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Abstract: In voice-driven sound synthesis applications, phonetics convey musical information that might be related to
the sound of an imitated musical instrument. Our initial hypothesis is that phonetics are user- and instrument-
dependent, but they remain constant for a single subject and instrument. Hence, a user-adapted system is
proposed, where mappings depend on how subjects performs musical articulations given a set of examples.
The system will consist of, first, a voice imitation segmentation module that automatically determines note-
to-note transitions. Second, a classifier determines the type of musical articulation for each transition from
a set of phonetic features. For validating our hypothesis, we run an experiment where a number of subjects
imitated real instrument recordings with the voice. Instrument recordings consisted of short phrases of sax
and violin performed in three grades of musical articulation labeled as: staccato, normal, legato. The results
of a supervised training classifier (user-dependent) are compared to a classifier based on heuristic rules (user-
independent). Finally, with the previous results we improve the quality of a sample-concatenation synthesizer
by selecting the most appropriate samples.

1 INTRODUCTION

Technology progresses toward more intelligent sys-
tems and interfaces that adapt to users’ capabilities.
New musical applications are not exempt of this sit-
uation. Here, we tackle singing-driven interfaces
as an extension in the musical domain of speech-
driven interfaces. Most known example of singing-
driven interfaces is query-by-humming (QBH) sys-
tems, e.g. (Lesaffre et al., 2003). In particular, we
aim to adapt the mappings depending on the pho-
netics employed by the user in instrument imitation
(syllabling). In this paper, singing is used to con-
trol the musical parameters of an instrument synthe-
sizer (Maestre et al., 2006). Results may lead to the
integration of such learned mappings in digital au-
dio workstations (DAW) and music composition soft-
ware.

1.1 Voice-driven Synthesis

Audio and voice-driven synthesis has been already
introduced by several authors. In (Janer, 2005), the
author carried out a voice-driven bass guitar synthe-
sizer, which was triggered by impulsive voice utter-

ances that simulated the action of plucking. Here,
we aim to extend it to continuous-excitation instru-
ment, which permits more complex articulations (i.e.
note-to-note transitions). To derive control parame-
ters from the voice signal becomes thus more difficult
than detecting voice impulses. As we describe in this
paper, phonetics appears to be a salient attribute for
controlling articulation.

Research in state-of-the-art sound synthesis takes
two main directions: more realism in sound qual-
ity, and a more expressive control. For the for-
mer, basically, most current commercial synthesiz-
ers use advanced sample based techniques (Bonada
and Serra, 2007; Lindemann, 2007). These tech-
niques provide both quality and flexibility, achiev-
ing a realism missing in early sample-based synthe-
sizers. Secondly, in term of expressive control, syn-
thesizers make use of new interfaces such as gestural
controllers (Wanderley and Depalle, 1999), indirect
acquisition (Egozy, 1995), or alternatively, artificial
intelligence methods to induce a human-like quality
to a musical score (Widmer and Goebl, 2004).

In the presented system, the synthesizer control
parameters involveloudness,pitch and articulation
type. We extract this information from the input voice
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signal, and apply the mappings to the synthesizer con-
trols, in a similar manner to (Janer, 2005) but here
focusing on note-to-note articulations. The synthesis
is a two-step process: sample selection, and sample
transformation.

1.2 Toward User-adapted Mappings

We claim that the choice of different phonetics when
imitating different instruments and different articula-
tions (note-to-note transitions) is subject-dependent.
In order to evaluate the possibilities of automatically
learning such behaviour from real imitation cases, we
carry out here some experiments. We propose a sys-
tem consisting of two main modules: animitation seg-
mentation module, and anarticulation type classifica-
tion module. In the former, a probabilistic model au-
tomatically locates note-to-note transitions from the
imitation utterance by paying attention to phonetics.
In the latter, for each detected note-to-note transition,
a classifier determines the intended type of articula-
tion from a set of low-level audio features.

