
DYNAMIC CONTEXT-AWARE ACCESS CONTROL
Use of Resource Hierarchies to Define Fine-grained, Adaptable

Authorization Policies

Annett Laube and Laurent Gomez
SAP Research, SAP Labs France SA, 06250 Mougins, France

Keywords: Access control, Context Awareness, Resource Hierarchy.

Abstract: Complex access control rules often interfere with the business logic within applications. We show a solution
based on strict separation of application and security logic that allows dynamic policy enforcement based
on context-information as well as the adaptation of granularity outside the applications. The definition of
resource hierarchies driven by application needs and related authorization policies make the granularity for
the permissions flexible and adaptable without touching the applications themselves. The explicit notation of
authorization policies and the enforcement independent from the application offer a new extensibility.

1 INTRODUCTION

Due to emerging Service Oriented Architecture
(SOA) data and applications formerly hidden are now
being exposed as services to the outside world. This
raises unique challenges of securing and governing
data exchange. Access control is not anymore based
on static role-based access control (RBAC) models.
Context-information is used to define more precise
and fine-grained authorization policies.

As context-aware access control, we understand
the integration of context information into the defi-
nition and enforcement of authorization policies. It
allows the transition to access control adapting to
the current situation. Dynamic authorization enforce-
ment makes authorization decisions based upon run-
time parameters rather than simply a role assignment.
Following the SOA principle services can be com-
posed to new composite services and applications are
constructed out of them. The services are forced
to provide a flexible and configurable authorization
concept that can be changed according to the appli-
cation needs. Authorization policies defined on ap-
plication level are broken down to the service level.
We propose the separation of business and authoriza-
tion logic to fulfill the requirements requested by the
loosely coupled SOA services.

The granularity used during the access control

should not only be defined by the services. It should
be more independent and in relation to the using ap-
plication. We describe a solution that allows the def-
inition of the authorization policy granularity outside
the service itself. We show the use of resource hierar-
chies as part of the authorization policy.

In section 2, we define context-aware authoriza-
tion policies with and without resource hierarchies
formally. Section 3 contains two scenarios where the
policies are applied to real business scenarios. In sec-
tion 4, we show the architecture used to validate our
approach. Section 5 shows related approaches and
discusses our solution. At the end a further outlook
is given.

2 CONCEPT

In this section, we define our terminology and intro-
duce a definition of context-aware authorization poli-
cies. Further, we show the use of resource hierarchies
to adapt the granularity of the policies.

2.1 Context-aware Authorizations

Access controlis the process of granting permissions
in accordance with anauthorization policy. An au-
thorization policy states “who can do what to what”.

386
Laube A. and Gomez L. (2007).
DYNAMIC CONTEXT-AWARE ACCESS CONTROL - Use of Resource Hierarchies to Define Fine-grained, Adaptable Authorization Policies.
In Proceedings of the Second International Conference on Security and Cryptography, pages 386-393
DOI: 10.5220/0002122903860393
Copyright c© SciTePress

The “who” is a subject, the first “what” is an action,
and the other “what” is a resource. In acontext-
aware authorization policy the context is taken into
account as additional constraint. The statement can be
extended as follows: “who can do what to what under
which circumstances”. The circumstances correspond
to the context of the application.

ThesubjectS in an authorization policy is the ac-
tor that uses an application or system and requests the
access to a resource. Examples are users, as abstrac-
tion of real persons or technical processes.

A resource R is an object exposed by an appli-
cation or system. Resources can be data, services or
system components.

An action A is an operation on a resource. Ex-
amples are read, modify or delete. The operations are
dependent on the resource to be applied to. The finite
setof available actions on a resourceR is defined as:

AR = {ARi}

Definition 1 As context information C we under-
stand any property related to an entity. An entity
might be the subject or any other participant in the
system as well as any object in the real world.

