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Abstract: Large multivariate data sets can prove difficult to comprehend, and hardly allow the observer to figure out 
the pattern structures, relationships and trends existing in samples and justifies the efforts of finding suitable 
methods from extracting relevant information from data. In our approach, we consider a probabilistic class 
model where each class Hh∈ is represented by a probability density function defined on nR ; where n is 
the dimension of input data and H stands for a given finite set of classes. The classes are learned by the 
algorithm using the information contained by samples randomly generated from them. The learning process 
is based on the set of class skeletons, where the class skeleton is represented by the principal axes estimated 
from data. Basically, for each new sample, the recognition algorithm classifies it in the class whose skeleton 
is the “nearest” to this example. For each new sample allotted to a class, the class characteristics are re-
computed using a first order approximation technique. Experimentally derived conclusions concerning the 
performance of the new proposed method are reported in the final section of the paper. 

1 INTRODUCTION 

Large multivariate data sets can prove difficult to 
comprehend, and hardly allow the observer to figure 
out the pattern structures, relationships and trends 
existing in samples. Consequently, it is useful to find 
out appropriate methods to summarize and extract 
relevant information from data. This is becoming 
increasingly important due to the size possibly 
excessive large of high dimensional data.  

Several authors refer to unsupervised 
classification or data clustering as being the process 

of investigating the relationships within data in order 
to establish whether or not it is possible to compress 
the information that is to validly summarize it in 
terms of a relatively small number of classes 
comprising similar objects in some sense (Gordon, 
1999). In such a case, the whole collection given by 
such a cluster can be represented by a small number 
of class prototypes.   

The word ‘classification’ is also used to define 
the assignment process of objects to one of a set of 
given classes. Thus, in pattern recognition or 
discriminant analysis (Ripley, 1996; Hastie, 
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Tibshirani &al, 2001) each object is assumed to 
come from one of a known set of classes, the 
problem being to infer the true class for each data. 
The test performed on data are based on a finite 
feature set determined either by mathematical 
techniques or empirically using a training set 
containing data whose true classifications are 
known. 

During the past decade the classification and 
assignment procedures have both found a large 
series of applications related to information 
extraction from large size data sets, this field being 
referred as data mining and knowledge discovery in 
databases. (Fayyad&al, 1996; Hastie, Tibshirani 
&al, 2001) 

Since similarity plays a key role for both 
clustering and classification purposes, the problem 
of finding a relevant indicators to measure the 
similarity between two patterns drawn from the 
same feature space became of major importance. 
The most popular ways to express the 
similarity/dissimilarity between two objects involve 
distance measures on the feature space. (Jain, Murty, 
Flynn, 1999). In case of high dimensional data, the 
computation complexity could become prohibitive, 
consequently the use of simplified schemes based on 
principal components, respectively principal 
coordinates, provides good approximations. (Chae, 
Warde, 2006) Recently, alternative methods as 
discriminant common vectors, neighborhood 
components analysis and Laplacianfaces have been 
proposed allowing the learning of linear projection 
matrices for dimensionality reduction. (Liu, Chen, 
2006; Goldberger, Roweis, Hinton, Salakhutdinov, 
2004) 

2 DISCRIMINANT ANALYSIS  

There are several different ways in which linear 
decision boundaries among classes can be stated. A 
direct approach is to explicitly model the boundaries 
between the classes as linear. For a two-class 
problem in a n-dimensional input space, this 
amounts to modeling the decision boundary as a 
hyperplane that is a normal vector an a cut point. 
One of the methods that explicitly looks for 
separating hyperplanes is the well known perceptron 
model of Rosenblatt (1958), that yielded to an 
algorithm that finds a separating hyperplane in the 
training data if one exists.  

Another method, due to Vapnik (1996) finds an 
optimally separating hyperplane if one exists, else 

finds a hyperplane that minimizes some measures of 
overlap in the training data. 

In the particular case of linearly separable 
classes, in discriminating between two classes, the 
optimal separating hyperplane separates and 
maximizes a distance to the closest point from either 
class. Not only does this provide an unique solution 
to the separating hyperplane problem, but by 
maximizing the margin between the two classes on 
the training data this leads to better classification 
performance on test data and generalization 
capacities. 

When the data are not separable, there will be 
now feasible solutions to this problem, and 
alternative formulation is needed. The disadvantage 
of enlarging the space using basis transformations is 
that an artificial separation through over-fitting 
usually results. A more attractive alternative seems 
to be the support vector machine (SVM) approach, 
which allows for overlap but minimizes a measures 
of the extent of this overlap. 

