

INTEGRATED DESIGN OF EVENT STREAM SERVICE SYSTEM
ARCHITECTURE (ESSSA)

Kyungeun Park, Yanggon Kim
Department of Computer & Information Science, Towson University, 7800 York Road, Towson, MD 21252, USA

Jinkyu Lee*, Juno Chang**
*ReegySys, Inc., 456 Dogok-dong, Gangnam-gu, Seoul, 135-270, Republic of Korea

**Div. of Media Technology, Sangmyung University, 7 Hongji-dong, Jongno-gu, Seoul, 110-743, Republic of Korea

Keywords: Event Stream Management, Event Query Language (EQL), Radio Frequency Identification (RFID),
Ubiquitous Sensor Network (USN), Object-Relational Spatial Database Management System.

Abstract: This paper proposes the integrated design of an event stream service system architecture (ESSSA) which
can be used as a gateway to capture and process enormous amounts of event streams continuously generated
by radio frequency identification (RFID) or variable sensors over ubiquitous sensor network (USN) installed
in a wide variety of locations, transfer the refined events to the various event-driven applications connected
to this architecture, and allow the corresponding actions to be taken by the applications. The events
continuously delivered from versatile origins and their streams are inherently uncertain, unbounded, and
time-varying. Their arrival rate might severely fluctuate in some cases. Accordingly, this design focuses on
the elaborate handling of the event streams by facilitating robust event gathering scheme as a front-end
gateway in combination with a back-end event processing engine. The paper also contains the time-varying
event query processing schemes of the ESSSA by extending the object-relational spatial database
management system, ZEUS. The ESSSA can be applied as a framework for interfacing RFID or USN
sensor based applications such as an enterprise resource planning system (ERP), a supply chain
management system (SCM), a warehouse management system (WMS), or a centralized command and
control system.

1 INTRODUCTION

Today’s highly networked environments encouraged
by rapid growth of highly advanced wireless
telecommunication and corresponding software
technologies encourage us apply them to real world
and take fully advantage of the conveniences and
efficiencies they present. To do so, it necessarily
follows that we have to consider the effective way to
handle continuously generated events or signal
streams in such ubiquitous computing environments.
Events streams are to be captured from the event
origins, filtered by the predefined conditions,
maintained within the efficient events archive and
delivered to the appropriate service applications
depending on the event status.

Technical considerations regarding on the related
issues are required to design the event stream service

system architecture (ESSSA) that can be used as an
infrastructure for handling enormous amounts of
event streams generated by all sorts of event origins
which are equipped with radio frequency
identification (RFID), sensors of ubiquitous sensor
network (USN), or conventional wireless
telecommunication facilities. In this paper, the event
capturing system built on top of the main memory is
to support real time transactions and enables inflow
of the enormous events to be captured and evaluated
instantaneously. Disk based conventional database
management system (DBMS) is used as a backup
repository for the post-analysis to the once
accumulated event history data.

Event data discussed in this paper is inherently
uncertain, unbounded, and time-varying and their
arrival rate from various event origins might
severely fluctuate in some cases. For this reason,

51
Park K., Kim Y., Lee J. and Chang J. (2007).
INTEGRATED DESIGN OF EVENT STREAM SERVICE SYSTEM ARCHITECTURE (ESSSA).
In Proceedings of the Second International Conference on e-Business, pages 51-56
DOI: 10.5220/0002113400510056
Copyright c© SciTePress

elaborate consideration has to be taken into account
to capture and maintain the events, evaluate the pre-
defined event rules and react according to the
corresponding status of the events.

On receiving the events, the Event Collector of
the ESSSA pre-analyzes and classifies the categories
to which individual event belongs. The recognized
events are piled on the associated event queues
which are constructed by event stream within the
main memory, while the Event Query Manager,
important sub-component of the ESSSA parses the
event queries requested by the service applications
and extracts the event monitoring rules. They are
registered to the event monitoring rule tables in
order for the continuously incoming events to be
evaluated immediately as soon as they are identified
as satisfying events to a rule of interest.