In our experiment, subjects were requested to im-
itate real instrument performance recordings, consist-
ing of a set of short musical phrases played by saxo-
phone and violin professional performers. We asked
the musicians to perform each musical phrase using
different types of articulation. From each recorded
imitation, our imitation segmentation moduleauto-
matically segments note-to-note transitions. After
that, a set of low-level descriptors, mainly based on
cepstral analysis, is extracted from the audio excerpt
corresponding to the segmented note-to-note transi-
tion. Then, we perform supervised training of thear-
ticulation type classification moduleby means of ma-
chine learning techniques, feeding the classifier with
different sets of low-level phonetic descriptors, and
the target labels corresponding to the imitated musi-
cal phrase (see figure 1). Results of the supervised
training are compared to classifier of articulation type
based on heuristic rules.

2 IMITATION SEGMENTATION
MODULE

In the context of instrument imitation, singing voice
signal has a distinct characteristics in relation to tra-
ditional singing. The latter is often referred assylla-
bling (Sundberg, 1994). For both, traditional singing
and syllabling, principal musical information involves
pitch, dynamics and timing; and those are indepen-
dent of the phonetics. In vocal imitation, though, the
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Figure 1: Overview of the proposed system. After the im-
itation segmentation, a classifier is trained with phonetic
low-level features and the articulation type label of target
performance.

role of phonetics is reserved for determining articu-
lation and timbre aspects. For the former, we will
use phonetics changes to determine the boundaries of
musical articulations. For the latter, phonetic aspects
such as formant frequencies within vowels can signify
a timbre modulation (e.g. brightness). We can con-
clude that unlike in speech recognition, a phoneme
recognizer is not required and a more simple classifi-
cation will fulfill our needs.

In Phonetics, one can find various classifications
of phonemes depending on the point of view, e.g.
from the acoustic properties the articulatory gestures.
A commonly accepted classification based on the
acoustic characteristics consists of six broad phonetic
classes (Lieberman and Blumstein, 1986): vowels,
semi-vowels, liquids and glides, nasals, plosive, and
fricatives. Alternatively, we might consider a new
phonetic classification that better suits the acoustic
characteristics of voice signal in our particular con-
text. As we have learned from section 2, a reduced set
of phonemes is mostly employed in syllabling. Fur-
thermore, this set of phonemes tends to convey mu-
sical information. Vowels constitute the nucleus of
a syllable, while some consonants are used in note
onsets (i.e. note attacks) and nasals are mostly em-
ployed as codas. Our proposal envisages different
categories resulting from the previous studies in syl-
labling (Sundberg, 1994). Taking into account syl-
labling characteristics, we propose a classification
based on its musical function, comprising:attack,
sustain, release, articulationandother (additional).
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Table 1: Typical broad phonetic classes as in (Lieberman
and Blumstein, 1986), and proposed classification for syl-
labling on instrument imitation. This table comprises a
reduced set of phonemes that are common in various lan-
guages.

CLASS PHONEMES

Speech Phon. classes
Vowels [a] , [e] , [i], [o], [u]
Plosive [p], [k], [t], [b], [g], [d]
Liquids and glides [l], [r], [w], [y]
Fricatives [s], [x],[T], [f]
Nasal [m], [n],[J]
Syllabling Phon. classes
Sustain [a] , [e], [i], [o], [u]
Attack [p], [k], [t], [n], [d]
Articulation [r], [d], [l], [m], [n]
Release [m], [n]
Other (additional) [s],[x],[T], [f]

2.1 Method Description

Our method is based on heuristic rules and looks at
the timbre changes in the voice signal, segmenting it
according to the phonetic classification mentioned be-
fore. It is supported by a state transition model that
takes into account the behavior in instrument imita-
tion. This process aims at locating phonetic bound-
aries on the syllabling signal. Each boundary will de-
termine the transition to one of the categories showed
in table 1. This is a three steps process:

1. Extraction of acoustic features.

2. Computation of a probability for each phonetic
class based on heuristic rules.

3. Generation of a sequence of segments based an a
transition model (see Fig. 3)

Concerning the feature extraction, the list of low-
level features includes: energy, delta energy, Mel-
Frequency Cepstral Coefficients (MFCC), deltaM-
FCC, pitch and zero-crossing.DeltaMFCC is com-
puted as the sum of the absolute values of the MFCC
coefficients derivative (13 coeffs.) with one frame de-
lay. Features are computed frame by frame, with a
window size of 1024 and a hop size of 512 samples
at 44100Hz. This segmentation algorithm is designed
for a real-time operation in low-latency conditions.

