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Abstract: Call centers have become the prevalent contact points between many companies and their customers. By
virtue of recent advances in information and communication technology, the number and size of call centers
has grown dramatically. As a large portion of the operating costs are related to the labor costs, efficient design
and workforce staffing are crucial for the economic success of call centers. In this context, the workforce
staffing level can be modeled as mathematical optimization problem using queueing theory. In this paper,
we deal with an approximate analysis of the so-called N-design call center with two types of customers, two
different finite queues and two different exponential patient times. We also represent some numerical examples
and show the impact of the system parameters on the performance measures.

1 INTRODUCTION Mand,2004). This basic queueing model can be ex-
tended to the M/M/N+M queue(Erlang-A model) and
Contact centers are service organizations for cus-the M/M/N+G queue with patient times(Mand,2005;
tomers who need service via the phone, facsimile, e- Mand,2004).
mail or other telecommunication channels. A particu-  The skill set of agents describes for which kind
larly important type of contact center is the call center. of service the agent is skilled and how well he pro-
By virtue of recent advances in information and com- Vvides service. The customer’s requests can be routed
munication technology, the number and size of call to different agent groups and the agents can serve
centers as well as the number of customers and agentsustomers of different types, which is commonly re-
grow explosively(Mand,2005). For example, in Eu- ferred to as skill based routing(Stol,2004). As ex-
rope, the number of call center employees in 2000 amples of skill-based routing, we have the so-called
was estimated by 600,000 in the UK and 200,000 in N-design, X-design, W-design and M-design mod-
Netherlands and 280,000 in Germany. Indeed, someels(Gans,2003; Stol,2003). In the N-design model,
call center statistics assess that 70% of all customer-one of two agent groups serves both types of cus-
business information in the U.S. occur in call centers tomers and other agents are specialists for a particular
which employ about 3% of the U.S. workforce and customer type. Approximate analysis of the N-design
1.5 million agents(Bors,2004; Stol,2004). model with infinite waiting queue and priority service
In the most simple design of call centers, only one discipline has been done(Shum,2004).
type of customers is served by one type of agents. The In this paper, we use an approximate analysis
prevalent model for performance analysis of these call method of the so-called decomposition algorithm to
centers is the M/M/N queue, frequently referred as reduce computational burdens. The considered N-
Erlang-C. Though Erlang-C model has non-realistic design model with finite waiting queues and exponen-
assumption of infinite lines and customer’s infinite pa- tial patient times is different to the previously studied
tient times, the performance measures are easily cal-model(Shum,2004). As we know well, the approxi-
culated. Customer’s patient times have a considerablemation provides sufficient accuracy reducing the nec-
effect on the performance of the system(Shim,2004; essary completion time.
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tomers join their corresponding waiting queues. The

AB|OCk|£gnegingQ ) customer selection rule of genera_lis.ts depends on the
1 . type of the customer. The specialists serve A cus-
Specialists tomers according to FCFS(First Come First Service)
MM Queue A rule within its own customer type. The generalist
looks at B queue first and serves a waiting B customer,
if possible. Otherwise, the generalist looks at A queue
A, ype B and serves an A customer. If there is no customer in
2 Queue B the two queues, the generalist becomes idle. Thus the
Generalists gengralis'.c hgs_ N—design_ routing policy wi_th priqrit_y
| Renegingd,) service discipline and gives non-preemptive priority
Blocking to B customers.