The context information can be the time or loca-
tion of the entity, but also more complex characteris-
tics like a role of the subject or the health condition of
a patient are possible. Complex context information
is the result of aggregation, computing or inference
based on atomic context information coming directly
from physical or logical sensors.
Every context-aware authorization policy has its own
formal context information set C. The ordered set
contains all context information types that are used
during the policy evaluation:

C = {Ci}

In the policy enforcement process aruntime context
information set c is used:

c = {ci}

ci is the current value of context information typeCi .
The formal context information setC contains the

type of context information that is later used in the
context-aware authorization policy.1 In the following
example, the context information set contains the role
of the subject, location, time and the current tempera-
ture of the location. The runtime context information
setc contains the real values that are obtained from

1Possible types of context-information, categories and
classifications are proposed in (Chen and Kotz, 2000;
Mikalsen and Kofod-Petersen, 2004).

the subject and its environment and that are finally
used in the access control enforcement process.

C ={role, location, time, temperature}

c ={‘worker‘ , ‘ room10‘, ‘10h00‘, ‘10C‘}

Definition 2 Thecontext constraintT is the formal
expression of the circumstances in which the permis-
sion the subject wants to acquire is granted. The
context constraint is expressed as logical disjuncted
clauses. Aclauseconsists of one or more proposi-
tions which are logical conjuncted.

Constraint=
[
i

Clausei

Clause=
\

j

Propositionj

A proposition is a boolean-valued function that can
be represented in Backus-Naur-Form:

Proposition::= 〈C〉〈OP〉〈VALUE〉 where:
C∈C;
OP is a operator in the set{>,≥,<,≤, 6=,=},

which can be extended to accommodate user-
defined operators as well;

VALUE is a specific value of C.

Definition 3 Acontext-aware authorization policyis
defined as a triple AP= (S,P,T) where:

S . . . is the subject in this policy.
P . . . is the target permission in this policy〈AR,R〉,

where AR is an action of resource R.
T . . . is a context constraint for this policy.

Definition 4 We define theauthorization requestas
a triple AR= (S,P,c) where:

S . . . is a requestor who triggers the authori-
zation decision.

P . . . is the permission the requestor wants to
acquire, a pair〈AR,R〉.

c . . . is the runtime context information set.

The authorization requestAR gets the decision
“Permit” only if there exists an applicable policy
AP= (S′,P′,T), such thatS= S′, P = P′, andT eval-
uates to true underc (that means, when allCi in the
constraintT are replaced with the runtime values of
c, then the resulting boolean expression is true).
The enforcement function on the policyAP is de-
fined as:

fAP(AR) = fAP(S,P,c) = d where:
fAP . . . enforcement function,
d . . . decision, withd ∈ { Permit, Deny,

Indeterminate, NotApplicable2}

2We use the decision values defined in XACML(OASIS,
2003) as result value set for the enforcement function.

DYNAMIC CONTEXT-AWARE ACCESS CONTROL - Use of Resource Hierarchies to Define Fine-grained, Adaptable
Authorization Policies

387

2.2 Context-aware Resource Filters

Definition 5 A resource hierarchyGR can be de-
scribed as directed acyclic graph (DAG) over a finite
set of nodes R, built from a resource and all its direct
children and descendants at any depth.

GR = (R,E)

R . . . Set of nodes in the hierarchy:
R= {r i},R∈ R
The set of nodes contains the resource itself.

E . . . Set of edges (order pairs of nodes):
E ⊂ R×R, E = {(r i , r j)}

R . . . the considered resource R is the root node
(source) of GR: (R, r i) ∈ E∧ (r j ,R) /∈ E

The definition of the node set in the hierarchy and
the relations between the nodes are highly dependent
of the application and the authorization policy. There
are examples later in section 3.

With the definition of resource hierarchies we can
introduce a new kind of authorizations policies.

Definition 6 A context-aware authorization policy
with resource filtersis defined as a set of triples:

AP= {APi} = {(S,Pi ,Ti)} where:
S . . . is the subject in this policy
Pi . . . is the target permission, which is defined

as pair〈AR, r i〉, where AR is an action and
r i is a node of the resource hierarchy: ri ∈ R.

