
SECURING OPENSSL AGAINST MICRO-ARCHITECTURAL
ATTACKS

Marc Joye
Thomson R&D France, Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigńe Cedex, France

Michael Tunstall
Department of Electrical & Electronic Engineering, University College Cork, Cork, Ireland

Keywords: RSA, Modular Exponentiation, Micro-Architectural Attacks, Side-Channel Resistant Implementations.

Abstract: This paper presents a version of the 2k-ary modular exponentiation algorithm that is secure against current
methods of side-channel analysis that can be applied to PCs (the so-called micro-architectural attacks). Some
optimisations to the basic algorithm are also proposed to improve the efficiency of an implementation. The
proposed algorithm is compared to the current implementation of OpenSSL, and it is shown that the proposed
algorithm is more robust than the current implementation.

1 INTRODUCTION

Exponentiation algorithms are important for many
public-key cryptographic algorithms, in particular for
computing the modular exponentiation necessary for
RSA (Rivest et al., 1978). It is therefore essential to
ensure that implementations of algorithms requiring
a modular exponentiation are not vulnerable to any
known attacks.

Side-channel attacks can be applied remotely to
a PC, by observing the time taken for a processor
to compute a given function. In addition, they may
observe some micro-architectural features, e.g. the
cache or branch predictor of a processor which is ex-
ecuting the function. This usually requires the exe-
cution of a spy process to observe and manipulate a
processor while it is running. A more detailed de-
scription of different types of side channels that can
be applied to PCs is given in Section 2.

This paper proposes a modified 2k-ary modular
exponentiation algorithm (the notation used in this pa-
per is taken from (Knuth, 2001)). The proposed algo-
rithm is resistant to all currently known side channels
available to an attacker targeting a PC implementa-
tion. The security of this algorithm is analysed in
terms of its side-channel resistance to the attack meth-
ods presented in Section 2, and some further optimi-
sations to the basic algorithm are also presented.

The proposed algorithm is compared to the cur-

rent secure implementation of modular exponentia-
tion used in OpenSSL (OpenSSL, 2007). It is demon-
strated that some bits of the private exponent risk be-
ing revealed if an attacker is able to modify the cache
and observe the effect on the output. The proposed
algorithm is shown to be more robust than the current
OpenSSL implementation.

The rest of this paper is organised as follows.
The different side channels that can potentially be ex-
ploited to reveal secret information are described in
Section 2. The proposed exponentiation algorithm is
described in Section 3, and some further optimisa-
tions are presented in Section 4. A comparison of the
proposed algorithm with the implementation used in
the current version of OpenSSL is presented in Sec-
tion 5. This is followed by our conclusions in Sec-
tion 6.

Notation: The base of a value is determined by a
trailing subscript, which is applied to the whole word
preceding the subscript. For example,FE16 is 254 ex-
pressed in base 16,d = (dℓ−1,dℓ−2, . . . ,d0)2 gives a
binary expression ford, andd = (dℓ−1,dℓ−2, . . . ,d0)4
gives an expression where eachdi , for 0≤ i < ℓ, rep-
resents two bits ofd.

In all the algorithms described in this paperλ rep-
resents the Carmichael function, whereλ(N) is de-
fined for N as the smallest positive integerm such
that am ≡ 1 (mod N) for every integera that is co-

189
Joye M. and Tunstall M. (2007).
SECURING OPENSSL AGAINST MICRO-ARCHITECTURAL ATTACKS.
In Proceedings of the Second International Conference on Security and Cryptography, pages 189-196
DOI: 10.5220/0002118801890196
Copyright c© SciTePress

prime toN. In particular, ifN = pq is an RSA mod-
ulus thenλ(N) = lcm(p− 1,q− 1). The notationφ
represents Euler’s totient function, whereφ(N) equals
the number of positive integers less thanN which are
coprime toN. If N = pq is an RSA modulus then
φ(N) = (p−1)(q−1).

2 SIDE-CHANNEL ANALYSIS

There are several different methods of side-channel
analysis that can potentially be applied to an imple-
mentation of the RSA signature scheme. These meth-
ods are summarised below.