Simple event is interrelated between events and
may imply different meaning according to the
context and the arrival of time. In this paper, we
extended the spatial query language supported by
ZEUS, object-relational spatial DBMS (Park, et al,
1998), to allow the ESSSA to define events and
manipulate their behavior and the relationship
beteen them. As the events received from ubiquitous
equipments may exist in different spatial locations,
using the spatial fearures of ZEUS system makes the
target system more powerful and easily applicable to
the real world applications.

It is required to provide a standard interface that
facilitates seamless connection across add-on service
applications. To resolve these requirements, service-
oriented architecture (SOA) interface technology is
selected as an interface infrastructure. This will
provide the plug-and-play interfaces and accelerate
the extension of the existing service framework with
the new services considered to be attached.

This paper is composed of 5 sections. This
section introduces the research background and the
fundamental technologies applied to the design of
the ESSSA. In section 2, the previous related
research and our current work on event stream
processing is presented. Section 3 discusses about
the main components of the ESSSA in detail. The
fourth section describes the issues related to the
processing event streams in the ESSSA. Finally, we
conclude the paper with a discussion of the proposed
system and current and future implementation issues.

2 RELATED RESEARCH AND
OUR WORK

2.1 Related Research

In handling events, a lot of research efforts have
been made in the last decade to formalize the event,
the behaviour of the events, and the relationship
between them.

The study on event streams was drived from the
concern for handling time-varying data within time-
series management system. Then, the active
database rose to the surface of event-based temporal
reasoning. (Motakis, Zaniolo, 1997). Active
database has been frequently compared with data
stream management system. Active database uses
triggers to support automatic response to events.
The action may change the value of the database,
whereas, the rapid materialization of ubiquitous
computing environments revitalized the events
stream handling issue. Data stream management
system demands complex events processing schemes
to treat inflow of events from the sources and
supports the continuous queries over the running
streams. (Luckham, 2001), (Rizvi, 2005).

 Many researchers have analyzed events and
distinguished the nature of the event queries over
event streams in time from the traditional queries on
the relations. (Motakis, Zaniolo, 1997), (Zimmer,
Unland, 1999), (Luckham, 2001), (Arasu, Badu, &
Widom, 2003).

The most important difference is that the event
initiates the event query, while the ordinary query
which is used in the traditional DBMS is self-
activated. (Chandrasekaran, et al, 2003). Time-
varying event query needs to keep the event history
in event repository and sliding window mechanism
to constraint the number of event at a particular
point of time has been chosen as a soultion.
(Ghanem, et al, 2007).

Also, semantic formalization such as basic
definitions and classification of events, their time-
varying relationships, and the events rules have been
accomplished from different perspectives. (Motakis,
Zaniolo, 1997), (Zimmer, Unland, 1999), (Arasu, et
al, 2003), (Chandrasekaran, et al, 2003), (Rizvi,
2005), (Bry, Eckert, 2006), (Bry, Eckert, &
Pătrânjan, 2006).

Many event stream management systems such as
TelegraphCQ (Chandrasekaran, et al, 2003),
STREAM (The STREAM Group, 2003), and REMS
(Hwang, Cheong, Kim, & Lee, 2005) have been
developed as the solutions to the challenges
discussed so far.

ICE-B 2007 - International Conference on e-Business

52

2.2 Design of the Event Stream Service
System Architecture (ESSSA)

Figure 1: The Event Stream Service System Architecture.

Figure 1 shows four major sub-systems: the
Event Collector, the Event Query Manager, the
Event Archive Manager, and the Service Manager.

The ESSSA considers fundamental issues
described in the previous section and targets to
handle event streams from massive RFID tags,
sensor data of USN, and any other spatiotemporal
information of any moving object.