From the acoustic features, we use a set of heuris-
tic rules to calculate boundary probabilities for each
phonetic class. Unlike for an offline processing, in a
real-time situation, this algorithm is currently not able
to distinguish betweenArticulation andReleasepho-
netic classes.
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Figure 2: Syllabling Segmentation (from top to bottom):
phonemes, waveform, labels and boundary probability for
intervocalicclass (horizontal line representing the threshold
bthres).

In a first step, in order to generate continuous
probabilities, and to attain a more consistent be-
haviour, we employ gaussian operators to compute
a cost probabilityfi(xi) for each voice featurexi(see
Eq. 1). Observe that for each voice featurexi , func-
tion parametersµi , σi andTi are based on heuristics.
In the table 2, we list the voice features used for the
six considered boundary categoriesB j , j = {0. . .5}.
Then, for each boundary probabilityB j , a weighted
product of all voice feature probabilities is computed,
with wi = 1 orwi = 1/ fi(xi), whether a given phonetic
classj is affected by a voice featurei.

fi(xi) =

{

exp(xi−µi)
2

2σ2
i

,xi > Ti

1, xi ≤ Ti

(1)

B j = ∏
i

wi · fi(xi) (2)

This is a frame-based approach, computing at
each framek a boundary probability for each pho-
netic classj, p j(x[k]) = p(B j |x[k]). At each frame,
to decide if a boundary occurs, we take the maximum
of all four probabilitiesp(B|x[k]) and compare it to a
empirically determined thresholdbthres.

p(B|x[k]) = max
0<5

[p j(x[k])]

Finally, in order to increase robustness when de-
termining the phonetic class of each segment in a se-
quence of segments, we use a state transition model.
The underlying idea is that a note consists of an onset,
a nucleus (vowel) and a coda. In addition, a group of
notes can be articulated together, resemblinglegato
articulations on musical instruments. Thus, we need
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Table 2: Description of the attributes use in the boundaries
probability for each category.B j is the boundary probability
for the classj; xi are the voice features.

j B j xi
0 Attack energy, dEnergy
1 Sustain energy, dEnergy, dMFCC, zcross
2 Articulation dEnergy, dMFCC, zcross, pitch
3 Release dEnergy, dMFCC, zcross, pitch
4 Other zerocross, dMFCC
5 Silence energy, dEnergy, pitch

Table 3: Averaged results of the onset detection compared
to a ground-truth collection of 94 files. The average time
deviations was -4.88 ms.

Mean Stdev
Correct detections (%) 90.78 15.15
False positives (%) 13.89 52.96

to identify these grouped notes, often tied with liq-
uids or glides. The figure 3 describes the model for
boundary transitions.

Att Sus Art Rel Sil

/t/ /a/ /r/ /m/Phonetic
example

Sil

Figure 3: Model for the segment to segment transition for
the different phonetic classes.

2.2 Evaluation

With the proposed method, we are able to segment
effectively phonetic changes and to describe a voice
signal in the context of instrument imitation as a se-
quence of segments. An evaluation of the algorithm
was carried out, by comparing automatic results with
a manual annotated ground truth. The ground truth set
consists of 94 syllabling recordings. Syllabling ex-
amples were voice imitations by four subjects of sax
recordings with an average duration of 4.3sec. For the
evaluation, onsets are considered those boundaries la-
beled assustain, since it corresponds to the beginning
of a musical note. The averaged results for the com-
plete collection is shown in table 3.

3 ARTICULATION TYPE
CLASSIFICATION MODULE

The mapping task aims to associate phonetics to dif-
ferent type of musical articulations. Although, we en-
visage three types of musical articulations: 1)silence-
to-note, 2) note-to-noteand 3) note-to-silence, this
paper focuses only onnote-to-notetransitions. Since,
phonetics are assumed to be user-dependent, our goal
is to automatize this process by learning the phonetics
employed by a particular user. In a real application,
this would be accomplished during a user configura-
tion stage. We compare the supervised training re-
sults to a user-independent classifier based on heuris-
tic rules.

