
SCRAWLER: A SEED-BY-SEED PARALLEL WEB CRAWLER

Joo Yong Lee, Sang Ho Lee
School of Computing, Soongsil University, Seoul, Korea

Yanggon Kim
Computer and Information Sciences, Towson University, Maryland, USA

Keywords: Web crawler, Parallel crawler, Scalability, Web database.

Abstract: As the size of the Web grows, it becomes increasingly important to parallelize a crawling process in order to
complete downloading pages in a reasonable amount of time. This paper presents the design and
implementation of an effective parallel web crawler. We first present various design choices and strategies
for a parallel web crawler, and describe our crawler’s architecture and implementation techniques. In
particular, we investigate the URL distributor for URL balancing and the scalability of our crawler.

1 INTRODUCTION

A web crawler is a program that retrieves and stores
web pages from the Web. A web crawler starts off
by placing an initial set of URLs in a seed queue.
The web crawler gets a URL from the seed queue,
downloads the web page, extracts any URLs in the
downloaded page, puts the new URLs in the seed
queue, and gets the next URL from the seed queue.
The web crawler repeats this crawling process until
it decides to stop. Figure 1 illustrates the crawling
process.

Initialize

Get a URL

Download page

Extract URLs

Seed queue

Web
repository

WWW

Figure 1: Flow of a crawling process.

A web crawler often has to download thousands
of millions of pages in a short period of time and has
to constantly monitor and refresh the downloaded
pages. In addition, the web crawler should not put a
severe burden on the visited web sites. As the size of
the Web grows, it becomes more difficult or
impossible to crawl the entire or significant portion

of the Web by a single crawling process. In order to
maximize the download rate, many web search
engines run multiple crawling processes in parallel.
We refer to this type of web crawler as a parallel
web crawler.

Web crawlers have been studied since the advent
of the Web. The first web crawler is Wanderer (Gray,
M., 1996). The Internet Archive (Burner, M., 1997)
crawler uses multiple machines to crawl the Web.
Also, it uses a site-by-site basis crawl and a Bloom
filter to find duplicate URLs. The original Google
crawler (Brin, S., Page, L., 1998) is a distributed
system that uses multiple machines for web crawling.
Typically, three to four crawling machines are used
to crawl the Web, so the entire system requires
between four and eight machines. Mercator
(Heydon, A., Najork, M., 1999) presents a number
of functional components that crawler’s basic
algorithm requires: storing the list of URLs to
download, resolving host names into IP addresses,
downloading documents using the HTTP protocol,
extracting links from HTML documents, and
determining whether a URL has been encountered
before. WebBase (Cho, J., Garcia-Molina, H.,
Haveliwala, T., Lam, W., Paepcke, A., Raghavan, S.,
Wesley, G., 2006) is an experimental web repository
built at Stanford University. The WebBase project
has implemented an incremental crawler (Cho, J.,
Garcia-Molina, H., 2000). The incremental crawler

151
Yong Lee J., Ho Lee S. and Kim Y. (2007).
SCRAWLER: A SEED-BY-SEED PARALLEL WEB CRAWLER.
In Proceedings of the Second International Conference on e-Business, pages 151-156
DOI: 10.5220/0002108701510156
Copyright c© SciTePress

can keep crawled pages after the first crawl and
revisit only changed pages (with high probability).

This paper expands on Kim and Lee’s work
(Kim, S.J., Lee, S.H., 2003) in terms of
parallelization and scalability of a web crawler.
Although the web crawling process is conceptually
simple, designing a parallel web crawler is a
complex endeavour. In this paper, we present the
design and implementation of SCrawler (Soongsil
Crawler). SCrawler has the following
characteristics:
Full distribution. SCrawler can be distributed
across multiple crawling machines for better
performance. Crawling machines download web
pages independently without communication
between them.
Scalability. Due to the fully distributed architecture
of SCrawler, its performance can be scaled by
adding extra machine. In addition, data structures of
SCrawler use a limited amount of main memory,
regardless of the size of the Web. Therefore,
SCrawler can manage to handle the rapidly growing
Web.
Extensibility. SCrawler has been designed in a
modular way. For a particular crawling environment,
SCrawler can be reconfigured by plugging in
appropriate modules without modifying its core
components.
Portability. SCrawler is written entirely in Java to
achieve platform independence, thus runs on any
platforms for which there exists a Java virtual
machine.

