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Abstract: A variety of different clock-controlled stream ciphers and attacks on them have been described in a number of
papers. However, few word-oriented algorithms with an irregular clocking mechanism have been proposed.
This paper proposes a new design of irregular clocking for word-oriented stream ciphers that is dynamic
feedback control and show analysis results of its security and performance. The stream cipher K2 v2.0 is
a secure and high-performance stream cipher using the dynamic feedback control, which is applicable for
several applications. We believe that the dynamic feedback control mechanism is potentially effective against
several different types of attacks, not only existing attacks but also novel attacks.

1 INTRODUCTION

Stream ciphers are used extensively to provide a re-
liable, efficient method for secure communications.
A basic stream cipher uses several independent linear
feedback shift registers (LFSRs) together with non-
linear functions in order to produce a keystream. The
keystream is then XORed with plaintext to produce a
ciphertext. Some stream ciphers use a general non-
linear function to clock one or more LFSR(s) irregu-
larly. Various clock-controlled stream ciphers and at-
tacks on them have been proposed. Clock-controlled
stream ciphers are classified into two main types of
stream ciphers: the A5 family and the LILI family.
A5 is a well-known stream cipher designed to ensure
the confidentiality of mobile communications. LILI-
like stream ciphers, such as LILI-128 (Simpson et al.,
2000), have two different LFSRs for providing bits for
clocking and keystream bits. One LFSR clocks reg-
ularly, providing input for a clock controller, and an-
other LFSR clocks irregularly, providing keystream.

Recently, word-oriented stream ciphers have been
developed in order to improve the performance of
software implementations. In the NESSIE project,
many word-oriented stream ciphers were proposed,
such as SNOW(Ekdahl and Johansson, 2000) and
SOBER(Rose and Hawkes, 1999), and demonstrated

good performance in software. However, few word-
oriented algorithms with an irregular clocking mech-
anism have been proposed because of the inefficiency
of the clock control mechanism for software imple-
mentation. LFSR-based stream ciphers have been
broken using a linear recurrence of the LFSR. Thus,
an irregular clocking mechanism for word-oriented
LFSRs will achieve an improvement of their security.

This paper proposes a new word-oriented stream
cipher using dynamic feedback control as irregular
clocking. The proposed stream cipher has a dy-
namic feedback control mechanism for the byte-level
feedback function of FSRs and realizes fast encryp-
tion/decryption for software implementation. We
present a stream cipher algorithm and show the re-
sults of an analysis of security and performance, and
show that the cipher is secure and it offers high-
performance encryption and decryption.

2 DYNAMIC FEEDBACK
CONTROL

The clock control mechanism of a stream cipher gen-
erally either controls LFSR clocking or shrinks or
thins output. A clock control that shrinks or thins out-
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put reduces the performance of the stream cipher be-
cause some output bits are discarded. If one applies
shrinking to a word-oriented stream cipher, the per-
formance is markedly reduced. The bit-oriented clock
control mechanism for updating an LFSR is also in-
efficient when the mechanism controls the LFSR for
each register. On the other hand, a dynamic feedback
control for an LFSR is an effective method for im-
proving the security of stream ciphers. The stream
cipher MICKEY(Babbage and Dodd, 2005) has a
dynamic feedback control mechanism for a bit-wise
LFSR. POMARANCH(Jansen et al., 2005) uses a
cascade jump controlled sequence generator to mod-
ify the feedback function.

We propose a stream cipher design (called
KARAKORUM type) that operates on words and has
an efficient dynamic feedback control as irregular
clocking. The basic idea of the design is to modify
the mixing operation during the state update. Feed-
back polynomials for word-oriented LFSR are de-
scribed with coefficients; multiplying an input word
by a coefficient means mixing the words. A typical
example is a LFSR of SNOW 2.0(Ekdahl and Johans-
son, 2003). Generally, the coefficients are selected
such that the feedback polynomial is a primitive poly-
nomial. We apply irregular clocking for this mixing
operation, and the modification causes only a mini-
mal decrease in the encryption/decryption speed. In
other words, at least one FSR is irregularly clocked
to dynamically modify the feedback function to the
dynamic feedback controller that receives the out-
puts of the other FSR(s). For example, the feedback

function is defined asst+a = α{0,1}
0 st+b⊕α{0,1}

1 st+c⊕

α{0,1}
2 st+d, where{0,1}s are selected by the dynamic

feedback controller. The FSR controlled by the dy-
namic feedback controller is named dynamic feed-
back shift register (DFSR).