Ti . . . is a context constraint of resource node ri .

Despite the extension of the policy to the resource
node level, the authorization request stays unchanged
(Definition 4). Only the enforcement function is ex-
tended to the nodes of the resource hierarchy.

Theauthorization requestAR= (S,P,c) gets the
permission to the noder i only, if there exists an ap-
plicable policy APi = (S′,P′

i ,T
′
i), such thatS = S′,

P = 〈AR,R〉, P′
i = 〈AR, r i〉, r i ∈ R, andT ′

i evaluates
to true underc.

The newenforcement functionis now defined as:

f ′AP(AR) = f ′AP(S,P,c) = {(r i ,d)}

f ′AP . . . enforcement function,
r i . . . nodei of the resource hierarchy,
d . . . decision, withd ∈ { Permit, Deny, Indeter-

minate, NotApplicable}.

The use of a hierarchy defines a partial order over
the set of nodes that applies an additional constraint
to the authorization decision. It is not possible to
grant the permission to a node while the permission
to the father node is denied. This constraint can be
described formally as follows:

(r i ,Permit) ∈ f ′AP(AR) while
T ′

i evaluates to true underc∧
(r i = R (r i is the root node)∨
(r i 6= R∧ (r j , r i) ∈ E∧ (r j ,Permit) ∈ f ′AP(AR)))

After the formal definition we apply this theory in
the following to two application scenarios.

3 SCENARIOS

3.1 Beyond Rbac

Role-based access control (RBAC) (Sandhu et al.,
1996) associates permissions with roles to simplify
the permission management. Users are members of a
role. The role brings together a set of users on one
side and a set of permissions on the other side.

We want to show that our approach goes beyond
the widespread RBAC model. We define a role as
context information related to the subject as proposed
in (den Bergh and Coninx, 2005). That implies that
the role is part of the runtime context information set.

Figure 1: BusinessPartner object hierarchy.

As an example, we imagine a business application
that exposes a service to access an objectBusiness-
Partner. This object maintains master data of natural
persons and companies like customers or suppliers.

Several concrete classes are derived from the ab-
stract classBusinessPartner, see Fig. 1. Each deriva-
tion adds specific attributes that are only relevant for
this type of object. For example, an employee has
a salary grade, a private bank account, a private and
a business address. A customer has marking data, a
shipping address and an invoice address.

The use of the objectBusinessPartneras interface
for the application allows the identical manipulation
of the different classes in the hierarchy. The follow-
ing authorization rules shall be applied to theretrieve
method of theEmployeeobject:

SECRYPT 2007 - International Conference on Security and Cryptography

388

1. Only a human resource accountant can access all
data of an employee.

2. An employee has access to the business address of
all employees and to his own private address and
bank account. He has no access to his salary.

3. A manager has access to the data of his/her em-
ployees, except for the sensible personal data, like
birthday, private address and bank account.

To formalize the authorization policy for the HR
accountant (Rule 1) no resource hierarchy is needed:

APAccountant= (S,〈read,employee〉,
(role = ‘accountant‘))

For the next rules, the definition of a resource hi-
erarchy for the employee object is necessary. The de-
sign of a resource hierarchy requires knowledge of the
application and understanding of the requirements of
the authorization rules. For convenience, the resource
hierarchy is graphically presented in Fig. 2. The node
setRemployeeis defined by:

Remployee= {e.employee,e.bus address,
e.personaldata,e.salary,e.general,
e.privat address,e.birthday,e.name,
e.privat bank,e.manager. . .}

personal_data
 salary
 general
 ...

private_address
 private_bank
 birthday
 name
 manager
 ...

employee

bus_address

-

Figure 2: Employee’s resource hierarchy.

