 30×number of framesfeature ma-
trix by means of ISD spherical histogram computa-
tion and Karhunen-Lòeve transformation for dimen-
sionality reduction. The entire data-set included the
combination of:

• 10different action classes (see Tab. 1).

• 5 different actors

• 10different instances performed by each actor for
any action class

Figure 6: HMM graphical representation. This three-state
(N = 3) Hidden Markov Model is acting as a stochastic
source of an action sequence feature matrix. The tree state
model is having a transition from state 1 to state 2 at time
40, therefore the observation vector at time 40 is emitted
according to the pdfp(x|S2).

Table 1: Different action classes used for system evalu-
ation.

1 flap arms 6 push with hands
2 kneel down 7 crouch down
3 kick 8 bend forward
4 raise arm 9 push with elbow
5 hide face 10 two-step walk

The entire data-set (500 action sequences) has
been divided into twodisjoint subsets: thetrain data-
set, that is used to train the Hidden Markov Mod-
els for each action class and thetest data-set, that
is used to test the system recognition ability and it is
the complementary of the train data-set with respect
to the entire data-set. Two subsequent phases have to
be performed in order to evaluate the action classifier:

Training phase. the sequences included in the train
data-set are are divided into their corresponding
action class. For each action class a Hidden
Markov Model procedure is performed follow-
ing the Baum-Welch Expectation-Maximization
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algorithm (Rabiner, 1989) and suitable model pa-
rameters are learned automatically from the given
training sequences. Once this phase is completed,
the system stores a set of model parameters for
each learned action class.

Test phase.each test sequence is assigned to an ac-
tion class on the basis of the maximum likeli-
hood with respect to the models. In other words,
each model computes the probability (likelihood)
of having generated the sequence under test act-
ing as a source (Fig 6). Then the test sequence
is assigned to the action class represented by the
model showing the highest likelihood.

System evaluation is then performed on the basis of
correct recognition rate both using the train data-set
and the test data-set during the training phase. When
the train data-set is used for testing, it is possible
to evaluate the Hidden Markov Models capability of
adapting to the sequences used for training and acting
as sources for those feature matrices. On the other
hand, whentest data-setis used, we test the gener-
alization capability of the Hidden Markov Models of
representing meaningfully new feature matrices be-
longing to the learned action classes.

Moreover, the correct recognition rate of the clas-
sifier is computed taking into account different exper-
imental conditions:

• Using different percentages of train sequences
(out of the 50 available for each action class)

• Using different number of actors for training

• Using Monte-Carlo method in order to select
training sequences given an action class, an actor
and a training sequence percentage

Experimental results are reported in Fig. 7, where
different train data-set percentages (with respect to
the entire data-set) include always sequences per-
formed by all possible actors, whereas in Fig. 8 only
four actors (out of five) are used for training and
the correct recognition percentage is computed as the
mean of the values resulting from the test using the se-
quences of the actor excluded from training (over all
possible exclusions of one actor from the train data-
set).

4 CONCLUSION

In this paper we proposed a human action classifier
based on volumetric 3-D data. Through the applica-
tion of a 3-D reconstruction technique viewpoint de-
pendence, motion ambiguities and self occlusions are
inherently solved before posture tracking by a simple

Figure 7: Correct recognition rate using all five actors for
model training. The correct recognition rate is tested against
different train subset percentages with respect to the entire
data-set including 500 action sequences.

Figure 8: Correct recognition rate using only four actors
(out of five) for model training. The correct recognition rate
is tested against different train subset percentages with re-
spect to the entire data-set including 500 action sequences.

computational process, that follows pre-determined
steps. The performance shown by the experiments
have highlighted the abilities of the used Shape De-
scriptor not only to represent postures, as shown in
(Cohen and Li, 2003), but also to be tuned up in a
dynamic context (Invariant Shape Descriptor), pro-
viding a simple but effective method to track posture
movements and slight changes in body shape during
an action. The simulations that have been carried
out using an Hidden Markov Model-based classifier
demonstrate the ability of the Invariant Shape De-
scriptor histogram data to be properly used for repre-
senting action sequence features through the applica-
tion of a dimensionality reduction technique (Princi-
pal Component Analysis). Possible future directions
of this project could include a complete evaluation of
the system in comparison to other proposed solutions
in this research field.
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