The basis expansion method represents the most 
popular technique for moving beyond linearity. It is 
based on the idea of augmenting/replacing the vector 
of inputs with additional variables which are 
transformations of it and the use of linear models in 
the augmented new space of derived input features. 
The use of the basis expansions allows the 
achievement of more flexible representations of 
data. Polynomials, also there are limited by their 
global nature, piecewise-polynomials and splines 
that allow for local polynomial representations, 
wavelet basis, especially useful for modeling signals 
and images are just few examples of sets of basis 
functions. All of them produce a dictionary 
consisting of typically a very large number of basis 
functions, far more than one can afford to fit to data. 
Along with the dictionary, a method is required for 
controlling the complexity of the model using basis 
functions from the dictionary. Some of the most 
popular approaches are restriction methods, where 
we decide before-hand to limit the class of functions, 
selections methods, which adaptively scan the 
dictionary and include only those basis functions 
that contribute significantly to the fit of the model 
and regularization methods (as, for instance, Ridge 
regression), where  the entire dictionary is used but 
restrict the coefficients. 

Support Vector Machines (SV) are an algorithm 
introduced by Vapnik and coworkers theoretically 
motivated by VC theory. (Cortes, Vapnik, 1995; 
Friess, Cristianini & al., 1998) SVM algorithm 
works by mapping training data for classification 
tasks into a higher dimensional feature space. In this 
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new feature space the algorithm looks for a maximal 
margin hyperplane which separates the data. This 
hyperplane is usually found using a quadratic 
programming routine which is computationally 
intensive, and it is non trivial to implement. SVM 
have a proven impressive performance on a number 
of real world problems such as optical character 
recognition and face detection. However, their 
uptake has been limited in practice because of the 
mentioned problems with the current training 
algorithms. (Cortes, Vapnik, 1995; Friess, 
Cristianini & al., 1998) 

The support vector machine classifier is an 
extension of this idea, where the dimension of the 
enlarged space is allowed to get very large, infinite 
in some cases. (Hastie, Tibshirani &al, 2001) 

3 PRINCIPAL DIRECTIONS - 
BASED ALGORITHM FOR 
CLASSIFICATION PURPOSES 

The developments are performed in the framework 
of a probabilistic class model where each class 

Hh∈ is represented by a probability density 
function defined on nR ; where n is the dimension 
of input data and H stands for a given finite set of 
classes. The classes are learned by the algorithm 
using the information contained by samples 
randomly generated from them. The learning process 
is based on the set of class skeletons, where the class 
skeleton is represented by the principal axes 
estimated from data. Basically, for each new sample, 
the recognition algorithm classifies it in the class 
whose skeleton is the “nearest” to this example. 
(State, Cocianu 2006).  

Let X be a n-dimensional random vector and let 
X(1), X(2),… ,X(N), be a Bernoullian sample on X . 
We assume that the distribution of X is unknown, 
except the first and second order statistics. More 
generally, when this information is missing, the first 
and second order statistics are estimated from the 
samples.  

Let Z be the centered version of X, Z = X - 
E(X). Let nWWW ,...,, 21  be a set of linear 
independent vectors and ( )nWWWW ,...,, 21= . We 
denote by ZWT

mmy = , nm ≤≤1 . The principal 
axes of the distribution of X are nψψψ ,...,, 2 such 
that  

( ) m
T
mm

m

n
m

y SWW

W
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∈
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where S is the covariance matrix of Z.  

According to the celebrated Karhunen-Loeve 
theorem, the solution of (1) are unitary eigen vectors 
of S, nψψψ ,...,, 2 , corresponding to the eigen 
values nλλλ ≥≥≥ ...21 .  

Once a new sample is allotted to a class, the class 
characteristics (the covariance matrix and the 
principal axes) are modified accordingly using first 
order approximations of the new set of principal 
axes. In order to compensate the effect of the 
cumulative errors coming from the first order 
approximations, following to the classification of 
each block of PN samples, the class skeletons are re-
computed using an exact method.  

