
SPECIFICATION-DRIVEN DESIGN OF EMBEDDED SYSTEMS
Design Support for Networked Embedded Software Applications

Miroslav Sveda
Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Radimir Vrba
Faculty of Electrical Engineering & Communication, Brno University of Technology, Brno, Czech Republic

Keywords: Embedded software, formal specification, structured design, object-oriented design.

Abstract: The paper presents an approach to formal specification, verification and prototyping of networked
embedded software system applications ranging from large information systems down to small components
embedded e.g. in mobile devices. Main attention focuses both on architectural and behavioral specifications
of either reactive or real-time activities utilizing either structured or object-oriented approach depending on
application requirements. The design approach fully respecting such requirements can eliminate not only
behavioral and structural faults but also security flaws caused by design errors. Reflecting current trends in
engineering software-intensive systems, this contribution discusses in more detail executable specifications
and rapid prototyping for structured design, and structural specifications and verifications for object-
oriented design. The paper presents Asynchronous Specification Language and Class Specification
Language developed for that purpose.

1 INTRODUCTION

Current computer-based system applications are
software, hardware, and communication intensive,
and their functional, performance, reliability, and
security requirements mandate tightly integrated
information processing and physical platform
behavior. Development of such complex systems
necessarily stems from formal specifications and
their verification and prototyping (Melhart and
White, 2000). This paper discusses an approach to
executable specifications and rapid prototyping for
structured design, and to structural specifications
and verifications for object-oriented design. The
work presented in this paper focuses on a class of
networked systems embedded in industrial
applications and reflects current trends in
engineering software-intensive systems as stated in
(Broy, 2006) following the ‘Verified Software
Grand Challenge’ initiated by Tony Hoare, see
(Woodcock, 2006) and (Jackson, 2006).
The developed methods and tools cover front-end
phases of design cycles, namely formal specification
and rapid prototyping both of architecture and

behavior of applications under design. The approach
can be explained as an employment of complex
reactive systems’ universal development scheme,
designed by Harel (2001), for the domain of
industrial distributed computer-based systems. That
scheme leads from a requirements capture method to
full behavioral descriptions of system parts, and
from there to final implementation.

2 STATE OF THE ART

Requirements on current embedded software system
applications include both functional and non-
functional constraints on real-time, safety and
security properties. They should be formally
specified and verified or, at least, properly explored
before they are designed in detail and implemented
(Lamport, 2002). Moreover, the specification
approach should either conform or suitably
complement anticipated design methods, namely
structured or object-oriented techniques (Wieringa,
1998). While some applications demand to
distinguish at the beginning of design structural and

23
Sveda M. and Vrba R. (2007).
SPECIFICATION-DRIVEN DESIGN OF EMBEDDED SYSTEMS - Design Support for Networked Embedded Software Applications.
In Proceedings of the Second International Conference on e-Business, pages 23-30
DOI: 10.5220/0002107100230030
Copyright c© SciTePress

behavioral specifications, later on, they request to
integrate those two approaches to enable a complex
viewpoint to study various application
interdependencies. This paper discusses an approach
to rapid prototyping for behavioral specifications,
and to structural specifications and verifications for
object-oriented design.

The design of well thought-out information
system applications should consider namely
functionality and dependability measures, see e.g.
(Melhart and White, 2000) and (Hessami, 2004).
Functionality means services delivery in the form
and time fitting requirement specifications, where
the service specification is an agreed description of
the expected service. Functionality properties should
be realized efficiently and cost-effectively, so
reachable performance and simplicity of
implementation belongs to the checked properties.
Dependability is that property of a system that
allows reliance to be justifiably placed on the service
it delivers. Dependability measures consist of
reliability, availability, security, safety and
survivability, from which this project focuses on
safety, which is the ability to deliver service under
given conditions with no catastrophic affects, and
security, which is the ability to deliver service under
given conditions for a given time without
unauthorized disclosure or alteration of sensitive
information. Safety attributes add requirements to
detect and avoid catastrophic failures. Security
attributes add requirements to detect and avoid
intentional faults.

Both safety and security deal directly with
system’s behavior that stems from a system’s
architecture. Therefore, structural and object
oriented specifications of the system under design
can contribute to the quality of its resultant
implementation.

Specification is a written or graphical description
(i) of what system is supposed to do, which is so
called behavioral specification, or (ii) of system
architecture, so called structural specification
(Lamport, 2002). A formal specification asserts that
a description has precise and unambiguous
semantics. The language of specification should fit
purposes of specification and be appropriate for a
description of the system. The presented design
approach employs both behavioral and structural
specification styles through appropriate specification
languages aiming at either structured or object-
oriented developments including their rapid
prototyping in frame of a design.

The approach is explained with the help of a case
study derived from a real-world application
reflecting current trends in application design.

3 FORMAL SPECIFICATIONS

This section discusses tools that enable to utilize
behavioral and structural specifications of a class of
computer-based systems that can be characterized as
networked embedded systems in frame of industrial
applications. The developed methods and tools,
which can complement well-known and broadly
available means, cover front-end phases of the
related design cycles.