2.1 Timing Analysis

The first academic publication of side-channel anal-
ysis was an attack that observed the correlation be-
tween guessed bits of a secret and the time required to
compute an algorithm (Kocher, 1996). The principle
target of the timing analysis described was the RSA
signature scheme. This was extended in (Schindler,
2000) to include the RSA signature scheme when
it is calculated using the Chinese Remainder The-
orem (Knuth, 2001) and Montgomery multiplica-
tion (Montgomery, 1985). These attacks were typi-
cally thought of in terms of smart cards, where it is
trivial to observe the execution time of a naı̈vely im-
plemented process.

It was demonstrated in (Brumley and Boneh,
2003) that timing analysis of the computation of
RSA signatures could be conducted across a network
against complex implementations, such as OpenSSL.
This demonstrated the need to consider the possible
side channels that could be exploited in implementa-
tions of cryptographic algorithms on all platforms.

In this paper it is assumed that the underlying mul-
tiplication algorithm used in the exponentiation algo-
rithm is resistant to timing analysis. For example, if
we consider Montgomery multiplication, which con-
tains a conditional modular subtraction, it is pointed
out in (Hachez and Quisquater, 2000; Walter, 1999a;
Walter, 1999b) that this final operation can be omit-
ted.

2.2 Cache-Based Side-Channel Analysis

A cache is a small, fast RAM memory whose role is
to buffer the lines of Non-Volatile Memory (NVM)
or external RAM being fetched. When a data or in-
struction word is to be fetched from the NVM or ex-
ternal RAM, the CPU will first check whether this
particular word is already in the cache: if yes (this

is a cache hit), the word is fetched directly from the
cache. If, on the contrary, this particular word is not
cached this is acache miss. The CPU will then fetch
a whole line (e.g. 32 bytes) within which the targeted
word is found. The data in this cache line can then be
accessed rapidly by the CPU, whereas accessing ex-
ternal resources to fetch data takes significantly more
time.

Using the cache as a side channel to attack an im-
plementation of a cryptographic algorithm was first
proposed in (Tsunoo et al., 2003). Several attacks
have since been published using cache access events
as a side channel (Bernstein, 2005; Bertoni et al.,
2005; Osvik et al., 2006) to derive a secret key used
in implementations of block ciphers, such as DES and
AES. These examples are predominately a specific
case of timing analysis, where the total number of
cache misses in an algorithm is used to determine in-
formation on the secret key being used.

Another example of using the cache as a side
channel has been termed trace-driven cache analysis,
and was first described in (Page, 2002). This attack
functions by observing what cache lines are used by a
process computing a cryptographic algorithm. This is
possible as the cache is open to inspection and mod-
ification by all processes being run on a PC. Im-
plementations of attacks that exploit this method of
side-channel analysis against PC implementations of
AES are described in (Acıiçmez and Koç, 2006; Os-
vik et al., 2006).

2.3 Branch Prediction Analysis

Modern chips for PCs include branch prediction to
improve overall performance. This involves the inclu-
sion of a Branch Target Buffer (BTB) and a Branch
Predictor (BP). The BTB is a buffer of limited size
that acts as a cache for storing the addresses of previ-
ously executed branches. The BP is an algorithm that
attempts to predict what branches will be taken, based
on previous observations. If a conditional branch is
present in an algorithm (e.g. anif command) the BP
will attempt to predict the outcome of this branch and
load the relevant instructions into the CPU. If the pre-
diction is correct this increases performance, since the
relevant instructions are available. However, if the
prediction is incorrect the CPU is obliged to fetch the
instructions for the other branch. In (Acıiçmez et al.,
2007c) it is pointed out that this will lead to a differ-
ence in execution time and can therefore be used to
conduct a timing analysis.

More sophisticated attacks are presented
in (Acıiçmez et al., 2007b; Acıiçmez et al., 2007c)
that modify the BTB to produce effects that can leak

SECRYPT 2007 - International Conference on Security and Cryptography

190

information more efficiently than observing the time
taken to compute an algorithm. Indeed, the most
efficient attack described involves closely observing
the BP during the computation of an RSA signature
by using a spy process that modifies the BTB and
observes the subsequent behaviour. This could
allow an attacker to derive the private key from one
signature generation. An implementation of this type
of attack on a modified version of the function used
in OpenSSL to generate RSA signatures is described
in (Acıiçmez et al., 2007b).