2 DESIGN OF A PARALLEL WEB
CRAWLER

In order to maximize the download rate, a parallel
web crawler runs multiple crawling processes
simultaneously. Figure 2 illustrates multiple
crawling processes.

WWW

URL
distributor

Crawling process Crawling process Crawling process

WWW WWW

…

Figure 2: Flow of multiple crawling processes.

Generally, a web site is composed of more than
one page. Given two web pages, p and q, that exist

in the same web site, we say that p is locally
reachable from q if p can be reachable from q
through the web pages only in the same site. In this
paper, a collection of web pages that are locally
reachable from a given page (or seed page) is called
a party.

2.1 Type of Distribution

A parallel web crawler can be “intra-site” or
“distributed”. An “intra-site” crawler runs all
crawling processes on the same local network such
as LAN. A “distributed” crawler runs crawling
processes at geographically distant locations
connected by the Internet or WAN. SCrawler is a
“distributed” crawler that can run on any kind of
network.

2.2 Coordination of Partition

When multiple crawling processes download web
pages in parallel, different crawling processes may
download the same page multiple times. A parallel
web crawler can be classified into three ways in
terms of handling this overlap. In the first scheme,
“independent”, crawling processes may download
web pages independently without any coordination.
Second, when there exists a central coordinator that
logically divides the Web into small partitions and
dynamically assigns each partition to a crawling
process, we refer to this type of coordination as
“dynamic assignment”. Third, when the Web is
partitioned and assigned to each crawling process
before they start to crawl, we call it “static
assignment”.

SCrawler uses the “independent” scheme, thus
has no coordination overhead and can be very
scalable. In addition, since a seed-by-seed basis
crawl downloads web pages in the same party,
SCrawler can simulate the effect of “static
assignment”. Therefore, SCrawler can reduce more
overlap than a parallel web crawler with
“independent” scheme.

2.3 Crawling Mode

Each crawling process of a parallel web crawler is
responsible for a pre-determined partition of the
Web. Each crawling process of SCrawler has to
download web pages in the party. A web crawler
separates URLs into internal URLs and external
URLs. Internal URLs represent web pages that
belong to the partition, to which the downloaded
page belongs. An external URL is a URL that is not

ICE-B 2007 - International Conference on e-Business

152

an internal URL. There are three modes to handle
external URLs.

In “firewall mode”, each crawling process
downloads only web pages in its partition. All
external URLs are ignored and thrown away, and
thus all crawling processes may not download all
web pages that it has to download. In “cross-over
mode”, each crawling process can download web
pages not only in its partition but also in external
URLs. When crawling processes periodically and
incrementally exchange external URLs, we call it as
“exchange mode”.

SCrawler handles external URLs in “firewall
mode” and overcomes the limitations of “firewall
mode” by using a seed-by-seed basis crawl. We will
discuss a seed-by-seed basis crawl in the next
section.

3 IMPLEMENTATION ISSUES

SCrawler uses strategies such as a Bloom filter
(Burner, M., 1997) to remove duplicate URLs and a
breadth-first search to select web pages to be
crawled. We decided to use Java(TM) 2 as
implementation language to achieve platform
independence. Also, we used MySQL to manage
huge statistics from web crawling. SCrawler consists
of 41 Java classes, with 292 methods and about
8,000 lines of code.

3.1 Seed-by-Seed Basis Crawl

A site-by-site basis crawl (Burner, M., 1997) is
known to be a useful strategy. Since a web crawler
with this approach maintains exactly one page
(usually homepage) per a web site as a starting page
of crawling, the web crawler cannot crawl web
pages that are not connected from the homepage. In
order to solve this problem, we have expanded the
concept of a site-by-site basis crawl.