Let NXXX ,...,, 21  be a sample from a certain 
class C. The sample covariance matrix is 
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We denote by N
n

NN λλλ ≥≥≥ ...21  the eigen 

values and by N
n

N ψψ ,...,1  a set of orthonormal eigen 

vectors of NΣ̂ .  
If XN+1 is a new sample, then, for the series 

121 ,,...,, +NN XXXX , we get 
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Lemma. In case the eigen values of NΣ̂  are 

pairwise distinct, the following first order 
approximations hold, 
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Proof  See (State, Cocianu , 2006 ). 
The basis of the learning scheme can be described as 
follows (State, Cocianu , 2006). The skeleton of C is 
represented by the set of estimated principal axes  

N
n

N ψψ ,...,1  
When the example XN+1 is included in C, then the 
new skeleton is       11

1 ,..., ++ N
n

N ψψ .  
The skeleton disturbance induced by the decision 

that XN+1 has to be alloted to C is measured by  

( )∑
=

+=
n

k

N
k

N
kd

n
D

1

1,1 ψψ                      (6) 
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The classification procedure identifies for each 
example the nearest cluster in terms of the measure 
(6). Let  { }MCCCH ,...,, 21= . In order to protect 
against misclassifications due to insufficient 
“closeness” to any cluster, a threshold T>0 is 
imposed, that is the example XN+1 is alloted to one of 
Cj for which 

( ) == ∑
=

+
n

k

N
jk

N
jkd

n
D

1

1
,, ,1 ψψ  

( )∑
=

+

≤≤
=

n

k

N
pk

N
pkMp

d
n 1

1
,,1
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and D<T, where the skeleton of Cj is N
jn

N
j ,,1 ,...,ψψ . 

The classification of samples for which the 
resulted value of D is larger than T is postponed and 
the samples are kept in a new possible class CR. The 
reclassification of elements of CR is then performed 
followed by the decision concerning to either 
reconfigure the class system or to add CR as a new 
class in H.  

For each new sample allotted to a class, the class 
characteristics (the covariance matrix and the 
principal axes) are re-computed using (5) and (6). 
The skeleton of each class is computed using an 
exact method, M, in case PN samples have been 
already classified in { }MCCCH ,...,, 21= . The 
adaptive classification scheme summarized as 
follows. 

Let iC , be the set of samples coming from the 
thi  class, Mi ≤≤1 ;  { }MCCCH ,...,, 21=  is the set 

of pre-specified classes.  
 
Input: { }MCCCH ,...,, 21=  
REPEAT 
i←1 
Step 1:  Let X be a new sample. Classify X according 

to (7) 
Step 2: If Mi ≤≤∃1 such that X is allotted to iC , 

then  
2.1.re-compute the characteristics of iC  using (3), (4) 

and (5) 
2.2. i++ 
Step 3: If i<PN goto Step 1 
     Else 
     3.1. For i= M,1 , compute the characteristics of 

class iC  using M.      3.2. goto Step 1. 
UNTIL THE LAST NEW SAMPLE HAS BEEN 

CLASSIFIED  
Output: The new set{ } CRCCC M ∪,...,, 21  

4 EXPERIMENTAL ANALYSIS   

A series of tests were performed on bidimensional 
simulated data coming from 4 clases. We use a 
probabilistic model, each class being represented by 
a normal density function. The closeness between 
each pair of classes is measured by the Mahalanobis 
distance. The estimation of the principal directions is 
based exclusively on data.  
The classification criterion is: allote XN+1 to 
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C  if 
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Because the size of the initial sample is relatively 
small, we used small values of PN to compensate the 
effect of the cumulative errors coming from the first 
order approximations. Once a sufficient number of 
new simulated examples correctly classified, 
increasing values of PN are considered next.  

The aims in performed tests were twofold. On 
one hand it was aimed to point out the effects on the 
performance of global/local closeness of the system 
of classes and, on the other hand, the effects of the 
geometric configurations of the principal directions 
corresponding to the given classes. Some of the 
results are presented in the following. 
Test 1. In case the system of classes consists in four 
classes, for each 41 ≤≤ i , the class iC ~ ( )iiN Σμ , , 

41 ≤≤ i , where 

1μ = [10 -12], =1Σ ⎥
⎦

⎤
⎢
⎣

⎡
   2.50    1.65
    1.65    3.49

  

2μ = [1 1], =2Σ ⎥
⎦

⎤
⎢
⎣

⎡
 6.8066    5.6105
   5.6105    6.6841

 

3μ = [-10 0], =3Σ ⎥
⎦

⎤
⎢
⎣

⎡
2.50   1.35
1.35    1.69

 

 4μ = [-8 24], =4Σ ⎥
⎦

⎤
⎢
⎣

⎡
12.2789    1.02

1.02    6.2789
 

We assume that the initial sample contains 200 
examples coming from each class. 
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Table 1: Results on new simulated samples. 