Now we describe an overview of the approxima-
] ) ] tion procedure. The system can be represented by a
Figure 1: N-design model with two groups of agents. two-dimensional Markov process. Sinke and K
are finite in our N-design model, the state space of
the process is finite. So the resulting two-dimensional
2 SYSTEM MODEL Markov process has a stationary probability distribu-
tion. LetX; be the number of A customers in A queue
and in service with specialists in steady state. Xet
be the sum of the number of B customers in B queue
and the number of customers of either type in service
with generalists.
We introduce a decomposition algorithm for ap-

In this section, we describe the system configuration
and routing procedure of our N-design model. As we
show Figure 1, we have an N-design model with two
types of customers A and B and two different groups

of agents, the specialists and geperahsts. . proximate performance analysis(Shum,2004). We
Both A and B customers arrive at the respective <t givide the state space into four regions

waiting queues A and B according to Poisson pro- — X < N X < N — Ny < X4 <
cesses with respective ratds and Ap. Both types il*}ﬂ}x; <_N2§»}: g{:z{xl j,ﬁ’l}sﬁ {N2{< &2 < Kl*}f
of customers are patient. The type A(B) customer re- ar11d84 —(NL < X < Kf}ﬁ{Nz < Xo <_K§}._ Hére
neges his waiting in his own queue aﬁe_rlan_?xp_onen- K; andK; are random variables, which will be de-
tially d|s_tr|buted patient time with meafty (8, ), if scribed in the next section. In the numerical approxi-
the service has not begun. We assume that the renegrq 4ion we take the respective me#hs= E[K:] and
ing customers are lost and so there are no retrials. Kg = E'[Kﬁ]. Thus, for simplicity, we think éf these
Both groups of agents are assume to have dif- \5riaples as the numbers. Clearly, the reg®nis
ferent skills. The first group oN; agents serves  forpidden. The core of the approximation algorithm

only type A customers(Specialist). The other group s g find the following probabilities.
of N, agents serves both types of A and B cus-

tomers(Generalist). Service times are exponentially P(X1=i[Xo =) = P(X1 =i|X2 <Ng), 1)
distributed with meang; * andy, * for specialists and PXi=iXo=j)mPX=i|No <X <K3), (2)
generalists, respectively regardless of the customer P(Xo = j[X1 =) ~ P(X2 = j| X1 < Ny), ©)
type. We assume that the numi@rof A customers TV L B .

waiting or being served in the system is finite. The P =Xt =1) =P =Nt <X1 <K7). (4)

numberK, of B customers in the system is finite as
well. These limitations of two waiting rooms reflect
the cases of given numbers of telephone lines fortwo 3 THE SUBMODEL ANALYSIS
types of customers respectively. In this way, wikgn
A customers are in the system, an arriving A customer Given that the system occupies in one of the regions
receives a busy signal and lost. In the same way, theS;, S and &4, we can easily find the system per-
number of B customers in the system does not exceedformance along one-dimension by using conventional
the limitationKj. gueueing models.

If possible, an arriving A customer will be served
immediately by the specialist. Otherwise, if all spe- 3.1 To Get prj = P(Xy =i|X2 < Np)
cialists are busy, when a generalist is available, this
generalist serves the arriving A customer. If all spe- Given that{X, < Ny}, there is no the caséN; <
cialists and generalists are busy, the arriving cus- X; < Kf}. Under the conditio{ X, < N>}, A queue
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is empty and all arriving A customers are served by Given that the overflow process is modeled as an IPP
specialist until{X; < N;}. Thus we can model this process, we have two independent input processes to
case as th# /M /N; /Ni(Erlang-B) queue. The num- the generalist. One of these process is the overflow
ber of busy servers forms a Markov Birth-and-Death IPP process of A customers and the other is a Poisson
process(Gross,1985). process of B customers with service priority against A
customers. It is well known that the superposition of
IPP and Poisson processes makes an MMPP(Markov
Modulated Poisson Process)(Heff,1986). Then the
superposed process MMPP is completely represented
by the infinitesimal generatd® and the arrival rate
matrix A as follows

3.2 ToGet
O2,j = P(X2o = j|N1 < X1 <KJ)

Given that{N; < X; <Kj}, all generalists are busy.
There is no the caspX; < Na}. In case of\; < j <