SCrawler crawls on a seed-by-seed basis (Kim,
S.J., Lee, S.H., 2003). In a seed-by-seed basis crawl,
it is possible for a single web site to have more than
one seed. When there are web pages that are not
locally reachable from a seed, SCrawler can crawl
those pages from another seed. A single web site can
have more than one party, and in this case SCrawler
can maintain more than one seed for a single web
site. Therefore, SCrawler finds web pages more than
a web crawler with a site-by-site basis crawl does.

3.2 Crawling Process of SCrawler

Figure 3 shows the overall architecture of crawling
process of SCrawler. Web crawling is performed by
multiple crawling threads. Each crawling threads
repeatedly performs the crawling process. Prior to a
crawl, Input URL Importer stores seed URLs in
Input URL File into a database. During the crawl,
newly found URLs are stored in the database. After
the crawl, Output URL Exporter writes URLs in the
database into Output URL File. Therefore, Output
URL File includes all URLs in Input URL File.

Depth URL
Buffer

Depth URL
Buffer

�

SCrawler

WWW

Crawling Process Initializing Process

Input URL
File

Output URL
File

Input URL
Importer

Output URL
Exporter

URL
Selector

DB
(MySQL)

Input URL
File

Output URL
File

Input URL
Importer

Output URL
Exporter

URL
Selector

DB
(MySQL)

URL
CollectorDownloaderDownloader Link

Extractor
Link

Extractor
URL

Analyzer
URL

Analyzer

�

� � �

Web Page
Files

Web Page
Files

�

Seed ContextSeed Context

Depth URL
Files

Depth URL
Files

URL
Distributor

�

Seed ID Queue

Figure 3: Main components of SCrawler.

SCRAWLER: A SEED-BY-SEED PARALLEL WEB CRAWLER

153

SCrawler can use Output URL File as Input URL
File on the next crawl. URL Selector selects seed
URLs from the database and loads them into Seed
ID Queue.

The first step of the crawling process is that URL
Collector gets a seed URL from Seed ID Queue and
determines whether it should crawl the seed URL (1).
URL Collector makes Seed Context for a party of the
seed URL. Seed Context is a data structure that
contains a number of seed information such as an IP
address, a seed URL string, a port number, a Bloom
filter for the party, an elapsed time “e-time” after
the last downloading and more. When URL
Collector crawls multiple seed URLs simultaneously,
it has multiple Seed Contexts for each party of seed
URLs.

After making Seed Context, URL Collector calls
Downloader (2). Downloader downloads a web page
using information of Seed Context (3). URL
Collector stores the downloaded page in disk (4),
and sends it to Link Extractor (5). Link Extractor
extracts any URLs in the downloaded page. The
extracted URLs are stored in Depth URL Buffer
temporarily. If Depth URL Buffer is full, all URLs in
the buffer are stored in Depth URL File and the
buffer becomes clear.

URL Analyzer examines whether the extracted
URLs are in syntax errors, and checks duplicate
URLs (6). URL Analyzer separates the extracted

URLs into internal URLs and external URLs.
Internal URLs are sent to URL Collector (7).
External URLs become candidate seed URLs.
SCrawler repeats from step (2) to step (7) until no
page URL in the party is found.

3.3 URL Balancing

SCrawler runs multiple crawling processes in
parallel by multiple machines or multiple threads.
Crawling threads download web pages
independently without communication between
them. Each crawling thread gets a seed URL from a
seed queue. At any crawling times, the number of
seed URLs that are assigned to each crawling thread
should be maintained to be equal as much as
possible (we call it URL balancing). SCrawler uses
URL Distributor to achieve URL balancing. Figure 4
conceptually shows the distribution of seed URLs by
URL Distributor.

URL
Collector

2

URL
Collector

1

URL
Collector

n

Seed
Context

1

Seed
Context

2

Seed
Context

m
…

Seed
Context

1

Seed
Context

2

Seed
Context

m
…

Seed
Context

1

Seed
Context

2

Seed
Context

m
…

…

Seed ID Queue

URL
Distributor

Figure 4: Conceptual diagram of distribution of seed
URLs by URL Distributor.