Again, it is assumed that the underlying multi-
plication algorithm is not vulnerable to this type of
side-channel analysis, i.e. there are no conditional
branches in the multiplication algorithm and each
multiplication involves exactly the same number of
operations for inputs of a given bit length.

3 SIDE-CHANNEL RESISTANT
2k-ARY EXPONENTIATION

The algorithm proposed in this paper is a modified
2k-ary exponentiation, as defined in (Knuth, 2001).
This is combined with the techniques used to protect
embedded implementations from Differential Power
Analysis (Kocher et al., 1999), where the input val-
ues are multiplied by small random values to mask
the behaviour of the algorithm during execution. This
algorithm is described in Algorithm 1, whereρ is a
small integer that is used to increase the bit length of
N so that it is the same asM∗.

The input Λ is either λ(N) or some multiple
thereof. In the case of RSA we can useφ(N) =
(p−1)(q−1), or even(e·d−1) (wheree is the pub-
lic exponent), which is a multiple ofλ(N). Note that
working with(e·d−1) instead ofλ(N) does not have
a large impact on the performance of the algorithm,
sincee is usually small (typicallye will be equal to 3
or 216+1).

The variableR[1] is set to a value equivalent to
1 modN and will therefore have no effect on the re-
sult but will involve a multiplication with an integer
moduloN′ = ρ ·N. This means that there is no condi-
tional branching within the exponentiation loop. The
multiplication with a givenR[i] can be determined by
calculating a pointer to the relevant variable, assum-
ing that the variables ofR[i], for 1≤ i ≤ b, are con-
tiguous in memory.

Algorithm 1 also slightly differs from the classical
2k-ary exponentiation algorithm as the first operation
of thewhile loop is

A← A2k−1
modR[0] ,

Algorithm 1: Secure 2k-ary exponentiation al-
gorithm.

Input: M, d = (dℓ−1,dℓ−2, . . . ,d0)b where
b = 2k for somek≥ 1, N, ρ, Λ, and two
random valuesr1 andr2 (of bit length
|ρ|2).

Output: S= Md modN.

M∗ = M + r1 ·N
d∗ = (d−1+ r2 ·Λ)/2
U∗ = 1+ r1 ·N
N′ = ρ ·N
R[0]← N′

R[1]←U∗ modR[0]
R[2]←M∗ modR[0]

for j = 3 to b do
R[j]← R[j−1] ·R[2] modR[0]

end

i← ⌊logbd∗⌋
A← R[d∗i]2 modR[0]
i← i−1
while (i ≥ 0) do

A← A2k−1
modR[0]

A← A·R[d∗i +1] modR[0]
A← A2 modR[0]
i← i−1

end

A← r1 ·A·R[1] modR[0]
A← A/r1

return A

rather than
A← A2k

modR[0] .

This can be explained if we suppose that

M2 = M2 modN ,

thenS= Md modN can be rewritten as

S= M2
(d−1)/2 ·M modN .

This allowsd to be replaced with (a randomised rep-
resentation of)(d− 1)/2, when it is multiplied by a
small random at the beginning of the exponentiation.
The last modular multiplication can be moved outside
the while loop reducing the amount of computation
required within the loop. This assumes thatd is al-
ways odd,Λ is always even (as is the case for RSA),
and the computation ofd∗ is always possible.

Each random value used has the effect that each
multiplication is randomised by a value whose effect
is equivalent to a multiplication by 1 modN and is
therefore easily removed at the end. The bit length of

SECURING OPENSSL AGAINST MICRO-ARCHITECTURAL ATTACKS

191

the random values used are often determined by the
algorithm and/or the architecture used. For example,
in software implementations the natural choice would
be to use random values with the same bit length as
the words manipulated by the processor (or a multiple
thereof).

The initialisation ofR[1] and R[2] ensures that
these variables always contain a value whose bit
length is similar to the bit length ofN′. A value with
a constant bit length will, therefore, always be given
to the underlying multiplication algorithm. This re-
moves the possibility of an attacker provoking a situ-
ation that could allow timing analysis by choosingM
as a small integer (chosen-message attack).