The dynamic feedback control mechanism im-
proves the security of a stream cipher because it
changes the deterministic linear recurrence of some
registers into a probabilistic recurrence. This prop-
erty effectively protects against several attacks. An
attacker has to obtain the linear recurrence of the
keystream derived from the linear recurrence of some
registers. By an irregular modification, the linear re-
currence exists with a low probability. An attacker has
to guess some inputs to the non-linear function for
an attack; however, an irregular modification makes
it impossible: the attacker has to guess the inputs to
the dynamic feedback controller first. Thus, irregular
modification of the feedback function improves the
security of the stream cipher.

We think that a dynamic feedback control mech-
anism is potentially effective against several attacks,

not only existing attacks but also a novel attack.

3 STREAM CIPHER K2 V2.0

In this section, we describe the stream cipher algo-
rithm K2 v2.01 that has a dynamic feedback control
mechanism.

3.1 Linear Feedback Shift Registers

The K2 v2.0 stream cipher consists of two feedback
shift registers (FSRs),FSR-AandFSR-B, a non-linear
function with four internal registersR1, R2, L1, and
L2, and a dynamic feedback controller as shown in
Fig. 1. FSR-Bis a dynamic feedback shift register.
The size of each register is 32 bits.FSR-Ahas five
registers, andFSR-Bhas eleven registers. Letβ be
the roots of the primitive polynomial;

x8 +x7 +x6 +x+1∈ GF(2)[x]

A byte stringy denotes(y7,y6, ...,y1,y0), wherey7
is the most significant bit andy0 is the least significant
bit. y is represented by

y = y7β7 +y6β6 + ...+y1β+y0

In the same way, letγ, δ, ζ be the roots of the
primitive polynomials,

x8 +x5 +x3 +x2 +1∈ GF(2)[x]

x8 +x6 +x3 +x2 +1∈ GF(2)[x]

x8 +x6 +x5 +x2 +1∈ GF(2)[x]

respectively.
Let α0 be the root of the irreducible polynomial of

degree four

x4 +β24x3 +β3x2 +β12x+β71 ∈ GF(28)[x]

A 32-bit stringY denotes(Y3,Y2,Y1,Y0), whereYi
is a byte string andY3 is the most significant byte.Y
is represented by

Y = Y3α3
0 +Y2α2

0 +Y1α0 +Y0

Let α1, α2, α3 be the roots of the irreducible poly-
nomials of degree four

x4 + γ230x3 + γ156x2 + γ93x+ γ29 ∈ GF(28)[x]

x4 +δ34x3 +δ16x2 +δ199x+δ248∈ GF(28)[x]

1A previous version of the algorithm is shown in the
SASC 2007 workshop record(Kiyomoto et al., 2007).
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Figure 1: K2 v2.0 Stream Cipher.

x4 +ζ157x3 +ζ253x2 +ζ56x+ζ16 ∈ GF(28)[x]

respectively.
The feedback polynomialsfA(x), and fB(x) of

FSR-AandFSR-B, respectively, are as follows;

fA(x) = α0x5 +x2 +1

fB(x)= (αcl1t
1 +α1−cl1t

2 −1)x11+x10+x5+αcl2t
3 x3+1

Let cl1 andcl2 be the sequences describing the
output of the dynamic feedback controller. The out-
puts at timet are defined in terms of some bits ofFSR-
A. Let Ax denote the output ofFSR-Aat timex, and
Ax[y] = {0,1} denote theyth bit of Ax, whereAx[31] is
the most significant bit ofAx. Thencl1 andcl2 (called
clock control bits) are described as follows;

cl1t = At+2[30], cl2t = At+2[31]

Both cl1t andcl2t are binary variables; more pre-
cisely,cl1t = {0,1}, andcl2t = {0,1}. Stop-and-go
clocking is effective in terms of computational cost,
because no computation is required in the case of
0. However, the feedback function has no transfor-
mation for feedback registers with a probability 1/4
where all clockings are stop-and-go clockings. Thus,
we use two types of clocking for the feedback func-
tion. FSR-B is defined by a primitive polynomial,
wherecl2t = 0.