The authorization rule for an employee (Rule 2) is
now a set of authorization policies on the employee’s
resource hierarchy:

APEmployee={APE1,APE2,APE3,APE4,APE5,APE6,

APE7,APE8}

APE1 = (S,〈read,e.employee〉,(role = ‘employee‘))

APE2 = (S,〈read,e.busaddress〉, true)

APE3 = (S,〈read,e.personaldata〉,(id(e) = id(S)))

APE4 = (S,〈read,e.private address〉, true)

APE5 = (S,〈read,e.private bank〉, true)

APE6 = (S,〈read,e.general〉, true)

APE7 = (S,〈read,e.manager〉, true)

APE8 = (S,〈read,e.name〉, true)

Because of the partial order in the hierarchy it is suf-
ficient to apply context constraints only to the highest
level in the hierarchy. The role constraint is applied to
the root node (e.employee) in the hierarchy. The ac-
cess to the subnodes like e.busaddress and e.general

and their subnodes is only granted when the access to
the root node was permitted.

We assume that a manager has two roles: the man-
ager role and the employee role. Only one additional
authorization has to be defined for the manager’s priv-
ilege (Rule 3):

APManager= (S,〈read,e.salary〉,(role = ‘manager‘∧
manager(e) = S))

The authorization rules stated above contain also one
implicit obligation. An accountant in his role as em-
ployee should not be able to access his own salary
grade. Therefore the authorization policy should be
enhanced as follows:

APAccountant2 = (S,〈read,employee〉,
(role = ‘accountant‘ ∧e.id 6= S.id))

RBAC roles would be powerful enough to differ-
entiate between a HR accountant and a normal em-
ployee. However, RBAC gives either permission to
a resource or denies it completely (all or nothing
paradigm). In order to implement the authorization
rules described above, it would be necessary to im-
plement a much more detailed and fine-grained ser-
vice interface. In this case, there are two possibilities:
The first is to implement an interface specialized for
each role, which creates a very high dependency to
the authorization policy. The second option is to have
many smaller services that allow to retrieve parts (sub
resources) of theBusinessPartner, like the name or
bank account. This would create a big impact on per-
formance. Instead of having only one service call to
get all data, a couple of calls are necessary.

The requirement, that a manager can access only
the data of his/her employees, cannot be enforced
with a simple role-based or group-based concept.
At least RBAC extensions, based on organizational
structure, like OR-BAC(Kalam et al., 2003), are nec-
essary. Our approach considers information about
the organization in a company as context-information
related to the subject. In addition, it is possible to
enforce restrictions related to the separation-of-duty
principle, like described in the policyAPAccountant2.

3.2 e-Health

The second scenario addresses mobile health care ap-
plications. It demonstrates the use of complex context
information during the access control to the medical
data in emergency situations.

A patient is monitored by several health sensors.
The physician needs access to the medical data of the
patient. The medical record consists of personal data
(name, birthday, address, . . .), insurance data, medi-
cation history, treatments, sensor data and more.

DYNAMIC CONTEXT-AWARE ACCESS CONTROL - Use of Resource Hierarchies to Define Fine-grained, Adaptable
Authorization Policies

389

Contextual Information Authorization Decision
Family doctor Emergency House call Proximity Name, Birthd. Medication Treatments Sensor data
yes - - - Permit Permit Permit Permit
no yes - far Permit Deny Deny Deny
no yes - near Permit Permit Deny Permit
no no yes far Permit Deny Deny Deny
no no yes near Permit Permit Permit Permit

personal_data
 insurance
 medical_data
 ...

private_address
 private_bank
 birthday
 name
 medication
 treatments

patient

-

sensors

Figure 3: Patient’s resource hierarchy.