URL distribution algorithm
[1] while (true)
[2] if (not empty(seed_queue)) then
[3] foreach t in all_threads
[4] if (not full(seeds_of_t)) then
[5] url = dequeue(seed_queue)
[6] distribute(t, url)
[7] countSeed(t)
[8] else
[9] src_thread = findMaxSeed(all_threads)
[10] dst_thread = findMinSeed(all_threads)
[11] if (min_seed < avg_seed) then
[12] url = selectToDistribute(src_thread)
[13] distribute(dst_thread, url)
[14] countSeed(src_thread)
[15] countSeed(dst_thread)
Function description
dequeue(queue): Remove a seed URL from queue, and return it.
distribute(thread,url): Distribute url to thread, and make seed context for a party of url.
countSeed(thread): Count seed URLs in thread.
findMaxSeed(threads): Return the thread that has the most seed URLs in threads.
findMinSeed(threads): Return the thread that has the least seed URLs in threads.
selectToDistribute(thread): Select an inactive seed in thread, and return it.

Figure 5: URL distribution algorithm for URL Distributor.

ICE-B 2007 - International Conference on e-Business

154

URL Distributor uses the URL distribution
algorithm that is illustrated in Figure 5. URL
Distributor maintains information on the number of
seed URLs that each crawling thread holds and the
average number of seed URLs that all crawling
threads hold. URL Distributor gets a seed URL from
Seed ID Queue and distributes the seed URL to each
crawling thread in a sequential order. Given a seed
URL, the number of downloaded pages or the
crawling time completely depends on the seed URL.
Therefore, although all crawling threads start with
the same number of seed URLs, their crawling time
is likely to be different. For this reason, the number
of seed URLs in each crawling thread is likely to be
unbalanced after all seed URLs in Seed ID Queue
have been evenly distributed. In order to cope with
such URL unbalancing, URL Distributor
redistributes seed URLs that crawling threads hold
each other when some condition is met (see line 11).

We performed an experiment on the efficiency of
URL Distributor. We considered the distribution of
seed URLs in free competition as the object of
comparison. The distribution of seed URLs in free
competition means that each URL Collector gets
seed URLs from Seed ID Queue in free competition.
This distribution is illustrated in Figure 6.

URL
Collector

2

URL
Collector

1

URL
Collector

n

Seed
Context

1

Seed
Context

2

Seed
Context

m
…

Seed
Context

1

Seed
Context

2

Seed
Context

m
…

Seed
Context

1

Seed
Context

2

Seed
Context

m
…

…

Seed ID Queue

Figure 6: Conceptual diagram of distribution of seed
URLs in free competition.

We randomly selected 10,000 Korean web sites
and used them as seeds. SCrawler ran 20 crawling
threads simultaneously, each of which held 10 Seed
Contexts. We conducted web crawling twice. The
first crawl distributed seed URLs by URL
Distributor. In the second crawl, seed URLs were
distributed in free competition.

Figure 7 and 8 show the number of seed URLs
that each of 20 crawling threads holds. In the figures,
bold lines represent the average number of seed
URLs that all crawling threads hold. From Figure 7,
we can see that after 40 seconds of crawling, the
average number of seed URLs all crawling threads
held was maintained to be approximately 9. From
Figure 8, we can observe that thread 18 (T18) held
10 seed URLs after 100 seconds of crawling and
thread 0 (T0) held only one seed URL until 60

seconds of crawling. Seed URLs were not equally
distributed to each thread in free competition.

Figure 7: Number of seed URLs in URL Distributor.

Figure 8: Number of seed URLs in free competition.

Using URL Distributor, we reduced crawling
time as much as 2 hours and 40 minutes than that in
free competition. The download rate also increased
by 34.7%. The results show that the URL
distribution algorithm works well in multiple
crawling processes.