3.2 Nonlinear Function

The non-linear function of K2 v2.0 is fed the values
of two registers ofFSR-Aand four registers ofFSR-
B and that of internal registersR1, R2, L1, L2, and
outputs 64 bits of the keystream every cycle. Fig. 2
shows the non-linear function of K2 v2.0. The non-
linear function includes four substitution steps that are
indicated bySub.

The Substep divides the 32-bit input string into
four 1-byte strings and applies a non-linear permuta-
tion to each byte using an 8-to-8 bit substitution, and
then applies a 32-to-32 bit linear permutation. The
8-to-8 bit substitution is the same as s-boxes of AES
(Daemen and Rijmen, 1998), and the permutation is
the same as AESMix Columnoperation. The 8-to-
8 bit substitution consists of two functions:g and
f . The g calculates the multiplicative inverse mod-
ulo the irreducible polynomialm(x) = x8 +x4 +x3 +
x+1 without 0x00, and 0x00 is transformed to itself
(0x00). f is an affine transformation defined by;
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wherea = (a7, ...,a0) is the input andb = (b7, ...,b0)
is an output, anda0 andb0 are the least significant bit
(LSB).

Let C be (c3,c2,c1,c0) and output D be
(d3,d2,d1,d0), whereci , di are 8-bit values. The lin-
ear permutationD = p(C) is described as follows;
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in GF(28) of the irreducible polynomialm(x) = x8 +
x4 +x3 +x+1.

3.3 Keystream Output

Let keystream at timet beZt = (zH
t ,zL

t ) (eachzx
t is a

32-bit value, andzH
t is a higher string). The keystream

zH
t , zL

t is calculated as follows:

zL
t = Bt ⊞R2t ⊕R1t ⊕At+4

zH
t = Bt+10⊞L2t ⊕L1t ⊕At

whereAx andBx denote outputs ofFSR-AandFSR-B
at timex, andR1x, R2x, L1x, andL2x denote the inter-
nal registers at timex. The symbol⊕ denotes bitwise
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Figure 2: Non-Linear Function of K2 v2.0.

exclusive-or operation and the symbol⊞ denotes and
32-bit addition. Finally, the internal registers are up-
dated as follows;

R1t+1 = Sub(L2t ⊞Bt+9), R2t+1 = Sub(R1t)

L1t+1 = Sub(R2t ⊞Bt+4), L2t+1 = Sub(L1t)

whereSub(X) is an output of theSubstep forX.
The set of{Bt ,Bt+3,Bt+8,Bt+10} is a Full Positive
Difference Set(FPDS)(Golic, 1996).

3.4 Initialization Process

The initialization process of K2 v2.0 consists of
two steps, a key loading step and an internal state
initialization step. First, an initial internal state is
generated from a 128-bit initial key, a 192-bit initial
key, or a 256-bit initial key and a 128-bit initial
vector (IV) by using the key scheduling algorithm.
The key scheduling algorithm is similar to the round
key generation function of AES and the algorithm
extends the 128-bit initial key, the 192-bit initial
key or the 256-bit initial key to 384 bits. The key
scheduling algorithm for a 128-bit key is described as

Ki =


















IKi (0≤ i ≤ 3)

Ki−4⊕Sub((Ki−1 ≪ 8)⊕ (Ki−1 ≫ 24))
⊕Rcon[i/4−1] (i = 4n)

Ki−4⊕Ki−1 (i 6= 4n)

whereIK = (IK0, IK1, IK2, IK3) is the initial key,i is
a positive integer 0≤ i ≤ 11, andn is a positive in-
teger. The functionSub(X) in the key scheduling al-
gorithm is the same as that in the non-linear function.
This function is different from the round key gener-
ation function of AES, and the other part of the key
scheduling algorithm is same as the AES round key
generation.Rcon[i] denotes(xi mod x8 + x4 + x3 +
x+ 1,0x00,0x00,0x00) andx is 0x02. The internal
state is initialized withKi andIV = (IV0, IV1, IV2, IV3)
as follows:

Am = K4−m (m= 0, ...,4),B0 = K10,B1 = K11,

B2 = IV0,B3 = IV1,B4 = K8,B5 = K9,B6 = IV2,

B7 = IV3,B8 = K7,B9 = K5,B10 = K6

The internal registers,R1,R2,L1, andL2 are set to
0x00. After the above processes, the cipher clocks 24
times (j = 1, ..., 24), updating the internal states. The
internal statesA j+4 B j+10 are also updated as follows:

A j+4 =α0A j−1⊕A j+2⊕zL
j−1

B j+10 =(αcl1 j−1
1 +α1−cl1 j−1

2 −1)B j−1⊕B j ⊕B j+5

⊕αcl2 j−1
3 B j+7⊕zH

j−1

The recommended maximum number of cycles
for K2 v2.0 without re-initializing is 258 cycles (264

keystream bits).

4 ANALYSIS OF K2 V2.0

4.1 Analysis of Periods

The cipher has two FSRs. FSR-A is defined by a
primitive polynomial. Thus, the sequence of 32-bit
outputs generated by FSR-A has a maximum period
of 2160−1.

Now, we re-define the updating functionfB for
FSR-B in terms of a 352× 352 matrix M fB over
GF(2). The updating function at timet is given by
one of the four possibilities for the matrix. The period
of outputs of FSR-B isl , wherel is a minimum value
satisfying (M fB)l = I . The matrix is described as
follows:
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where M1 = Mα2,Mα1 (cl1t = 0,1), M2 = I ,Mα3

(cl2t = 0,1). Mα1, Mα2, andMα3 are shown in Ap-
pendix A.

We calculated the periods of FSR-B for the four
possible representations as follows:

• (cl1t ,cl2t) = (0,0)
The matrixM fB has the maximum order 2352−1,
and output sequences of the FSR-B have a maxi-
mum period 2352−1. The FSR-B is a linear feed-
back shift register where the feedback polynomial
fB is a primitive polynomial overGF(2).

• (cl1t ,cl2t) = (1,0)
The matrixM fB has the maximum order 2352−1,
and output sequences of the FSR-B also have the
maximum period 2352−1.

• (cl1t ,cl2t) = (0,1)
The matrix M fB has an order of approximately
2332, and output sequences of the FSR-B have a
period of approximately 2332.

• (cl1t ,cl2t) = (1,1)
The matrix M fB has an order of approximately
2318, and output sequences of the FSR-B have a
period of approximately 2318.

From the above results of analysis, we think that
K2 v2.0 can produce a keystream of a sufficient length
period more than the number of cycles without re-
initialization. In an experimental analysis using some
sequences of the keystream produced by the cipher,
we did not find any short periods.

4.2 Analysis of Statistical Tests

The statistical properties of the cipher also depend on
the properties of the output sequences of FSR-A and
FSR-B; thus, we expect the keystream of the cipher
to have good statistical properties. We evaluated the
statistical properties for the keystream of the cipher
and output sequences of FSR-A and FSR-B by the
NIST Test Suite2 and confirmed that these properties

2Random Number Generation and Testing, NIST Test
Suite, Available from http://csrc.nist.gov/rng/.

were good.

4.3 Security Analysis

We discuss security of the cipher against existing
attacks.

Time-Memory Trade-Offs. We chose the size
of the secret key and IV taking into consideration
the discussion of general time-memory trade-offs by
Hong and Sarker (Hong and Sarkar, 2005). This at-

tack generally requiresO(2
3(k+v)

4 ) pre-computation,

O(2
k+v

2 ) memory, andO(2
k+v

2 ) available data, en-
abling an online attack with time complexity of
O(2

k+v
2 ), where the lengths of the secret key and IV

arek andv, respectively.
The IV, the secret key, and the internal state are

sufficiently large. Thus, we think the cipher is not
vulnerable to time-memory trade-off attacks.