To satisfy this objective, the ESSSA is to extend
the object-relational spatial DBMS, ZEUS
(KTDATA, 2005), from the lower storage
management level to the higher query processing
level.

3 MAIN COMPONENTS

3.1 Event Collector

At the front-end of the Event Collector is the Access
Gateway, which receives immense amounts of event
streams that have been classified and recognized
through the event pre-processors such as object
naming service (ONS) server, physical markup
language (PML) server, and Savant server as defined
in EPCglobal architecture framework standard
(EPCglobal, 2005). The events are originated from
various RFID readers, sensors in USN, wireless
communication network entities.

The Event Collector also includes the Event
Stream Analyzer, the Event Stream Refiner and the
Event Stream Queue Manager. They categorize
events, input them in the event stream queue, and
filter out duplications among adjacent readers or
meaningless events holding the unchanged value.
The events refined in this level are ready to be
monitored and evaluated in the Event Query

Manager and broadcast to the external service
applications such as enterprise resource planning
system (ERP), supply chain management system
(SCM), warehouse management system (WMS),
tracking system, or centralized command and control
system.

3.2 Event Query Manager

The Event Query Manager processes event queries,
which perform the event rules requested from the
service applications and provide them with the
proper services in time. The Event Query Analyzer,
the Event Rule Manager, the Event Query Optimizer,
and the Event Query Processor are composing the
Event Query Manager.

The Event Query Analyzer parses event query
statements written in the extended structured query
language (SQL) query language and extracts the
event rules and registers them to the appropriate
event monitoring rule tables.

The Event Rule Manager gathers event rules
from event monitoring rule tables which are divided
into Post-Event Monitoring Rule Table and Pre-
Event Monitoring Rule Table.

The Event Query Optimizer makes a plan for the
execution of the complex event query. Finally, Event
Query Processor processes the event query
according to the query plan.

3.3 Event Archive Manager

The Event Archive Manager consists of the Event
Register, the Event Triggering Monitor, and the
Event Storage Manager. The Event Register stores
events coming from the Event Collector to the event
repository.

The Event Triggering Monitor synthetically
monitors registered events, determines if the events
are matched with the predefined triggering rules, and
reports them as query results. The associated
business service applications are then to be informed
of the query results through the Service Manager.

The Event Storage Manager maintains the events
by constructing spatiotemporal index on them
depending on their (symbolic/physical) locations and
time of occurrences, keeps a snapshot of the events
data of the main memory repository, and performs
swapping between the main memory repository and
the secondary backup DBMS.

Event Collector Event Archive Manager
Access Gateway

Event Stream Refiner

Event Register

Event Storage Manager
(Main/Secondary Memory)

SecondarySecondary
MemoryMemory

Main Main
MemoryMemory

Event Triggering Monitor

Channel
Adaptor

Channel
Adaptor Service Manager

Integrated Service Gateway

Service ManagementService Management
DatabaseDatabase

ERP SCM WMS Monitoring
System

RFID
Reader

ONS PML Savant

Channel
Adaptor

Channel
Adaptor

Event Stream Analyzer

RFID
Reader

RFID
Reader

Event Stream Queue Manager

Service
Organizer

Event Query Manager

Event Query Analyzer

Event Query Processor

Event Query Optimizer

SOA-based Open Interface

USN Wireless

Service
Provider

Rule-based
Event

Handler

Service
Monitor

Event Rule Manager

INTEGRATED DESIGN OF EVENT STREAM SERVICE SYSTEM ARCHITECTURE (ESSSA)

53

3.4 Service Manager

The Service Manager contains the Integrated Service
Gateway, the Service Organizer, the Rule-based
Event Handler, the Service Provider, and the Service
Monitor. The Integrated Service Gateway allows
external service applications to interact the ESSSA
with SOA-based open interfaces. The Service
Organizer registers services in combination with the
event conditions. The Rule-based Event Handler
transforms registered services into event queries and
requests the associated query results. The Service
Provider provides external business service
applications with web services to broadcast the event
occurrences and their status in real-time. The
Service Monitor controls the enrolled service
conditions and then the ESSSA will identify the
occurrence of the event and provide the related
information through Service Provider.