K3, the state transition fronX; = j to j — 1 occurs
with rate Nopp. But the state transitioX; = j to

j + 1 occurs with raté\,. The waiting B customers
in B queue renege after an exponentially distributed
patient time with mear®,*, if the service does not

begin. Thus, in this region, the submodel is well de- ~qndition {X1 < Ny}. Clearly, both A and B cus-
scribed as thév/M/1/K; +M queue. Heré; is  tomers are served in FCFS order until all generalists
a random variable, which varies from the minimum 516 pysy. When all generalists are busy, B customer in
K2 —N2+1 (all generalists serve B customers) to the g queue is served by an available generalist just com-
maximumk, + 1 (all generalists serve A customers). pjeting service according to the priority rule. Then the
The mean B queue length can be easily calculated byrequired probabilityy, ; is the steady state probabil-

the distribution of the number of A customers served iy that the sum of busy generalists and B customers

Q:Q|7A:A|+A27 (6)

whereQ, and/; are givenin (5) and\, =diag(A2,A2)
is a diagonal matrix.
Let’s return to finding the probability ; in the

by the generalists(Garn,2002).
33 ToGetqyj= P(Xo = j|X1 < Np)

Given that{X; < N;}, B customers are served bis
generalists with service raig. There is no wait-
ing A customer in A queue. A customers are routed
to a generalist when all specialists are bdgy&
Ni1) and there is an available generaligt(< Ny).
That is, A customers overflow to the generalist from

in B queue isj at customer’s arrival epoch to the
MMPP/M/Nz/K5 queue. Herd; is a random vari-
able, which varies from the minimui, to the max-
imum Ko+ No. Let {(X2,2)} = {(j,K)|] < K5 k=
1,2} be the Markov chain, whei2indicates the state
of the underlying Markov process of the MMPP and
Xo indicates the number of both A and B customers in
the submodel. LeQ* be the infinitesimal generator
of the chain{(Xz,2)}, then we have

the M/M/Ni/N; queue. We can easily model this Q= (Ql Qz)
overflow traffic as an IPP(Interrupted Poisson Pro- “\0 @)’
cess)(Kukz,1973).

The IPP is a Poisson process which is alterna- Where
tively turn on for an exponentially distributed pe- Q1(1) A 0 0
riod(Active) and turn off for another exponentially Ll Qu(2) 0 0
distributed period(Silent). During Active period, the 0 o1l 0 0
interarrival times of customers are exponentially dis-
tributed, while no customers are arrived during Silent Qu=1| ... )
period(Onvu,1995). Legx* andyg! be the mean du- 0 0 Q1(N2) A
rations of the Active and Silent periods, respectively 0 0 Nopol  Q1(N2+1)
and letA be the customer’s arrival rate during Active 0 0 0 cl
period. LetQ, be the infinitesimal generator of the
underlying Markov chain of the IPP and &t be the
arrival rate matrix of the IPP. Then the IPP is com- 0 0 0 0
pletely characterized b, and/, as follows 8 8 8 8

— A DO
Q|< \\/,/; \\//2>7/\|(0 0)' () Q= cee |y Qe=

Note that the traffic intensity offered to the 0 0 0 0
M/M/N1/N; queue isp; = A1/p1. Then the over- N2 0 0 0
flow traffic is easily modeled as the IPP(Kukz,1973). QD) A2 0 0
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Q2 AN - 0 0
csl Q33 - 0 0
0 0 Qs(E) N2
0 0 CKz*szI Q- cK§7N2|

whereQq(i) = Q— A — (i — Lpal, ¢ = Nopiz + kB2,
k= 1727"' 7K;_N2! QS(I) = Q_/\Z_Cilv Q3(E) =
Q3(K5; — N2 — 1) andQ, A and A\, are given in (6)
andO is (K5 — N> — 1) x (N> 4 1)-dimensional zero
matrix.