Correlation Attacks. The feasibility of cor-
relation attacks depends on the number of inputs
to the non-linear function and on the tap positions
for the function. The use of a full positive differ-
ence set for the tap positions and the non-linear
function has sufficient non-linearity for preventing
the attacks. We evaluate the security using an
asymptotic analysis proposed by Chepyzhov and
Smeets (Chepyzhov et al., 2001). The required
length N of the keystream for an correlation attack

is N ≈ 1/4 · (2k · h! · ln2)1/h · ε−2 · 2
l−k
h , where l , k,

and h denote a target FSR length, and algorithm
parameters, and the correlation probability of the
target stream cipher is 1/2+ ε. The computational-
time complexity of this pre-computation phase in
the attack is approximatelyN⌈(h−1)/2⌉ andN⌊(h−1)/2⌋

is required. Furthermore, the decoding algorithm
stores (Nh · 2k−l )/h! parity checks and its com-
putational complexity is 2k times the number of
parity checks. When attacking the regular clocked
FSR-B in K2, the lowest correlation probability
for the attack is approximately 1/2 + 2−13, where
h = 9, k = 26, and computational complexity and the
required memory are roughlyO(2256). However, no
correlation between the input and output sequences
of the non-linear function with a probability larger
than 1/2+ 2−13 is found. Furthermore, the irregular
clocking improves security against correlation attacks
because the linear relations of bits in FSR-B are more
complicated using the irregular clock.

Security of the Initialization Process. For
any key unique pair of a initial key and a IV, the
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key loading step generates an internal state of the
cipher. The initial key is expanded using the AES key
scheduling algorithm, and the IV and expanded keys
are thoroughly mixed by the 24 cycles comprising
the initialization process. After 13 cycles of the
run-up, all values of an internal state of the cipher
includes allIVis. All registers in the internal state
will depend on both the initial key and IV after
13 cycles. Furthermore, the initialization process
additionally runs 11 cycles and theIVis and an initial
key are well mixed into the internal state. Even an
initial difference of any single register for the IV is
propagated to all registers in the internal state after 12
steps. Thus, we think that the cipher is not vulnerable
to the chosen/related IV attacks. Another attack to
the initialization process is a distinguishing attack
to use a collision of the first keystream by chosen
pairs of an initial key and a IV. However, we did
not find the collision that is occurred with a feasible
probability, because any registers are well mixed.

Guess-and-Determine Attacks.
First, we discuss the general evaluation of the

computational complexity of guess-and-determine at-
tacks. The keystream ofn bits is calculated fromm
bits of the output of an internal state ofl bits, which
consists of FSRs and the internal memory of a non-
linear function. In the initial step, an adversary can
determinen bits of the internal state fromn bits of
the keystream, which allow guessing ofm−n bits of
the internal state. In the next step, some values of the
internal state will have already been guessed or deter-
mined in the previous step. In this manner, the ad-
versary guesses other values of the internal state. The
adversary iteratively performs guesses and determines
steps until all values of the internal state have either
been guessed or determined. Now, we assume thatm
bits of the output are uniformly selected from internal
state by an ideal rule. Afterj steps, the values that
the adversary has had to guess can be approximated
as

(

1−⌈
v j
l ⌉

)

(m−n), wherev j is the number of bits
that have already been guessed or determined in step
j. Let y(x) denote the number of already-guessed or
determined bits at thexth step of the GD attack. and
sety(0) = 0. Now, we assume thatn bits of the in-
ternal state can be determined in each step.y(x) is
caluclated as;

y(x) =
n2−m·n+ l ·m

m−n

(

1−e−
m−n

l x)

We obtainη the number of steps needed for the
GD attack fromy(η) = l . Thus, the total numberη
of guessed and determined steps can be approximated
by η ≈ l

m−n · ln
m
n .

The computational costC isC≈ c·2l−nη, wherec
is a constant value. For K2,l , m, andn are 640, 256,
and 64 respectively. Thus, the computational com-
plexity is approximatelyO(2344). As a result of the
general evaluation of GD attacks, K2 is expected to
be secure against GD attacks.