The object schema in Fig. 1 can easily be ex-
tended to cover the requirements of patients and med-
ical data. The resource hierarchy for the patient can
be defined similar to the hierarchy for the employee
(Fig. 2). The graph is shown in Fig. 3. The node set
is described as:

Rpatient = {p.patient, p.personaldata, p.name,
p.private address, p.private bank,
p.birthday, p.insurance, p.medicaldata,
p.medication, p.treatments, p.sensors, . . .}

Except the family doctors, a physician gets access
only when several conditions apply, see Table 3.1.
The resulting authorization policy that satisfies these
constraints can be defined as follows:

APPhysician={APP1,APP2,APP3,APP4,APP5,APP6,

APP7,APP8}

APP1 =(S,〈read, p.patient〉,(role = ‘ physician‘))

APP2 =(S,〈read, p.personaldata〉,(f amilyDoctor(p,S) = true

∨emergency(p) = true∨houseCall(p,S) = true))

APP3 =(S,〈read, p.name〉, true)

APP4 =(S,〈read, p.birthday〉, true)

APP5 =(S,〈read, p.medicaldata〉,(f amilyDoctor(p,S)

∨ ((emergency(p) = true∨houseCall(p,S) = true)

∧ proximity(p,S) = ‘near‘)))

APP6 =(S,〈read, p.medication〉, true)

APP7 =(S,〈read, p.treatments〉,(houseCall(p,S) = true))

APP8 =(S,〈read, p.sensors〉, true)

The used context information setC can be noted as:

C = {role, f amilyDoctor(p,S),emergency(p),
housecall(p,S), proximity(p,S)}

The context information is often noted as functional
expression, which is evaluated during runtime. If a

property is stated without reference, it belongs auto-
matically to the subject, for example ’role’.

Let us make an example to demonstrate the eval-
uation of context constraints during runtime. The
physician Dr. Wells wants to read the medical record
of patient Bob. The physician role is assigned to the
doctor. He is a not member of the group of family
doctors assigned to Bob. Bob’s health status is crit-
ical. It is an emergency situation. Dr. Wells got no
house call assignment for Bob, but he is close to Bob.

The authorization request can then be stated as:

AR1 = (‘Dr.Wells‘ ,〈‘ read‘ , ‘PatientBob‘〉,
{‘ physician‘ , f alse, true, f alse, ‘near‘})

The enforcement function based on the authoriza-
tion policyAPPhysicianwill return the following result:

f ′APPhysician(AR1) = {(p.patient,Permit),
(p.personaldata,Permit),(p.private address,Deny),
(p.private bank,Deny),(p.name,Permit),
(p.birthday,Permit),(p.insurance,Deny),
(p.medicaldata,Permit),(p.medication,Permit),
(p.treatments,Deny),(p.sensors,Permit), . . . }

The result is graphically shown in Fig. 3: All gray
shaded nodes of the hierarchy are permitted.

This scenario shows the use of context informa-
tion together with the use of resource hierarchies.
The returned medical information is always adapted
to the need of the situation. The health application
is completely independent of the access control and
focuses on the functional aspect of retrieving the pa-
tients’ medical record. The definition of authorization
policies and the definition of resource hierarchies are
technically separated from the health application, but
still logically dependent on it.

This separation eases the adding of more players
in the health care chain, like specialists, pharmacists
or health insurance companies. The medical applica-
tion can be used to retrieve the relevant data for each
player dependent on the situation they are involved in.

4 ARCHITECTURE

Our approach has been validated in a prototype based
on the context-aware security framework (see Fig. 4)
developed in the MOSQUITO project (MOSQUITO,

SECRYPT 2007 - International Conference on Security and Cryptography

390

2006). The use of resource filters in the authorization
policies and during policy enforcement is an exten-
sion.

Message

Filters

SecureTicket

Service

WebService

WS-Security

Message

Filters

SOAP
 SOAP

Subject's

CIP

CoOL

WS-Trust

WS-Security

Client

Application

Authorization

Service

CIP

CoOL

WS-Trust

WS-Security

Policies

Resource

Hierarchies

Figure 4: General architecture.

All SOAP messages between the application (web
service client) and the web service itself have to
pass intermediaries, to enforce the configured security
policies on message (SOAP) level (see Fig. 5). In-
termediaries are a pipeline of message filters (proxy)
which support WS-Security(OASIS, 2006).