The change ind means that, for a fixed value of
d, each execution of the algorithm will behave differ-
ently. It is therefore not possible to derive informa-
tion by observing multiple executions, an attacker is
obliged to attempt to derived from a single execution.

Also note that the two last instructions,A← (r1 ·
A · R[1] modR[0])/r1, can also be implemented as
A← A ·R[1] modN. This choice of instruction will
depend on which instruction is most suitable for a
given implementation.

The security of this algorithm against the side-
channel analysis methods described in Section 2 is as
follows.

Timing Analysis: The algorithm will take a
constant number of operations to execute, i.e.
⌈(log2d∗)/k⌉ sets ofk squaring operations and one
multiplication. The only differences in computation
time will be caused by the variable bit length ofr2.
However, there are no data dependent differences in
execution time to allow a timing analysis to take
place. As described in Section 2, it is assumed that the
underlying squaring operation (respectively the mul-
tiplication) will always take the same amount of time
for inputs of a given bit length. The bit length of the
inputs to all the multiplications is identical for alld∗i
because the initialisation steps mean that eachR[i], for
1≤ i ≤ b, contains a variable with a bit length similar
to N′.

Cache-Based Side-Channel Analysis: The result
of the calculation of the powers ofM∗ will be stored
in the cache. In a multi-threaded system it would
be potentially possible to exploit this, by determining
how an implementation behaves with different values
of d. This possibility is removed by the masking of
the input variable with small random variables. In
particular, the modification tod means that the cache
lines accessed for a given value ofM will vary unpre-
dictably from one execution to another.

If an attacker is able to produce a trace of the cache
accesses it is potentially possible to determine some
information ond∗, as each value ofd∗i will cause
the algorithm to access different cache lines. An at-
tacker may therefore be able to determined∗ which
will give a value that is equivalent tod when used as
an exponent moduloN. A trick that can remove this
side channel is used in the current implementation of
OpenSSL and is described in Section 5.

Branch Prediction Analysis: As mentioned previ-
ously, there is no conditional branching within the
(main loop of) the algorithm, and it will, therefore,
not be possible to determine any bits ofd, or d∗, by
observing the behaviour of the branch predictor. The
required variable can be accessed by calculating an
offset from the beginning ofR[0], if R[0] to R[b] are
stored in contiguous memory.

It would be reasonable to assume that an attacker
can determine at what point the conditional jumps
used in thefor and while loops occur (Acıiçmez,
2007). As stated above, it is assumed that each squar-
ing operation (respectively the multiplication) will al-
ways take the same amount to time to calculate for
inputs of a given bit length. The bit length of each
R[i], for 1≤ i ≤ b, is identical, and an attacker will,
therefore, not be able to derive any information by
choosingM as a small integer.

This side channel can also be removed by un-
rolling the loops, either in the source code or by using
the compiler. However, this would require the imple-
mentation of a different function for each bit length of
interest, and that the most significant bit ofr2 is set to
one so that the bit length ofd∗ is constant.

4 FURTHER OPTIMISATIONS

Another version of Algorithm 1 is presented in Algo-
rithm 2, and contains some further optimisations that
can make an implementation more efficient in terms
of speed and memory required. It is possible to com-
bineN′ andR[0] (as used in Algorithm 1) in memory
to reduce the memory that is required to implement
the proposed algorithm. This can be achieved by ob-
serving that

R[1]← 1+ r1 ·N modN′ ,

whose purpose is to allow a multiplication by 1 mod
N to take place, can also be written as

R[1]← r1 ·N−1 modN′
(

≡−1 (mod N)
)

.

This is because it is always followed by a squaring
(namely,A← A2 modR[0]).