4 EVENT PROCESSING

This section mainly discusses the key concepts and
major extension details of the ESSSA to effectively
process the event streams. They are composed of
event collecting process, query language extension,
and event querying process.

4.1 Event Collecting Process

In order to handle the massive event streams from
many different origins, this process acquires,
analyzes and refines, and manages event stream
queues by phases.

Figure 2: The Event Collecting Process.

As depicted in Figure 2, this architecture
assumes that events are transmitted from RFID tags,
gathered through ONS, PML and Savant server and
sent to the Access Gateway via Channel Adaptor of
Event Collector. Initially acquired events are
delivered to the Event Stream Analyzer, which

breaks down the tag information into separate
meaningful values such as the classification and the
identification information of the tagged object. The
electronic product codes (EPCs) system for RFID
tag is used to uniquely identify a single object.
Generally, the EPC tag contains a header, the EPC
manager’s information, object class, manufacturer,
product identification information, serial number,
and so on. (EPCglobal, 2005). The Event Analyzer
classifies the events and inputs them into the
separate event stream queues.

The Event Stream Refiner filters out duplications
among adjacent readers or removable events, which
hold the same value as the one of the previous event.
The events refined in this level are ready to be
monitored and evaluated based on the Event Query
Manager according to the event rules. The query
results are then replied to the Service Manager to be
delivered to the external add-on service applications.

In figure 2, events starting with “E1:1” are
duplicated and the Event Stream Refiner eliminates
the last one. In some cases, we should not cut the
duplicate to keep track of the status of the object.
Thus, an event query language (EQL) has to support
capabilities to define these constraints to the rules
depending on the specific characteristics of events.

4.2 Query Language Extension

The extension aims to accommodate characteristics
of events and represent them. Specifically, event
handling operators provides the service applications
with fundamental means to express various event
rules. This section describes the extension details by
presenting simple query statements, which express
event related tasks. The base query language for
extension is from the spatial query language of
object-relation DBMS, called ZEUS. (Park, et al,
1998), (KTDATA, 2005).

The following section describes detailed features
of the query language extension for event processing.

4.2.1 Definition of Event Relation

The syntax for event definition is a variant of the
relations definition in conventional DBMS.

create event PassGate (epcID

char(100), gateID char(15),
location point);

create event StoreToShelf (epcID
char(100), shelfID char(15),
noBox integer);

create event LiftFromShelf (epcID
char(100), shelfID char(15),
noBox integer);

Event CollectorEvent CollectorEvent Event
ArchiveArchive
ManagerManager

Access
Gateway

Event Stream
Refiner

RFID
Reader

ONS PML Savant Channel
Adaptor

Event
Stream
Queue

Manager

RFID
Reader

RFID
Reader

Event Stream
Analyzer

E1:1 01 0004BFA GAF2BB 02379DA1F

E1:2 01 0004BFA GAF2BB 02379DA20

E1:3 01 0004BFA GAF2BB 02379DA21

E1:1 01 0004BFA GAF2BB 02379DA1F

Event Queue : E1

E1:3E1:2E1:1 E1:1

E2:1 02 0004BFA GAF2BB 02379DA20

E2:2 02 0004BFA GAF2BB 02379DA21

E2:1 02 0004BFA GAF2BB 02379DA20

Event Queue : E2

E2:1E2:2E2:1

Event Queue : E1

E1:3E1:2E1:1

Event Queue : E2

E2:2E2:1

MainMain
MemoryMemory

ICE-B 2007 - International Conference on e-Business

54

create event LoadedToTruck (epcID
char(100), truckID char(15),
noBox integer);

In the above examples, the keyword “event” is

specified to alert us that a tuple of an event relation
implicitly contains an “event_time” attribute typed
as “timestamp” to hold the time of the event as well
as the explicitly indicated attributes. Additionally,
the system performs the event-related prerequisite
tasks such as preparing the event queues and
registering it to an anticipating event list.