The client side intermediary adds encryption, in-
tegrity checks and credentials. The server-side inter-
mediary decrypts, verifies the integrity and verifies
the authorization in credentials. It offers the same
interface as the web service plugged behind it and
is therefore invisible from outside. The Security To-
ken Service (STS) (OASIS, 2005) on the client device
generates signed context information retrieved from
the client’s Context Information Providers (CIP) and
adds as well the role information for the subject.

The retrieved context information is converted
into a XACML request via XSLT (W3C, 1999) trans-
formation, which is sent to a Policy Decision Point
(PDP) that enforces the access control policy. If the
XACML response is “Permit” the original request
from the web service client is passed to the web ser-
vice and processed there. Otherwise, an exception is
sent to the client application.

The response of the web service is as well passed
through the security proxy with its message pipeline.
First, the response filter is applied to make the web
service response compliant to the access control pol-
icy, using the XACML response from the Contextual
Authorization Service. Afterwards additional filters
take care of encryption/decryption and integrity.

The standard for access control policies is
XACML(OASIS, 2003). XACML supports RBAC
policies as well as context-aware access control. The
policy enforcement relies on verifying attribute val-
ues distributed in four categories, related to the sub-
ject, the resource, the action and the environment. To

Figure 5: Activity diagram of web service call processing.

support evaluation of context information, the exist-
ing implementation can be extended by defining new
primitive attributes types that offer a higher level of
abstraction for data representation. As an example the
authorization policy for emergency is shown in Fig. 6.

The goal of the authorization service is to en-
force context-aware access control to web ser-
vices(Lachmund et al., 2006).

The server-side message filter calls the method
authorizationRequestof the Contextual Authoriza-
tion Service providing the following three parameters:
ActionTo contains in the action to be performed and
the resource description. ParameterMessagecontains
the SOAP message request.Credentials contains all
credentials attached to the requestor.

TheActionToparameter is used to retrieve the as-
sociatedXACMLRequestGeneratorand the security
policy to be applied. The context information needed
to enforce the policy is evaluated out of the security
policy and requested from the available CIPs.

The XACMLRequestGeneratorconverts the in-
coming message and the credentials into a XACML
request using XSLT transformations. It adds the data
retrieved from the CIPs. The generated request is
evaluated by the PDP. Before the evaluation starts the
set of nodes of the requested resources is determined.
The evaluation can be based on the resource as well
as on context information or the message content. The
resulting response contains a separate result for each
node in the hierarchy (see Fig. 7).

When the access to a resource is permitted the
original web service request is sent to the web service
and processed there. The web service response has
again to pass the message pipeline. It evaluates all
not permitted subresources and applies a XML trans-
formation to modify the SOAP message accordingly.

The result of the enforcement functionf ′AP(AR)
is used to make the data returned by the web service

DYNAMIC CONTEXT-AWARE ACCESS CONTROL - Use of Resource Hierarchies to Define Fine-grained, Adaptable
Authorization Policies

391

<Policy PolicyId="EmergencyPolicy">

<Target>...</Target>

<Rule RuleId="MixedLocalisationRule"

Effect="Permit">

<Target>

<Resources>...</Resources>

<Actions>...</Actions> </Target>

<Condition FunctionId="function:string-equal">

<Apply FunctionId="function:string-one-and-only">

<SubjectAttributeDesignator DataType=string

AttributeId="role"/></Apply>

<AttributeValue DataType="string">physician

</AttributeValue>

</Condition>

<Condition FunctionId="function:and">

<Apply FunctionId="coolFunction#CloseTo">

<Apply FunctionId="coolFunction#findLocation">

<SubjectAttributeDesignator

DataType=cool#GPSLocation

AttributeId="SubjectLocation"/>

</Apply>

<Apply FunctionId="coolFunction#findLocation">

<SubjectAttributeDesignator

DataType="cool#GPSLocation"