SECRYPT 2007 - International Conference on Security and Cryptography

192

However, lettingN′ = ρ · N, this requires that
the while loop is modified to take into account this
change in Algorithm 2. EachR[i], for 1≤ i < b, there-
fore containsM∗ i/2 modN′ — and R[0] contains a
value that is equivalent to−1/2 (mod N), and after
the multiplication operation the result is corrected by
doublingA. Provided thatN is odd (which is always
the case for RSA moduli), this can be implemented
on a processor that manipulates words ofω bits by
calculating

N′′ = 2ω−1 ·ρ ·N
whereρ is a smallodd random integer that is used to
increase the bit length ofN · 2ω−1 and to randomise
the value of−1/2 (mod N). Indeed, sinceN andρ
are assumed to be odd, it follows that

⌊

N′′

2ω

⌋

=

⌊

ρ ·N
2

⌋

=
ρ ·N−1

2
≡−1/2 (mod N)

andN′′ mod 2ω = 2ω−1. In other words, this will cre-
ate a value forN′′ where the least significant word is
2ω−1 and the remaining upper words represent a ran-
domised value for−1/2 (mod N). In order to be re-
sistant to side-channel analysis, the precomputed val-
ues ofM∗ i/2, for 1≤ i < b, are computed modulo
N′ = ρ ·N and so are represented with the same num-
ber of words as(ρ ·N−1)/2, which is written inR[0].

As presented, Algorithm 2 assumes a little-endian
representation; if allR[i] are stored in continuous
memory,R[0]− denotes the memory location starting
one word beforeR[0]. Nevertheless, it can easily be
adapted to accommodate a big-endian representation.

In Algorithm 2 the modulusN′′ is always an even
number. This excludes the use of Montgomery mul-
tiplication, and will require the use of an alternative,
such as Barrett or Quisquater multiplication (Barrett,
1987; Quisquater, 1992).

5 COMPARISON WITH OPENSSL

The algorithm used in OpenSSL1 for the constant
time implementation of a modular exponentiation is
the classical 25-ary exponentiation algorithm, and
uses Montgomery multiplication. EachMi modN,
for 0≤ i < 2k, are computed and stored in their Mont-
gomery representation. This uses more memory than
the proposed algorithm as the modulus cannot be
stored in the same memory.

To make the cache accesses behave in a deter-
ministic manner for all possible values ofd, the val-
ues ofMi modN, for 0≤ i < 2k, are mapped so that

1At the time of writing the most recent release of
OpenSSL was version 0.9.8e.

Algorithm 2: Secure 2k-ary exponentiation al-
gorithm. (II)

Input: M, d = (dℓ−1,dℓ−2, . . . ,d0)b where
b = 2k for somek≥ 1, N odd, random
odd valueρ, Λ, processor word-size in
bits ω, 2 random valuesr1 andr2 (of bit
length|ρ|2), and a random valuer3 (of
bit lengthω).

Output: S= Md modN.

M∗ = (M/2 modN)+ r1 ·N
d∗ = (d−1+ r2 ·Λ)/2
N′ = ρ ·N
R[0]← N′

R[1]←M∗

A← R[1]+R[1] modR[0]
for j = 3 to b do

R[j]← R[j−1] ·A modR[0]
end

i← ⌊logbd∗⌋
A← 2R[d∗i]+ r3 ·R[0]
R[0]−← 2ω−1 ·R[0]
A← A modR[0]−

A← A2 modR[0]−

i← i−1
while (i ≥ 0) do

A← A2k−1
modR[0]−

A← A·R[d∗i] modR[0]−

A← A+A modR[0]−

A← A2 modR[0]−

i← i−1
end

A← 2r1 ·A·R[1] modR[0]−

A← A/r1

return A

the choice of any arbitraryMi modN will access the
same cache lines. This is achieved by selecting 2k

to be the same as the number of bytes available in
each cache line. One cache line can then be used
to store one byte of eachMi modN, for 0≤ i < 2k,
i.e. if we consider a cache to be a matrix of bytes,
where the number columns is the cache line size, each
Mi modN is stored in columni +1.