A simple guess-and-determine attack is where the
attacker guesses all values of FSR-A and all inter-
nal memory sets and determines all values of FSR-
B. However, this attack is impossible because the
computational complexity of the attack is at least
O(2288). Now, we consider a guess-and-determine at-
tack against a simplified K2 that is performed with-
out multiplyingαi (i = 0,1,2,3) and additions are re-
placed by exclusive-or operations. First, we consider
an attack designed to removeAt+4 from the equation
of the keystream and to attack with the focus on FSR-
B as follows:

zL
t ⊕zH

t+4 = (Bt ⊞Sub(R1t−1))⊕R1t

⊕ (Bt+14⊞Sub(L1t−1))⊕L1t+4

If an attacker guesses five elements of the above
equation, then the attacker can determine the other el-
ement, such asBt+14, and the attacker can also de-
termineAt+4. To determine all values of FSRs, the
attacker has to guess at least 10 elements; thus, this
attack is impossible. Next, we consider the other at-
tack where the relationship of four internal registers
R1, R2, L1, L2 is used. The relationship of the mem-
ory is described as follows;

R2t+1 = Sub(R1t), L1t+2 = Sub(R2t+1 ⊞Bt+5)

L2t+3 = Sub(L1t+2), R1t+4 = Sub(L2t+3 ⊞Bt+12)

That is, if an attacker guessesR1t , Bt+5, Bt+12,
then the attacker determinesR2t+1, L1t+2, L2t+3,
R1t+4 using the above equations. Now, consider a
more simplified algorithm without FSR-A, which
is that the attacker obtains the values ofzH

t ⊕ At
and zL

t ⊕ At+4 in each cycle t. In this situation,
if the attacker guesses six elementsR1t+1, R1t+2,
L1t , L1t+1, Bt+6, and Bt+7, then the attacker can
determine all values of FSR-B. The complexity of the
second attack isO(2192). However, more than two
values of FSR-A have to be guessed for obtaining all
values of the internal state. Furthermore, the attacker
needs to guess the clock control bits for the full
version algorithm. Thus, we think the full version of
the algorithm is secure against guess-and-determine
attacks.

Distinguishing Attacks. In distinguishing at-
tacks, a probabilistic linear relation of keystream
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Figure 3: Linear Masking of K2 for Two-Round Outputs.

bits is needed as a distinguisher. K. Nyberg and J.
Wallen presented a distinguishing attack on SNOW
2.0(Nyberg and Wallen, 2006) where the computa-
tional complexity of their attack wasO(2174). We try
to construct a linear recurrence from output keystream
bits with fixed clock control bitscl1t = cl2t = 0 for
each cycle. A two-round linear masking of K2 is
shown in Fig. 3. Four substitutions are affected by the
linearization; the number of involved substitutions is
twice the number of attacks on SNOW 2.0. Thus, we
expect that K2 is more secure than SNOW 2.0 against
distinguishing attacks.

Now, we construct a linear distinguisher using
four masks,Γ, Λ, Φ, andΨ as follows;

Γα2α0 ·ΣzH (t)⊕Γα2 ·ΣzH (t +3, t +5)

⊕Γα0 ·ΣzH (t +1, t +6, t +8, t +11)

⊕Γ ·ΣzH (t +4, t +6, t +9, t +13, t +14, t +16)

⊕Λα2α0 ·ΣzL(t)⊕Λα2 ·ΣzL(t +3, t +5)

⊕Λα0 ·ΣzL(t +1, t +6, t +8, t +11)

⊕Λ ·ΣzL(t +4, t +6, t +9, t +13, t +14, t +16)

⊕Φα2α0 ·ΣzH (t +1)⊕Φα2 ·ΣzH (t +4, t +6)

⊕Φα0 ·ΣzH (t +2, t +7, t +9, t +12)

⊕Φ ·ΣzH (t +5, t +7, t +10, t +14, t +15, t +17)

⊕Ψα2α0 ·ΣzL(t +1)⊕Ψα2 ·ΣzL(t +4, t +6)

⊕Ψα0 ·ΣzL(t +2, t +7, t +9, t +12)

⊕Ψ ·ΣzL(t +5, t +7, t +10, t +14, t +15, t +17) = 0

If the bias for a combination of linear masks
has a high probability, an attacker constructs a
distinguisher from the equation. However, we have
not found a combination of linear masks with a bias
value higher than 2−128. Furthermore, to obtain
the equation, all clock control bits for 15 times the
feedback operations of FSR-B arecl1t = cl2t = 0;
the probability of this condition of clock control bits
is about 2−30. That is, the computational complexity

of a distinguishing attack against the cipher increase
260 times by using the dynamic feedback control
mechanism. Additionally, the cipher is assumed to be
re-initialized after 258 cycles. Thus, we conclude that
distinguishing attacks against K2 is impossible.