AttributeId="ObjectLocation"/>

</Apply>

<AttributeValue DataType="integer">50

</AttributeValue>

</Apply>

<Apply FunctionId="coolFunction#IsEmergency">

<Apply FunctionId="coolFunction#findEmergency">

<SubjectAttributeDesignator

DataType="cool#Emergency"

AttributeId="ObjectEmergency"/></Apply>

</Apply>

</Condition></Rule>

</Policy>

Figure 6: Authorization Policy example.

call compliant to the policy. The message response is
passed through a filter, that either removes the data,
which is not in the set of permitted nodes.

fFilter(R) = {r i} with (r i ,Permit) ∈ f ′AP(AR)

Two possible modifications can be applied: If the
access to an optional node of the response is denied
the part can be removed from the structure. In the
case of a mandatory element the information must be
blanked out (e.g. replaced with “xxx. . . ” for strings).
The result of the filtering is a modified response which
is compliant to the access control policy.

5 RELATED WORK

RBAC based models are widespread. Many exten-
sions like GRBAC, OR-BAC and DRBAC were in-
troduced to make the original approach more flexible
and to overcome static permissions. GRBAC(Moyer

<Response>
<Result ResourceID=
"http://localhost/MedicalData/personal">
<Decision>Permit</Decision>
<Status><StatusCode Value="ok"/></Status>

</Result>
<Result ResourceID=
"http://localhost/MedicalData">
<Decision>Permit</Decision>
<Status><StatusCode Value="ok"/></Status>
</Result>
<Result ResourceID=
"http://localhost/MedicalData/insurance">
<Decision>Deny</Decision>
<Status><StatusCode Value="ok"/></Status>

</Result> ...
</Response>

Figure 7: XACML response for a resource hierarchy.

et al., 2000) is an extension that uniformly applies
the concept of roles not only to subjects, but also
to objects and system states. OR-BAC(Kalam et al.,
2003) offers the use of contextual rules related to per-
missions, prohibitions, obligations and recommenda-
tions often valid in specific organizational structures.
The DRBAC model proposed in (Zhang and Parashar,
2004) uses context information during the enforce-
ment process. A change in the user’s context implies
a change of his access privileges.

A combination of these models would be suffi-
cient to meet all requirements of our 2 scenarios.
However, none of the approaches is able to deal
with the special requirements of the SOA architec-
ture without influencing the development paradigm
and performance. Like already concluded in section
3.1 the use of these approaches is not possible in a sys-
tem built out of loosely coupled application services
with very general interfaces without contradicting the
principles behind.

Our approach is based on a strict separation of ap-
plication and security that is imposed by our archi-
tecture. There are other frameworks like the Open
Group’s Authorization API, the Policy Machine from
NIST (Galiasso et al., 2000) and the Object Secu-
rity Attributes middleware (Beznosov, 2002), which
allow to externalize the authorization policies and to
enforce them in the framework or middleware. Not all
of them allow the use of dynamic context-information
during the policy enforcement process. Our approach
goes further: It allows the separation of security-
related application knowledge in a way that the ap-
plication focuses only on functional aspects. Autho-
rization policies can be designed and modified in-
dependly from the application and can include all
context-information relevant and available to the sys-
tem.

In addition, the use of resource filters allows a

SECRYPT 2007 - International Conference on Security and Cryptography

392

modification of the service response and request in
order to modify it according the authorization policy.
The service itself can be designed and implemented
in a very generic way.

The use of resource hierarchies is quite common.
Normally similar single resources are grouped, like
printers (Ilechko and Kagan, 2006). The hierarchies
are used to assign identical authorization policies, of-
ten ACLs, to all members. Our approach is the first
using the resource hierarchy in the opposite way and
putting single resources in a hierarchy that can be ad-
dressed explicitly in the authorization policy.

6 CONCLUSION

We present a dynamic context-aware access control
that can be used in a SOA based architecture. We
propose a separation of business and security logic on
the service level that allows the definition of adapt-
able and easily extensible authorization policies out-
side the service. The complexity when mixing access
control into the business logic can be avoided. The
externalized authorization policies are more explicit.