4.2.2 Relationship Operators between
Events

Event relationship operators are classified into three
groups: temporal relationship, logical relationship,
and aggregation relationship.

Generally, temporal relationship operators
distinguish an event’s temporal order and act
depending on the individual operator. The following
shows the way that temporal operators are used in
“where” clause of traditional “select” query
statement:

select p.epcID, p.event_time,

s.event_time, s.shelfID
from PassGate p, StoreToShelf s
where PassGate happen before

StoreToShelf within
[p.event_time,
p.event_time+10];

select p.epcID, p.event_time,
l.event_time, l.shelfID

from PassGate p, LiftFromShelf l
where PassGate happen after

LiftFromShelf;

The first SQL statement finds the object, which

has passed the gate and is stored on the shelf for up
to 10 minutes. The second one recognizes the object
passing the gate after it has been lifted from the shelf
without any time limitation.

Another type of event operator is to simply
figure out the logical relationship between events
such as conjunction or disjunction. Furthermore,
query language supports negation of an event to
ensure an event does not happen.

select p.epcID, p.event_time,

s.event_time, l.event_time,
l.truckID, l.noBox

from PassGate p, LoadedToTruck l
where PassGate and LoadedToTruck

within [t, t+10];
select s.event_time, s.shelfID

from StoreToShelf s,LiftFromShelf l
where StoreToShelf or not

LiftFromShelf within
[t, t+30];

Moreover, extended query language provides the

aggregate operators, which gather the events of
interest and evaluate the operations: count(), sum(),
and average().

select count(PassGate),
from PassGate p
where p.epcID like ’01 0004BFA%’;

select sum(l.noBox),
from LoadedToTruck l
where LoadedToTruck within

[t, t+10];

The above two event query statements calculate
the number of objects having tags, which start with
‘01 0004BFA’ and the number of whole boxes
loaded to a truck within a specified time period by
using the aggregate operators.

4.3 Event Querying Process

In the Event Query Manager, the Event Query
Analyzer begins parsing the event query statements
and registers the extracted event rules to the
corresponding event monitoring rule tables, which
are handled by the Event Rule Manager. The event
rules that are supposed to be monitored are
thoroughly examined in order to schedule and
arrange the events within the event monitoring map
table (EMMT).

Table 1: The Event Monitoring Map Table.

As one single event can be related with multiple
event queries, the EMMT is introduced to
synthetically handle the events to be monitored. The
event map is associated with three sub-components
of the Event Query Manager. First, the Event Rule
Manager registers the event and builds up the map,
secondly, the Event Query Optimizer periodically
investigates the correlations between events, and
lastly, the Event Query Processor performs the
actual queries.

Event

E1

E2

E3

E4

E5

Successor

E2

E3

E6

E4

E1

Predecessor

E1

E1

E7

E6, E3

-

Service ID

S1, S6

S2, S7

S3, S8

S4, S9, S10

S5

INTEGRATED DESIGN OF EVENT STREAM SERVICE SYSTEM ARCHITECTURE (ESSSA)

55

By coupling the main memory repository scheme
and the disk-based DBMS, we intend to take
advantage of the benefits provided by both systems.
The continuously generated massive events need to
be processed in real time. In addition, the time-
varying results of the event query should be
produced to satisfy the requirements of the various
service applications based on the complex event
queries.

Figure 3: The Event Querying Process.

Figure 3 shows the event querying process in
combination with the sub-components of the ESSSA.

5 CONCLUSIONS

This research results from the increasing
requirements relevant to the emergence of the
innovative sensing technologies related with RFID,
USN, and any other wireless telecommunication
facilities. Consequently, the elaborate handling of
the massive amounts of events are regarded as the
key success factor of the event stream service
framework, which coordinates various event-driven
real world applications.