3.4 Scalability

In a highly scalable system, one should guarantee
that the work performed by every thread is constant
as the number of threads changes (Boldi, P.,
Codenotti, B., Santini, M., Vigna, S., 2004). That is,
the system and communication overheads do not
reduce the performance of each thread. SCrawler is
scalable in two respects. First, SCrawler has a fully
distributed architecture. Due to this architecture, the
performance of SCrawler is scaled by adding extra
machines. Second, data structures of SCrawler use a
bounded amount of main memory, regardless of the
size of the Web. Therefore, SCrawler can cope with
the rapidly growing Web.

SCRAWLER: A SEED-BY-SEED PARALLEL WEB CRAWLER

155

We experimentally measured how the average
number of downloaded pages per second per thread
changes as the number of crawling machines
changes. For this, we used 250,000 Korean sites
randomly selected as seeds. We increased crawling
machines from one to five by increment of one. We
set the number of crawling threads for each machine
to 10, 15 and 20, and each thread ran with 10 seeds
simultaneously.

Figure 9 shows how the average number of pages
downloaded per second per thread changes as the
number of crawling machines increases. The solid
line, long dashes, and short dashes represent web
crawling using 20 threads, 15 threads, and 10
threads, respectively. The more systems are scalable,
the more lines are horizontal. From the results, we
believe that SCrawler is scalable almost linearly
with the number of crawling machines. One might
notice that the lines are not completely horizontal.
This could be attributed to the limitations of our
network resources. We ran this experiment in a
campus network where the network status is likely
to vary over time.

Figure 9: Average number of pages crawled per second
per thread.

4 CLOSING REMARKS

The development of SCrawler is ongoing.
Dynamically generated contents are constantly
created on the Web. The Web is growing
tremendously. Our next expansion of SCrawler
would be to selectively crawl web pages that are
relevant to a pre-defined set of topics.

ACKNOWLEDGEMENTS

This work was supported by Seoul R&BD Program
(10581cooperateOrg93112).

REFERENCES

Boldi, P., Codenotti, B., Santini, M., Vigna, S., 2004.
UbiCrawler: a scalable fully distributed Web crawler.
Software-Practice and Experience, Vol. 34, No. 8,
711-726.

Brin, S., Page, L., 1998. The anatomy of a large-scale
hypertextual Web search engine. In Computer
Networks and ISDN Systems, Vol. 30, No.1-7, 107-
117.

Burner, M., 1997. Crawling towards Eternity: Building An
Archive of The World Wide Web. In Web Techniques
Magazine, Vol. 2, No. 5, 37-40.

Cho, J., Garcia-Molina, H., 2002. Parallel Crawlers. In
WWW’02, 11th International World Wide Web
Conference, 124-135.

Cho, J., Garcia-Molina, H., 2000. The Evolution of the
Web and Implications for an Incremental Crawler. In
VLDB’00, 26th International Conference on Very
Large Data Bases, 200-209.

Cho, J., Garcia-Molina, H., Haveliwala, T., Lam, W.,
Paepcke, A., Raghavan, S., Wesley, G., 2006. Stanford
WebBase Components and Applications. In ACM
Transactions on Internet Technology. Vol. 6, No. 2,
153-186.

Gray, M., 1996. Internet Statistics: Growth and Usage of
the Web and the Internet, http://www.mit.
edu/people/mkgray/net/.

Heydon, A., Najork, M., 1999. Mercator: A scalable,
extensible Web crawler. In World Wide Web, Vol. 2,
No. 4, 219-229.

Kim, S.J., Lee, S.H., 2003. Implementation of a Web
Robot and Statistics on the Korean Web. In HSI’03,
2nd International Conference of Human.Society@
Internet, 341-350.

Najork, M., Heydon, A., 2001. High-performance web
crawling. In SRC Research Report 173. Compaq
Systems Research Center.

Najork, M., Wiener, J.L., 2001. Breadth-First Search
Crawling Yields High-Quality Pages. In WWW’01,
10th International World Wide Web Conference, 114-
118.

Shkapenyuk, V., Suel, T., 2002. Design and
Implementation of a High-Performance Distributed
Web Crawler. In ICDE’02, 18th International
Conference on Data Engineering, 357-368.

ICE-B 2007 - International Conference on e-Business

156