No timing analysis can be conducted based on the
use of the cache as the same number of cache lines
will be accessed for each loop of the algorithm. It
also prevents trace-based cache analysis as the same
cache lines will be accessed for all possible values of
the private exponent. This requires careful implemen-
tation, as it is important that the same byte from each
Mi modN, for 0≤ i < 2k, is stored on the same cache

SECURING OPENSSL AGAINST MICRO-ARCHITECTURAL ATTACKS

193

line.
If someone were to take the OpenSSL source and

compile it on a platform with a non-standard cache
line size (the default in OpenSSL is 32 bytes, and
the classical 25-ary exponentiation algorithm), with-
out modifying the source, there could be some po-
tential security problems. If, for example, this was
implemented on a platform with a cache line size of
16 bytes, then the first cache line would contain the
first byte of each eachMi modN, for 0≤ i < 24, and
the second cache line would contain the the first byte
of Mi modN, for 24 ≤ i < 25. This pattern contin-
ues for the bytes stored in the following cache lines.
If an attacker is able to determine which set of cache
lines are used for each multiplication (i.e. odd or even
numbered cache lines) some bits ofd can be deter-
mined. More precisely, an attacker would be able to
determine the most significant bit of each window of
k bits.

This problem can be avoided by using the algo-
rithm proposed in this paper, as an attacker may be
able to determine some bits ofd∗ but this will not pro-
vide any information ond. However, in an implemen-
tation of the proposed algorithm it is still necessary
to use the memory mapping described above, so that
the same cache lines are accessed for eachMi modN,
for 0≤ i < 2k. Otherwise a trace-based cache analy-
sis can potentially reveald∗, which is equivalent tod
when used as an exponent moduloN.

This paper does not claim that this represents
a security flaw in the current implementation of
OpenSSL. Indeed, the use of 16-byte cache lines
is considered in the source, but requires the cache
line size to be declared. Not all programmers would
be aware of the security issues surrounding micro-
architectural attacks.

The default implementation of RSA in OpenSSL
uses the blinding scheme given in (Chaum, 1985), and
described in Algorithm 3. The proposed algorithm
will provide a more efficient implementation, as Al-
gorithm 3 requires thatte modN andt−1 modN are
stored in memory and periodically updated. More-
over, each time a newt is required a modular inverse
needs to be calculated which will increase the time
required to compute Algorithm 3.

The proposed algorithm will also provide a more
secure implementation, since the exponent is ran-
domised. The appendix describes a theoretical at-
tack that could break the current implementation of
OpenSSL, where Algorithm 3 is used, but would not
be able to break the proposed algorithm. This is possi-
ble because an attacker is required to derive the entire
value of d∗ in one attack to break the proposed al-
gorithm. In the current implementation of OpenSSL,

Algorithm 3: Chaum’s blinding scheme.

Input: M, d, ewheree·d≡ 1 (mod φ(N)), N,
a random valuet where 0≤ t ≤ N−1
and is coprime toN.

Output: S= Md modN.

A←M · te modN
A← Ad modN
A← t−1 ·A modN

return A

the repeated use of the same value ofd could allow
information on different bits ofd to be derived from
separate attacks.

6 CONCLUSION

This paper presents a side-channel resistant version of
the 2k-ary exponentiation algorithm for calculating a
modular exponentiation. This algorithm is presented
in Algorithm 1, and an optimised version is presented
in Algorithm 2.

In summary the advantages of the proposed algo-
rithm over the default settings of the implementation
used in OpenSSL are:

1. The proposed algorithm requires less memory
than the current implementation of OpenSSL as
the modulusN can be stored in the same mem-
ory as M0 modN. It is also not necessary to
store a pairte modN and t−1 modN in mem-
ory, as smaller random values can be used that
only have mild constraints. Moreover, it is shown
in (Acıiçmez et al., 2007a) that the calculation
of the modular inverse necessary for this blinding
method could be vulnerable to side-channel anal-
ysis.

2. If the source is compiled by a naı̈ve programmer
there is less chance of a bug compromising the
security of the exponentiation algorithm. An ex-
ample of this is given in Section 5.

3. The proposed algorithm is more secure against
other attacks than the current implementation of
OpenSSL. A theoretical attack is described in
the appendix that could compromise the security
of the current implementation of OpenSSL, even
when the current blinding scheme is considered.
The proposed algorithm cannot be attacked in this
manner.

SECRYPT 2007 - International Conference on Security and Cryptography

194

REFERENCES

Acıiçmez, O. (2007). Private communication.

Acıiçmez, O. and Koç, C. K. (2006). Trace-driven cache
attacks on AES. Cryptology ePrint Archive, Report
2006/138.http://eprint.iacr.org/2006/138/.