In this paper, we have designed the ESSSA
based on the object-relational spatial database
management system, ZEUS. We extended the spatial
query language in order to treat the time-varying
nature of the event streams. Furthermore, as an event
stream is related with multiple queries and
enormously increased over time, the efficient event
sharing and the flexible switching mechanism needs
to be thoroughly considered when designing and
implementing the main memory repository.

The event query language suggested in this paper
is to be formalized to guarantee the completeness of
the functionalities. Moreover, the query optimization
procedures of the existing system should be refined
to support the event queries in the future work.

REFERENCES

Arasu, A., Badu, S., & Widom, J., 2003. CQL: A
Language for continuous queries over streams and
relations. In DBPL.

Bry, F., Eckert, M., & Pătrânjan, P., 2006. Querying
composite events for reactivity on the Web. In Proc.
Intl. Workshop on XML Research and Applications,
number 3842 in LNCS, pages 38-47. Springer.

Bry, F., Eckert, M., 2006. A-High-level query language
for events. In Proc. of the IEEE Services Computing
Workshops (SCW’06).

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Madden, S.,
Raman, V., Reiss, F., & Shah, M., 2003.
TelegraohCQ: Continuous dataflow processing for an
uncertain world. In CIDR 2003, First Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA.

Ghanem, T. M., Hammad, M. A., Mokbel, M. F., Aref, W.
G., & Elmagarmid, A. K., 2007. Incremental
Evaluation of Sliding-Window Queries over Data
Streams. In IEEE Trans. on Knowledge and Data
Engineering, vol. 19, no 1.

Hwang, J. G., Cheong, T. S., Kim, Y. I., & Lee, Y. J.,
2005. Trends of RFID Middleware Technology and Its
Application. In Telecommunication Trend Analysis
and Survey, vol 20. no 3.

Luckham, D., 2001. The Power of Events: An Introduction
to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA,

Motakis, I., Zaniolo, C., 1997. Temporal aggregation in
active database rRules. In Proc. Inlt. Conf. on
Management of Data(SIGMOD). ACM Press.

Park, K. E., Lee, J. K., Lee, K. J., Ahn, K. H., Lee, J. W.,
& Kim, J. S., 1998. The development of
ZEUS(GEUS): A spatial DBMS tightly integrated
with an object-relational database engine. In URISA
1998 Annual Conference Proceedings, Charlotte, NC.

Rizvi, S., 2005. Complex event processing beyond active
databases: Streams and uncertainties. Technical
Report No. UCB/EECS-2005-26.

The STREAM Group, 2003. STREAM: The Stanford
stream data manager. In IEEE Data Engineering
Bulletin. vol. 26, no. 1.

Zimmer, D., Unland R., 1999. On the semantics of
complex events in active database management
systems. In Proc. Intl. Conference on Data
Engineering (ICDE), pages 392-399. IEEE Computer
Society Press.

KTDATA, 2005. User Manual of ZEUS DBMS, vol. I, II.,
http://ktdata.co.kr.

EPCglobal, 2005. The EPCglobal Architecture Framework.
From http://www.epcglobalinc.org/standards/Final-
epcglobal-arch-20050701.pdf.

Event CollectorEvent Collector

Event Queue : E1

E1:3E1:2E1:1

Event Queue : E2

E2:2E2:1

EventEvent
ArchiveArchive

ManagerManager

Main Main
MemoryMemory

Event Query ManagerEvent Query Manager

Event Monitoring MapEvent Monitoring Map

Event Query
Analyzer

Event Query Processor

Event Query
Optimizer

Event Rule
Manager

Event Query
Statements

Dynamic Event Dynamic Event
MonitorMonitor

ServiceService
ManagerManager

Recognized
Event Conditions

ICE-B 2007 - International Conference on e-Business

56