To find the probabilityqs j, let T be the station-
ary distribution ofQ* satisfyingnQ* =0 withtTe=1
(Stol,2004) by, forj =0,1,2,--- K3,

nm= (levnlvT[Zv’ ot aT[K;) with T[i = (njl,nj2)~

Then the required probability, j is given by

qr = T[l/\e/ca j:o,l,'“,NZ*l,
YT mAR/C, = NoNo 1, K3,
No—1 K3

whereC= S miAe+ S m/Aze Moreover letrj be
10 =

= =Nz
the ratio that the number of A customers served by

generalists ig, then we have
ri=mAe/C, j=0,1,2,--- ,Np. @)

34 ToGet pj= PXy=ilN2 < X2 < K;)

Given that{N, < X, <K}, all generalists are busy,

Let L(t) be the number of customers at timen
the submodel and lat be the length of the busy pe-
riod. Then we have to find the following Laplace
transform, on|x| <1, s> 0,

() =E[e®|L(0)=n],n=1,2,--- K, (8)
where the boundary conditions ape; 1(s) = ¢; (s)
andgp(s) = 1. After all, ¢;(s) is the required Laplace
transform. Conditioning on the epoch of customer’s
first arrival, departure or reneging(whichever occurs
first), we can easily find (s).

Now to approximate the busy period distribution,
defineh(t) as follows

h(t) = ayie ™' + (1—a)ye %", )
whereT,a,y; andy. are non-negative. The follow-
ing parameters match the first three moments of the
hyperexponential distribution with the three moments
my, mp andmg of @, (s) (Shum,2004).

Vi £ /V2— 4,

ya(1—yormy)
Yo=—"F— — a=2=""T""""1(10
Y1, Y2 5 A= (10)
wherev; andv, are given by
6mz — 3mp 1 mw
Vo=— = = vy = — %,
(3/2)ﬁ§7m1m3 m 2m

Let's return to findingpo;. 1) First, when
there are A customers in A quexe(> Nj), only if
X2 = Ny, the corresponding queueing system is gov-
erned by bottiM /M/1/(K5 — Ny + 1) + M queue and
M/G1/1/(K5 — Ny + 1) + M queue with the arrival
rateA1 and the hyperexponential service time given in
(9). 2) Secondly, given thgtX; < Ni}, A customers

the generalists are either serving B customers or aregre served by thé\; specialists. The correspond-
serving A customers only when B queue is empty. A ing queueing system is modeled as MgM /Ny /Ny

customers are served by thg specialists with each
service ratgl;. When all specialists are busy, A cus-

queue with the arrival rat®; and the service rafg.
At first, we consider the case 1). Given that=

tomers only see a generalist if there is no B customerj - N, the specialist serves A customers with expo-
in B queueXz = Ny). In this case, a service comple- nential service time with meafiNyp;) 2. If we con-
tion by a generalist diverts a customer from A queue sjder reneging, then we can conceive that the result-

to the generalist.

ing service time distribution i8 ~ Exp(Nip + 61).

On the other hand, An arriving B customer is first  Fyrthermore, the generalist serves A customers with
served by the\, generalists with each service rate the hyperexponential service timel (~ h(x)) given

le. When all generalists are busy B customers are jn (9). Consequently, A customers complete their
waiting in B queue. In addition, when A customers gervice with the minimum time o8 and H. So

are waiting in A queue, a single server is sometimes the corresponding queueing system is modeled as the

available with service ratdéll. This server expe-

riences random periods of unavailability and these

M/G2/1/(K5 — Ny + 1) +M queue.
Note that by PASTA, the number of customers in

breakdowns correspond to the busy periods of the tnhe system at an arbitrary time is equal to the number

M/M/1/K; +M queue. Here; is a random vari-

able, which depends on the number of generalists have for 0<i < Ki—Np—1
occupied by A customers. The busy periods of the o

M/M/1/K; +M queue with the parameteks, Nopo

ando, are approximated by a hyperexponential distri-
bution with parameters that match the first three mo-

ments of the busy periods(Shum,2004).