Acıiçmez, O., Gueron, S., and Seifert, J.-P. (2007). New
branch prediction vulnerabilities in OpenSSL and nec-
essary software countermeasures. Cryptology ePrint
Archive, Report 2007/039, 2007,http://eprint.
iacr.org/.

Acıiçmez, O., Koç, C. K., and Seifert, J.-P. (2007a). On
the power of simple branch prediction analysis. Cryp-
tology ePrint Archive, Report 2006/351, 2006,http:
//eprint.iacr.org/.

Acıiçmez, O., Koç, C. K., and Seifert, J.-P. (2007b). Pre-
dicting secret keys via branch prediction. InTopics in
Cryptology — CT-RSA 2007, volume 4377 ofLecture
Notes in Computer Science, pages 225–242. Springer-
Verlag.

Bao, F., Deng, R. H., Han, Y., Jeng, A., Narasimhalu, A. D.,
and Ngair, T. (1997). Breaking public key cryptosys-
tems on tamper resistant devices in the presence of
transient faults. InSecurity Protocols, volume 1361 of
Lecture Notes in Computer Science, pages 115–124.
Springer-Verlag.

Barrett, P. (1987). Implementing the Rivest-Shamir-
Adleman public-key encryption algorithm on a stan-
dard digital processor. InAdvances in Cryptology —
CRYPT0 ’87, volume 267 ofLecture Notes in Com-
puter Science, pages 311–323. Springer-Verlag.

Bernstein, D. J. (2005). Cache timing attacks
on AES. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M.,
and Palermo, G. (2005). AES power attack based on
induced cache miss and countermeasures. InInterna-
tional Symposium on Information Technology: Cod-
ing and Computing — ITCC 2005, pages 586–591.
IEEE Computer Society.

Brumley, D. and Boneh, D. (2003). Remote timing attacks
are practical. In12th USENIX Security Symposium,
pages 1–14.

Chaum, D. (1985). Security without identification: transac-
tion systems to make big brother obsolete.Communi-
cations of the ACM, 28(10):1030–1044.

Hachez, G. and Quisquater, J.-J. (2000). Montgomery ex-
ponentiation with no final subtractions: Improved re-
sults. InCryptographic Hardware and Embedded Sys-
tems — CHES 2000, volume 1965 ofLecture Notes in
Computer Science, pages 293–301. Springer-Verlag.

Joye, M., Quisquater, J.-J., Bao, F., and Deng, R. H.
(1997). RSA-type signatures in the presence of tran-
sient faults. InCryptography and Coding, volume
1355 of Lecture Notes in Computer Science, pages
155–160. Springer-Verlag.

Knuth, D. (2001).The Art of Computer Programming, vol-
ume 2, Seminumerical Algorithms. Addison–Wesley,
third edition.

Kocher, P. (1996). Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. InAd-
vances in Cryptology — CRYPTO ’96, volume 1109
of Lecture Notes in Computer Science, pages 104–
113. Springer-Verlag.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power
analysis. InAdvances in Cryptology — CRYPTO ’99,
volume 1666 ofLecture Notes in Computer Science,
pages 388–397. Springer-Verlag.

Montgomery, P. (1985). Modular multiplication without
trial division. Mathematics of Computation, 44:519–
521.

OpenSSL (2007). Open source toolkit for SSL/TLS.http:
//www.openssl.org.

Osvik, D. A., Shamir, A., and Tromer, E. (2006). Cache
attacks and countermeasures: the case of AES. In
Topics in Cryptology — CT-RSA 2006, volume 3860
of Lecture Notes in Computer Science, pages 1–20.
Springer-Verlag.

Page, D. (2002). Theoretical use of cache memory
as a cryptanalytic side-channel. Cryptology ePrint
Archive, Report 2002/169.http://eprint.iacr.
org/2002/169/.

Quisquater, J.-J. (1992). Encoding system according to
the so-called RSA method, by means of a micro-
controller and arrangement implementing this system.
U.S. Patent Number 5,166,978. Also presented at the
rump session of EUROCRYPT ’90.