3.1 Experiment Methodology

For the voice imitation performances, we asked four
volunteers with diverse singing experience to listen
carefully to target performances and to imitate those
by mimicking musical articulations. The supervised
training takes thearticulation labelof a target perfor-
mances, and avoice imitationperformance. Target
performances are sax and violin recordings, in which
performers were asked to play short phrases in three
levels of articulation.The number of variations is 24,
covering:

• articulation (3): legato, medium and staccato.

• instrument(2): sax and violin.

• inter-note interval(2): low and high.

• tempo(2): slow and fast.

All target performance recordings were normal-
ized to an average RMS, in order to let subjects con-
centrate on articulation aspects. Subjects were re-
quested to naturally imitate all 24 variations with no
prior information about the experiment goals. Varia-
tions were sorted randomly in order to avoid any strat-
egy by subjects, and this process was repeated twice,
gathering 48 recordings per subject.

In the Table 4, we can observe the results of user-
dependent supervised training for the four subjects,
using two (staccatoand legato) and three (staccato,
normaland legato) classes for articulation type. The
classification algorithm used in our experiments was
the J48, which is included the WEKA data mining
software1. Due to the small size of our training set,
we chose this decision-tree algorithm because of its
interesting properties. Namely, due to its simplicity,
this algorithm is more robust to over-fitting than other

1http://www.cs.waikato.ac.nz/ ˜ ml/weka/
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more complex classifiers. The attributes for the train-
ing include phonetic features of note-to-note transi-
tions. Three combinations of phonetic features within
a transition were tested: 1) MFCC(1-5) of the middle
frame; 2) MFCC(1-5) of the left and right frames; and
3) difference of the left and right MFCC frames to the
middle frame.

In addition, we present also in Table 4 the results
of a user-independent classifier (2 classes) based on
heuristic rules. The rules derive from the boundary
information from theimitation segmentation module.
When a note onset is preceded by aarticulation seg-
ment, then it is classified as legato. We observe in the
table 5 that the mean percentage of correctly classified
instances using different phonetic features as input at-
tributes, and in the last row the results using heuristic
rules.

3.2 Discussion

In a qualitative analysis of the imitation record-
ings, we observed that phonetics are patently user-
dependent. Not all subjects were consistent when
linking phonetics to articulation type on different tar-
get performances. Moreover, none of the subjects
were able to distinguish three but only two types of
articulation in the target performances (staccato and
normal/legato).

From the quantitative classification results, we can
also extract some conclusions. Similar results were
obtained classifying in two and three classes, when
compared to the baseline. When looking at the depen-
dency on the imitated instrument, better performance
is achieved by training a model for each instrument
separately. It indicates some correspondence between
imitated instrument and phonetics. Concerning the set
of phonetic features used as input attributes for the
classifier, results are very similar (see table 5). The
heuristic-rule classifier uses the output of the imita-
tion segmentation module. If a silence segment is de-
tected since the last note, the transition is classified as
staccato, else aslegato. This simple rule performed
with an accuracy of 79.121%, combining sax and vi-
olin instances in the test set.

Comparing the overall results of the user-
dependent supervised training, we can conclude that
there is no significant improvement over the user-
independent classifier based on heuristic rules.

4 SYNTHESIS

With the output of the modules described in sec-
tions 2 and 3, the system generates corresponding

Table 4: Results of the supervised training with 3
classes(staccato, normal and legato) and 2 classes (staccato
and legato) using ten-fold cross-validation. MFCC (first five
coefficients) are taken as input attributes. Results of a clas-
sifier based on heuristic rules with 2 classes(staccato and
legato).

SUPERVISED TRAINING: 3 CLASSES

baseline = 33%
description correct (%)
subject1- sax 57.727
subject1- violin 44.5455
subject1- sax-violin 51.5909
subject2- sax 67.281
subject2- violin 67.2811
subject2- sax-violin 51.2415
subject3- sax 41.7391
subject3- violin 48.7365
subject3- sax-violin 40.2367
subject4- sax 41.7722
subject4- violin 42.916
subject4- sax-violin 38.3648

SUPERVISED TRAINING: 2 CLASSES

baseline = 66%
description correct (%)
subject1- sax 83.1818
subject1- violin 71.3636
subject1- sax-violin 78.6364
subject2- sax 93.5484
subject2- violin 67.699
subject2- sax-violin 80.5869
subject3- sax 70.4348
subject3- violin 72.2022
subject3- sax-violin 69.0335
subject4- sax 64.557
subject4- violin 73.3333
subject4- sax-violin 66.6667