48

of customers at an arrival epoch(Taga,1993). Then we
0, = Thit+1
2N T+ A/ (Y+ 081+ Nap)
1

x = 17 ’
Pk To+A1/(Y+61+Nip)




APPROXIMATE ANALYSIS OF A CALL CENTER WITH SKILL-BASED ROUTING

wherey = ay; + (1—a)yz is given by (10). Gans,2003). We take the fixed valygs' = 2, i, * =

For the case 2), the corresponding queueing sys-3, 8, 1_»o andegl = 4 minutes as some system pa-
tem is theM /M /N1 /N; queue. By the normalization rameters in Figs. 2 and 3.
condition including the above equations, we have

Al) < /Nl L ) S
i T 1- T —%— lam2=20
p2.,| |I ( u]_ < +1 p2 I Z) J ! o2r —e— lam2=25

3.5 Performance Measures

Arrival rate of B-customer:10, 15, 20, 25 calls/min

01

When we know the probabilitiefg. i}, {p2;}, {a1j}
and{qy j}, by the conditional probability, we can eas-
ily get the probabilitie®(X; =i),i=0,1,--- ,K; and
P(X2=1j),j=0,1,--- ,K3. By the probability (7), the
mean queue lengths of queues A and B are given by

Blocking probabilty of A-customer

Ny Np B s 10 15 2 %
. . Arrival rate of A-customer (calls/min))
KA:Kllefzjrj,KB:K27N2+ZJFJ. ] i
=1 =1 Figure 2: A customer'®, vs. A customer’s arrival rate.

The blocking probabilities for the mean queue lengths
Ka andKg are given by | E—-

P, =P(X1 =K, +Np), P, =P(Xp =Kz + Np).

Arrival rate of B-customer:10, 15, 20, 25 calls/min

—— lam2=15

Given that the mean queue lengths idgeandKg, the
mean waiting times are given by

Mean waiting time in B-queue

1 Ky +N1
W,=—— (i—N)P(X1 =i),
“ T M(I-P), 2;1 7
1 KB+N2 NI S
W, = — (i—Nz)P(XzZ j) B
® " A(1—Py) jzéﬂ 7
. W
° 1 Arrival rate oflf\fsus!omer (cal\s/mzwg) *
4 NUMERICAL RESULTS Figure 3:Wgg in B queue vs. A customer’s arrival rate.

In this section, we present some numerical results to  Fig. 2 shows the blocking probabilityf) of A
show the effect of the system parameters in our N- customer’s calls when A customer’s arrival rate varies
design call center on the performance measures suctfrom 4 to 28 per minutes. The blocking probability is
as the mean waiting time and the blocking probabil- well calculated in Section 3.5. We can see that when
ity. We letK; = 70 andK, = 50 be two fixed numbers A customer’s arrival rate increases, the blocking prob-
of telephone lines for two types of customers respec- ability of A customer’s calls increases exponentially
tively. We chooséN; = 30 agents anbll, = 40 agents  in case that A customer’s arriving rate is fixed. When
as the fixed numbers of the specialists and general-B customer’s arrival rate is high(lam2=20, 25), the
ists, respectively. We vary customers’ arrival rates blocking probability of A customer’s calls decreases
per minuteA; andAz in order to get the proper uti- according to B customer’s arrival rate. The reason is
lizations(traffic intensities). as follows. While B customer’s arrival rate is high,
We assume that the generalist needs more timeif the number of A customers holding the general-
to serve a particular customer than the specialist. ists decreases, the mean length of A queue increases.
In general, customer’'s mean service time varies be- Thus the blocking probability of A customer’s calls
tween 60 and 180 seconds(Mand,2005; Stol,2004).decreases.
Hence agents’s service ratgsand |y, vary between Fig. 3 shows B customer’s mean waiting time
1 and 1/3. We can usually sele@,}‘l and 651 be- (Wgg) in B queue when A customer’s arrival rate
tween 120 and 240 seconds as the mean values of thevaries. The waiting time is well derived in Section
exponentially distributed patient times(Mand,2004; 3.5. We can see that when A customer’s arrival rate
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