Rivest, R., Shamir, A., and Adleman, L. M. (1978). Method
for obtaining digital signatures and public-key cryp-
tosystems.Communications of the ACM, 21(2):120–
126.

Schindler, W. (2000). A timing attack against RSA with the
Chinese remainder theorem. InCryptographic Hard-
ware and Embedded Systems — CHES 2000, volume
1965 of Lecture Notes in Computer Science, pages
109–124. Springer-Verlag.

Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.
(2003). Cryptanalysis of DES implemented on com-
puters with cache. InCryptographic Hardware and
Embedded Systems — CHES 2003, volume 2779 of
Lecture Notes in Computer Science, pages 62–76.
Springer-Verlag.

Walter, C. D. (1999a). Montgomery exponentiation needs
no final subtractions.Electronic Letters, 35(21):1831–
1832.

Walter, C. D. (1999b). Montgomery’s multiplication tech-
nique: How to make it smaller and faster. InCrypto-
graphic Hardware and Embedded Systems — CHES
’99, volume 1717 ofLecture Notes in Computer Sci-
ence, pages 80–93. Springer-Verlag.

APPENDIX

In this appendix a theoretical attack on the current ver-
sion of OpenSSL is described. The attack assumes
that an attacking process is running concurrently with

SECURING OPENSSL AGAINST MICRO-ARCHITECTURAL ATTACKS

195

the exponentiation algorithm, that can read and mod-
ify arbitrary addresses in RAM. If this process is able
to modify the values ofMi modN, for 0≤ i < 2k, be-
fore they are used to calculate a modular exponentia-
tion an attack can be envisaged based on (Bao et al.,
1997; Joye et al., 1997).

An attacker can, arbitrarily, choose someMi mod
N, for 1≤ i < 2k, and overwrite this value in memory
with M0 modN. This has the effect of replacing allb-
digits whose value isi with zero (note thatb= 2k). An
attacker can then seek to determine how many digits
were changed fromi to zero.

If, for example, thej-th andk-th b-digits of d are
changed fromi to zero, then the expected signatureS′

from a messageM will satisfy the following equation:

S′e

M
≡ (Me)−(i·b j) · (Me)−(i·bk) (mod N) (†)

where e is the public exponent. A more complex
equivalence can be determined where an attacker has
set a chosenMi modN to M0 modN, since more dig-
its will be changed than are considered in the above
example.

If, for a choseni, each instance where theb-digit
is equal toi is replaced with zero, this could, poten-
tially, allow an attacker to determine where ind each
b-digit is equal toi. This could be achieved by calcu-
lating the result ofS′e/M modN for all of the possible
combinations of changed digits.

For example, if we consider RSA signature gen-
eration using a 1024-bit modulus calculated using
the 25-ary modular exponentiation algorithm (as cur-
rently used in OpenSSL). There will be⌈1024/5⌉ =
205 loops in the modular exponentiation algorithm.
If, for an arbitrary i (for 1 ≤ i < b), Mi modN is
changed toM0 modN, this will, statistically, be ex-
pected to affect⌈1024/5⌉/25 = 6.4 loops, i.e. on av-
erage 6.4b-digits, that are normally equal toi, will
be set to zero. In order to determine which groups
of five bits an equation similar to Equation (†) can be
determined for each of the

(205
7

)

= 241.3 possible com-
binations that cover the expected number of groups of
five bits that have changed.

This is likely to be computationally infeasible
because of the number of possible changes ind,
each of which require the generation of the result of
S′e/M modN. However, this expected number of sig-
natures can be significantly reduced if an attacker is
able to divide this process into stages, i.e. make a
change half way through the modular exponentiation
and derive some information, and then repeat the at-
tack and make a change before the exponentiation to
complete the attack for a given value ofi.

This attack is still valid if the blinding scheme
described in Algorithm 3 is used, as an attacker can

overwrite some arbitraryMi · te modN with a value
equivalent to 1 modN. No knowledge oft is required
sinced and N are not modified during the blinding
scheme.

This problem can be avoided by using the algo-
rithm proposed in this paper. The attack is still valid,
but an attacker will only be able to determine some
bits of one instance ofd∗ and this will not provide
any information ond.

SECRYPT 2007 - International Conference on Security and Cryptography

196