The index of 
the sample in 

the test set 

The 
misclassificatio

s 
(the correct 
class → the 

alloted class) 

Misclassified 
examples 

The first test set containing 20 new examples (PN=20) 
2 3→2 (-7.02, 1.9) 
5 4→2 (-10.06, 16.90) 
14 3→2 (-7.11, 2.61) 
20 4→2 (-6.38, 20.76) 

4 misclassifications. For each class, compute the exact 
values of its characteristics 
The second test set containing 20 new examples 
No misclassification. For each class, compute the exact 
values of its characteristics 
The third test set containing 50 new examples (PN=50) 
No misclassification. For each class, compute the exact 
values of its characteristics 
The fourth test set containing 50 new examples  

23 4→2 (-5.99, 15.88) 
 1 misclassified example. For each class, compute the 
exact values of its    characteristics 
The fifth test set containing 50 new examples 

 No misclassification. For each class, compute the exact 
values of its characteristics 
The sixth test set containing 50 new examples 
No misclassification. For each class, compute the exact 
values of its characteristics 
The seventh test set containing 50 new examples 
No misclassification. For each class, compute the exact 
values of its characteristics 

The Mahalanobis distances between classes are 
given by the entries of the matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0         39.4249   54.7989     152.3496  
39.4249   0         33.2818      247.6876  
54.7989   33.2818       0         99.4061   

152.3496  247.6876  99.4061         0 

. 

 

 
Figure 1: The initial sample. 

Note that in this example the system of classes is 
relatively well separated. The tests on the 
generalization capacities yielded the results 
presented in table 1. 

The initial sample is depicted in Figure 1. The 
clusters resulted at the end of the tests are depicted 
in Figure 2. 

 
Figure 2: The clusters resulted at the end of the tests. 

Test 2. In case the system of classes consists in four 
classes, for each 41 ≤≤ i , the class iC ~ ( )iiN Σμ , , 

41 ≤≤ i , where 

1μ = [10 -12], =1Σ ⎥
⎦

⎤
⎢
⎣

⎡
   2.50    1.65
    1.65    3.49

  

2μ = [1 10], =2Σ ⎥
⎦

⎤
⎢
⎣

⎡
 6.8066    5.6105
   5.6105    6.6841

 

3μ = [-10 0], =3Σ ⎥
⎦

⎤
⎢
⎣

⎡
2.50   1.35
1.35    1.69

 

 4μ = [-8 4], =4Σ ⎥
⎦

⎤
⎢
⎣

⎡
12.2789    1.02

1.02    6.2789
 

We assume that the initial sample contains 200 
examples coming from each class. 

The Mahalanobis distances between classes are 
given by the entries of the matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0          1.3258    6.3728       64.3167 
1.3258      0         14.6578    247.6876
6.3728     14.6578    0         203.7877

64.3167   247.6876    203.7877       0

. 

 
Note that the system of classes is such that C2 , 

C3, C4 are pretty “close” and C1 is well separated 
from the others. As it is expected, the 
misclassifications occur mainly for samples coming 
from C2 , C3, C4. 
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The initial sample is depicted in Figure 3 and the 
clusters resulted at the end of the classification steps 
are presented in Figure 4. 

The closest classes in the sense of Mahalanobis 
distance are C3 and C4. Note that correlations of the 
components are almost the same in C3 and C4, but 
the variability along each of the axes are 
considerably larger in case of C4 than C3. 

In order to evaluate the capacities of our method 
we tested its classification performance in 
discriminating between C3 and C4 against the 
classical discriminant algorithm. The Kolmogorov-
Smirnoff and MANOVA tests were applied to each 
test set in order to derived statistical conclusions 
about the closeness degree of the set of misclassified 
sample and each of the classes C3, C4.  

 
Figure 3: The initial sample. 

The tests were performed on several randomly 
generated samples of size 1000. 

Some of the results obtained on samples coming 
from C3 and classified in C4 are summarized in 
Table 2. The entries of the table have the following 
meaning. Each column corresponds to a test set. The 
row entries are: 

 the number of misclassified examples in case of 
our method; 

 the number of misclassified examples by 
classical discriminant analysis method (CDA); 

 the number of examples misclassified by our 
method and misclassified by CDA; 

 the results of Kolmogorov-Smirnoff test applied 
for the group of misclassified examples against 
the class identified by our classification 
procedure.  

 the results of Kolmogorov-Smirnoff test applied 
for the group of misclassified examples against 
the true class; 

 the results of MANOVA applied for the group 
of misclassified examples against the class 
identified; 

 the results of MANOVA applied for the group 
of misclassified examples against the true class. 