The authorization policies are dynamically en-
forced using runtime context information. Resource
hierarchies make it possible to define the authoriza-
tion policy granularity outside the service. The defi-
nition of the resource hierarchy itself is based on ser-
vice, on the needs of the client application and, if
needed, on additional context information. The hi-
erarchy helps to keep the relationships between the
sub resources, which would not be the case when the
service itself would split its functionality to a similar
level.

The use of context information questions the way
in which the information is acquired. Context-aware
services and applications have to deal with issues of
trust and dependability. In this paper, we did not ad-
dress the related problems but we will focus them in
the future.

Performance in SOA based application is an issue
investigated by industry and the research community.
The proposed architecture consisting of messages fil-
ters and the Contextual Authorization Services adds
an additional bottleneck. Retrieving and processing
of context information is also time consuming. Due
to the application of the resource filters after the busi-
ness logic it is also possible that the SOA service pro-
cesses and retrieves more data than later passed to the
client applications. There is a need for adaptation of
our architecture in the area of high performance ap-
plication.

REFERENCES

Beznosov, K. (2002). Object security attributes: Enabling
application-specific access control in middleware. In
4th International Symposium on Distributed Objects
and Applications (DOA), pages 693–710.

Chen, G. and Kotz, D. (2000). A Survey of Context-
Aware Mobile Computing Research. Technical Report
TR2000-381, Dartmouth College, Computer Science,
Hanover, NH.

den Bergh, J. V. and Coninx, K. (2005). Towards inte-
grated design of context-sensitive interactive systems.
In PERCOMW ’05: Proceedings of the Third IEEE In-
ternational Conference on Pervasive Computing and
Communications Workshops.

Galiasso, P., Bremer, O., Hale, J., Shenoi, S., and al. (2000).
Policy mediation for multi-enterprise environments.
In ACSAC ’00: Proceedings of the 16th Annual Com-
puter Security Applications Conference.

Ilechko, P. and Kagan, M. (2006). Authorization concepts
and solutions for j2ee applications.

Kalam, A. A. E., Benferhat, S., Miège, A., Baida, R. E.,
Cuppens, F., Saurel, C., Balbiani, P., Deswarte, Y., and
Trouessin, G. (2003). Organization based access con-
trol. In POLICY ’03: Proceedings of the 4th IEEE In-
ternational Workshop on Policies for Distributed Sys-
tems and Networks, page 120, Washington, DC, USA.

Lachmund, S., Walter, T., Bussard, L., Gomez, L., and
Olk, E. (2006). Context-aware access control. In
IWUAC’06: Proceedings of the third Annual Interna-
tional Conference on Mobile and Ubiquitous Systems.

Mikalsen, M. and Kofod-Petersen, A. (2004). Represent-
ing and Reasoning about Context in a Mobile Envi-
ronment. In Schulz, S. and Roth-Berghofer, T., edi-
tors,Modeling and Retrieval of Context 2004 (MRC),
volume 114, pages 25–35.

MOSQUITO (2006). IST 004636 MOSQUITO Project.

Moyer, M., Covington, M., and Ahamad, M. (2000). Gen-
eralized role-based access control for securing future
applications. In23rd National Infromation Systems
Security Conference (NISSC 2000).

OASIS (2003). eXtensible Access Control Markup Lan-
guage (XACML) 1.1.

OASIS (2005). Web Service Trust Language (WS-Trust)
1.3.

OASIS (2006). Web Service Security: SOAP Message Se-
curity 1.1 (WS-Security 2004).

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. (1996). Role-based access control models.IEEE
Computer, 29(2):38–47.

W3C (1999). W3C XSL transformations (XSLT) 1.0.

Zhang, G. and Parashar, M. (2004). Context-aware dynamic
access control for pervasive computing.

DYNAMIC CONTEXT-AWARE ACCESS CONTROL - Use of Resource Hierarchies to Define Fine-grained, Adaptable
Authorization Policies

393