Algebraic Attacks. The non-linear function has
ideal algebraic properties; the non-linear function
consists of AES S-boxes and an effective permutation
function. Furthermore, the dynamic feedback control
increases the cost of solving the system of internal
values. Courtois presented an evaluation method for
the complexity of general algebraic attacks (Courtois,
2005). A general evaluation suggests that K2 is secure
against algebraic attacks; the computational complex-
ity of the attack is roughlyO(2646).

We investigated the possibility of algebraic at-
tacks, when we assumed that FSR-B has regular
clocking and the addition modulo 232 operation is re-
placed by the XOR operation. An algebraic attack
against SNOW 2.0 was proposed by O. Billet and H.
Gilbert(Billet and Gilbert, 2005). We tried to apply
the attack to K2. This attack is effective for stream
cipher algorithms that have a non-linear function with
internal memory. In this attack, the attacker has to
have internal registers at timet, which is defined as
linear equations that consist of initial values of in-
ternal state variables, and constructs relationships be-
tween the input values of a non-linear substitution and
the corresponding output values, which are low de-
gree algebraic expressions.

First, we obtain the following equation from the
assumption:

R2t = R1t ⊕At+4⊕Bt ⊕zL
t , L1t−1 = Sub(R2t−2⊕Bt+2)

R1t = Sub(L1t−1⊕At−1⊕Bt+8⊕Bt+9⊕zH
t−1)

If we remove substitutions from the above equa-
tions, we obtain the linear recurrenceR2t = R2t−2⊕
At−1⊕At+4⊕Bt ⊕Bt+2⊕Bt+8⊕Bt+9⊕zH

t−1⊕zL
t .

We can define a linear equation of registers of
FSR-A and FSR-B, for any clockt, which only in-
volves keystream, registers att = 0, andR20 from the
equation forR2t ;

R2t = R20

tM
i=0

εi
tz

H
i

tM
j=0

ε j
t zL

j

4M
k=0

εk
t Ak

10M
l=0

εl
tBl

whereεi
t , ε j

t , εk
t , εl

t are known binary coefficients.
We also obtain;

R1t−1 = R10

tM
i=0

εi
tz

H
i

tM
j=0

ε j
t zL

j

4M
k=0

εk
t Ak

10M
l=0

εl
tBl
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Table 1: Comparison with Other Stream Ciphers.

Algorithm Structure Key. Gen. (Cy./By.) Init. (Cy./Init.) ISE
SNOW 2.0(Ekdahl and Johansson, 2003) LFSR 4.5 937 0.440

SOBER-t32(NESSIE, 2003) LFSR 28 944 0.290
LILI-128(NESSIE, 2003) clock controlled LFSR 987 59 0.375

RC4 128-bit key (NESSIE, 2003) Table Updating 20 4680 0.018
AES 128-bit key encryption (NESSIE, 2003) - 24 689 -

K2 v2.0 (Reference) DFSR 7.5 1308 0.400
K2 v2.0 (Optimal) DFSR 5.4 1136 0.400

in the same manner. Thus, we can obtain quadratic
equations to use the relationR2t = Sub(R1t−1) be-
cause the substitution consists of the AES S-Box,
which has linearly independent quadratic equations
involving the S-Box input and output bits.

However, the substitutions that were removed in
the above attack prevent construction of the linear
equations forR1t andR2t in the real algorithm. Thus,
the attacker cannot obtain the linear equation of the
fixed values of internal memory and registers,R10,
R20, B0, B1, ..., B10, A0, ..., A4 for R1t−1 and R2t .
This attack is impossible even for the regular clock-
ing algorithm.