HEURISTIC RULES: 2 CLASSES

baseline = 66%
description correct (%)
subject1- sax-violin 82.2727
subject2- sax-violin 79.684
subject3- sax-violin 76.3314
subject4- sax-violin 78.1971

transcriptions, which feed the sound synthesizer. We
re-use the ideas of the concatenative sample-based
saxophone synthesizer described in (Maestre et al.,
2006). Transcription includesnote duration, note
MIDI-equivalent pitch, note dynamics, and note-to-
note articulation type. Sound samples are retrieved
from the database taking into account similarity and
the transformations that need to be applied, by com-
puting a distance measure we describe below. Se-
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Table 5: Mean percentage for all subjects of cor-
rectly classified instances using:1)MFCC (central frame);
2)MFCC+LR (added left and right frames of the transition);
3)MFCC+LR+DLDR (added difference from left to central,
and right to central frames);4) Heuristic rules.

attributes sax violin sax+violin
1 77.930 71.698 73.730
2 80.735 72.145 74.747
3 81.067 72.432 75.742
4 − − 79.121

lected samples are first transformed in the frequency-
domain to fit the transcribed note characteristics, and
concatenated by applying some timbre interpolation
around resulting note transitions.

4.1 Synthesis Database

We have used an audio sample database consisting
of a set of musical phrases played at different tempi,
played by a professional musicians. Notes are tagged
with several descriptors (e.g. MIDI-equivalent pitch,
etc.), among which we include a legato descriptor for
consecutive notes, that serves as an important param-
eter when searching samples (Maestre et al., 2006).
For the legato descriptor computation, as described
in (Maestre and Ǵomez, 2005), we consider atran-
sition segment starting at the begin time of the re-
lease segment of the first note and finishing at the end
time of the attack of the following one, computing
the legatodescriptorLEG (Eq. 3)by joining start and
end points on the energy envelope contour (see Fig-
ure 4) by means of a lineLt that would ideally rep-
resent the smoothest case of detachment. Then, we
compute both the areaA2 below energy envelope and
the areaA1 between energy envelope and the joining
line Lt to define our legato descriptor.

The system performs sample retrieval by means
of computing a euclidean feature-weighted distance
function. An initial feature set consisting on MIDI
pitch, duration, and average energy (as a measure
of dynamics), is used to compute the distance vec-
tor. Then, some features will be added depending on
the context. For note-to-note transitions, two features
(corresponding to the left and right side transitions)
are added: legato descriptor and pitch interval respect
to the neighbor note.

LEG1 =
A1

A1 +A2
=

R
tinit≤t≤tend

(Lt(t)−EXX(t))dtR
tinit≤t≤tend

Lt(t)dt

(3)

Figure 4: Schematic view of thelegato parameter extraction

4.2 Sample Transformation and
Concatenation

The system uses spectral processing techniques (Am-
atriain et al., 2002) for transforming each retrieved
note sample in terms of amplitude, pitch and dura-
tion to match, in the same terms, the target descrip-
tion. After that, samples are concatenated follow-
ing the note sequence given at the output of the per-
formance model. Note global energy is applied first
as a global amplitude transformation to the sample.
Then, pitch transformation is applied by shifting har-
monic regions of the spectrum while keeping the orig-
inal spectral shape. After that, time stretch is applied
within the limits of the sustain segment by repeating
or dropping frames.

5 CONCLUSION

The presented work is a proof-of-concept toward
user-adapted singing-driven interfaces. A novel seg-
mentation method is introduced, which benefits from
the phonetic characteristics of vocal instrument imi-
tation signals. Referring to the articulation type, re-
ported results of the classifier of supervised training
that adapts to user behaviour, are comparable to using
a user-independent classifier based on heuristic rules.
In the final implementation, the mappings of articu-
lation type to the synthesizer derive from the latter
classifier. The results of this first experiment, enlight-
ened us aspects about phonetics and instrument imita-
tion that should be further investigated. For instance,
we could use the introduced syllabling segmentation
module to define, for each class of Table 1, a subset
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of phonemes employed by a given user.
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