 
Figure 4: The clusters resulted at the end of the 
classification steps. 

Each component of the results obtained by 
Kolmogorov-Smirnoff test is either 0 or 1 indicating 
for each coordinate the acceptance/rejection of the 
null hypothesis using only this variable.  

The test was applied on the transformed 
examples such that the variables are decorrelated 
using the features extracted from the misclassified 
samples.  The information computed by MANOVA 
is summarized by retaining two indicators; the 
former is either 0 or 1 and represents non-
rejection/rejection of the hypothesis that the means 
are the same, but non rejection of the hypothesis 
they lie on a line, the latter being the value of 
Mahalanobis distance between the considered 
groups. 

Table 2: Some of the results obtained on samples coming 
from C3 and classified in C4. 

 
Note that the performances proved by our 

method are far better as compared to the classical 
discriminant analysis in this case. Similar results 
were obtained in a long series of tests performed in 

76 67 65 76 78 
132 116 122 135 132 
76 67 65 76 78 
1,1 1,1 1,1 1,1 1,1 
0,1 0,1 0,1 0,1 1,1 
0 

0.095 
0 

0.101 
1 

0.125 
1 

0.105 
0 

0.095 
1 

4.50 
1 

4.199 
1 

3.898 
1 

4.408 
1 

4.790 
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discriminating between two classes almost 
undistinguishable, where the variability in the 
second class (in our case C4) is significant larger 
than in the first class (in our case C3). 

In Table 3 and Table 4 are summarized the 
results obtained in applying the same method to the 
samples coming from C4 and misclassified in C3. 
The entries of the Table 3 and Table 4 have the same 
meaning as in Table 2.  

In this case, our method and the classical 
discriminant analysis method have close behaviors.   

Table 3: Some of the results obtained on samples coming 
from C4 and misclassified in C3. 

208 213 185 231 207 
246 248 217 275 248 
206 210 181 230 206 
1,0 1,0 1,0 1,0 1,0 
0,1 0,1 0,1 0,1 0,1 
1 

0.147 
1 

0.163 
1 

0.242 
1 

0.132 
1 

0.202 
1 

2.792 
1 

2.64 
1 

2.461 
1 

3.001 
1 

2.697 

Table 4: Some of the results obtained on samples coming 
from C4 and misclassified in C3. 

328 293 334 317 319 
266 256 276 264 271 
258 244 266 253 264 
1,0 1,0 1,0 1,0 1,0 
0,1 0,1 0,1 0,1 0,1 
1 

0.349 
1 

0.175 
1 

0.228 
1 

0.2932 
1 

0.232 
1 

2.616 
1 

2.555 
1 

2.624 
1 

2.435 
1 

2.577 
 
Test 3. The system of classes is well separated 

and principal directions are pairwise orthogonal. For 
each 41 ≤≤ i , the class iC ~ ( )iiN Σμ , , 41 ≤≤ i , 
where  

1μ = [1 19], =1Σ ⎥
⎦

⎤
⎢
⎣

⎡
2.5000    1.6500 

1.6500    3.4900
  

2μ = [4 8], =2Σ ⎥
⎦

⎤
⎢
⎣

⎡
=−

0.5814    0.2749- 
0.2749-   0.41651

1Σ  

3μ = [-7 3], =3Σ ⎥
⎦

⎤
⎢
⎣

⎡
2.5000    1.3500
1.3500    1.6900

 

4μ = [11 -12], =4Σ ⎥
⎦

⎤
⎢
⎣

⎡
=−

0.7034    0.5619- 
0.5619-   1.04061

3Σ  

We assume that the initial sample contains 200 
examples coming from each class. 

The Mahalanobis distances between classes are 
given by the entries of the matrix 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0         255.7000  112.8035    378.9131 
255.7000          0         86.7399    45.2959 
112.8035      86.7399        0         142.1112
378.9131     45.2959     142.1112  0

.  

 
We used the values PN=50 for the first 2 steps 

and PN=100 for the next steps. The performed tests 
reported no misclassification. 

The initial sample is depicted in Figure 5 and the 
clusters resulted at the end of for classification steps 
are presented in Figure 6. 

 
Figure 5: The initial sample. 

 
Figure 6: The clusters resulted at the end of the 
classification procedure. 
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