Furthermore, the attacker has to guess the clocks
of each cycle to determine the equations for a full
version of the cipher. LetM be the total number
of non-constant monomials appearing in the over-
defined system of equations, andN be the number of
equations that the attacker obtains per output of one
cycle. The computational complexity of the algebraic
attack increases 22 · (⌈M/N⌉ − 1) (≤ 2160) times
by using the dynamic feedback control mechanism.
Thus, we think the full version algorithm is secure
against an algebraic attack.

Clock Control Guessing Attack. This attack
(Zenner, 2003) is effective against bit-oriented clock
controlled stream ciphers. K2 is a word-oriented
stream cipher with a large internal state, and its non-
linear part is more complicated than existing stream
ciphers broken by the attacks. An extended attack
based on an algebraic approach was discussed by S.
Al-Hinai et. al. (Al-Hinai et al., 2006). However, it is
difficult to apply the attack when a sufficiently secure
non-linear function is used to generate the keystream.
Thus, we expect that the cipher will be secure against
such attacks.

Divide-and-Conquer Approach. The output se-
quences of FSR-A and FSR-B have good statistical
properties. Thus, we expect that divide-and-conquer
attacks for the FSRs are not feasible.

4.4 Performance Analysis

We implemented the algorithm on a PC (Pentium
4 3.2 GHz) using Intel C++ Compiler Ver.9 (for
Windows), and evaluated the performance. The re-
sults of the evaluation are shown in Table 1. “Key.
Gen.” indicates the required clock-cycles for a one-
byte keystream generation and “Init.” indicates the
required clock-cycles for one initialization, includ-
ing the initial key and IV setup. The optimal ver-
sion is optimized to produce a 128-byte keystream at
once. The performance of eSTREAM3 candidates
is about 4–14 cycle/byte in software implementation.
The performance of K2 v2.0 is much faster than exist-
ing clock controlled stream ciphers and AES, and is
competitive against word-oriented stream ciphers. K2
v2.0 is improves the security against existing attacks
proposed for SNOW 2.0. TheInner State Efficiency
(ISE) (Zenner, 2004) of the cipher, 0.4, is sufficiently
efficient.

5 CONCLUSION

This paper proposed a new design for a stream cipher,
which is a word-oriented stream cipher using dynamic
feedback control. The stream cipher K2 v2.0 is secure
against several different types of attacks, and it of-
fers high-performance encryption and decryption for
software implementations. Furthermore, the design
of K2 v2.0 is considered security against existing at-
tacks on SNOW 2.0. We believe that the dynamic
feedback control mechanism is potentially effective
against several different types of attacks, not only ex-
isting attacks but also novel attacks.
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A MATRIX OF αi

Mα1 is the 32×32 matrix overGF(2) given by
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10001101100000000000000000000000
11000110010000000000000000000000
11100011001000000000000000000000
11111100000100000000000000000000
11111110000010000000000000000000
01110010000001000000000000000000
00110100000000100000000000000000
00011010000000010000000000000000
00110111000000001000000000000000
10011011000000000100000000000000
01001101000000000010000000000000
10010001000000000001000000000000
11001000000000000000100000000000
11010011000000000000010000000000
11011110000000000000001000000000
01101111000000000000000100000000
00100111000000000000000010000000
10010011000000000000000001000000
11001001000000000000000000100000
01000011000000000000000000010000
10100001000000000000000000001000
01110111000000000000000000000100
10011100000000000000000000000010
01001110000000000000000000000001
01010100000000000000000000000000
10101010000000000000000000000000
01010101000000000000000000000000
01111110000000000000000000000000
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Mα2 is the 32×32 matrix overGF(2) given by
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Mα3 is the 32×32 matrix overGF(2) given by
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B TEST VECTOR

A test vector for K2 is shown in this section.

Initial Key (128 bits):
IK0 =0x00000000,IK1 =0x00000000,
IK2 =0x00000000,IK3 =0x00000000

Initial Vector (128 bits):
IV0 =0x00000000,IV1 =0x00000000,
IV2 =0x00000000,IV3 =0x00000000

Keystream:
0xF871EBEF945B7272, 0xE40C04941DFF0537,
0x0B981A59FBC8AC57, 0x566D3B02C179DBB4,
0x3B46F1F033554C72, 0x5DE68BCC9872858F,
0x575496024062F0E9, 0xF932C998226DB6BA
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