3.1 Formal Specification Tools

Formal specification concepts employed respect
both structured and object-oriented design approach
depending on the target implementation support or
on the role of a tool in the development process. For
structured behavioral specifications of reactive
systems, process algebra CSP, temporal logic LTL
and related transition systems in frame of the model
checker SPIN (Holzmann, 1997) and the prover PVS
(Owre et al., 1992) have been employed.
Additionally for real-time systems, model checker
UPPAAL (Kim et al., 1997) and related timed
automata have been used. In addition to the above
mentioned freely available and well-known means,
the following tools have been developed in frame of
the presented research: (i) Asynchronous
Specification Language, ASL, with rapid
prototyping technique for structured design (Sveda
and Vrba, 2001), (Sveda and Vrba, 2003); and (ii)
Class Specification Language, CSL, for object-
oriented design (Rysavy and Sveda, 2003), (Rysavy,
2005). The next subsections introduce main concepts
of those tools.

3.2 Behavioral Specifications

The Asynchronous Specification Language (ASL)
employs distributed sequential processes with
message passing. The real-time operational
semantics of the language stems from the event-
count model of local time, which represents a
concept of physical timing stemming from some
periodic physical oscillation whose frequency fits
measurements of the duration of local process
actions. Timing semantics can be derived from
logical time, which is a partial ordering of events in
the system, and from a physical generator of

ICE-B 2007 - International Conference on e-Business

24

periodic events, which implements a real-time clock.
An event-count, E, counts the number of a specific
type of events that have occurred during execution.
Each event occurrence invokes the implicit
operation ADVANCE(E): E := E + 1. The explicitly
callable operation AWAIT(E, s) suspends the calling
process until the value of E is at least s. The call
AWAIT(E, s) can reset the current value of E,
enabling relative counting. An event-count monitors
either a prescribed type of asynchronous external
events or periodic internal events that an internal
timer circuit implements as local-time clock ticks.
The following primitives relate to process
specification, timing, communication, and control.

process_name(is: list_of_s_inputs; os:
list_of_s_outputs;
 ic: list_of_m_inputs; oc:list_of_m_outputs):
... endprocess;
wait(_, timeout); wait(event, _); wait(event, timeout,
test);
send(message, destination);
loop ... [... when <cond> action ... exit;]* ... endloop;

Each of asynchronous processes can be equipped by
its individually timed local clock, can receive
messages through input buffer, and can send
messages to other, directly or indirectly addressable
processes. Process header contains in parentheses
lists labeled by is, os, ic, and oc that act as the
interface with the process' environment. The
language distinguishes between signal inputs or
outputs, which denote communication events
signaling their occurrence, and message inputs or
outputs as typed asynchronous channels between
processes. Those signals and messages provide inter-
process synchronization and communication, whose
operations are driven by the statements wait(_,
timeout), wait(event, _), wait(event, timeout, test), and
send(message, destination).

The primitive wait(_, timeout) suspends a process
for the interval defined by the value timeout.
Operational semantics can be obtained through the
event-count abstraction introduced above: in this
case, an event is every tick of the local clock, so the
related operation is AWAIT(local_ticks,
timeout_value). For the primitive wait(event, _),
which suspends a process until the specified event
(external signal or message) appears, the model
operation is AWAIT(event_type, 1). The semantics
of the combined statement wait(event, timeout, test)
requires two event-counts: the first anticipates the
specified event and the second, with a lower priority,
monitors the local clock. The reason of process

activation can be checked through the value of the
logical variable test: when the value is true, the event
occurred within the interval timeout.

The primitive send(message, destination)
implements asynchronous communication with non-
blocking semantics. To respect different local
clocks, a special clocking that is common for the
source and the destination controls the information
transfer. However, the nodes communicate
asynchronously by message passing through an
input buffer at the destination. The input of a
message induces the event for the related operation
AWAIT(message,1). If any synchronization is
required, it must be described explicitly using wait
statements.
The control structure primitives loop ... endloop
delimit an indefinite cycle, which is exited upon a
true result of testing the condition following the
primitive when. Consequently, the statements, which
occur between the action and exit primitives and
which follow the endloop primitive, are executed.
This structured statement enables to extend the
language with additional control structures by
simple macro-like text replacements such as

if <cond> then <s1> else <s2> fi;
 ~ loop when <cond> action <s1> exit;
 <s2> when true exit; endloop;
timeloop(timeinterval) ... endloop;
 ~ loop ... wait(_, interval); endloop;

Actually, the control structure timeloop(timeinterval)
... endloop specifies an isochronous loop, which is
periodically initiated whenever the timeinterval
expires and which can be exited like the indefinite
cycle. The operation AWAIT(local_ticks,
timeinterval_value) defines the exact semantics of
timing these initiations.

The associated rapid prototyping, which makes
ASL specifications executable, arises from attribute
grammar and Prolog deployment. Any Prolog
interpreter can drive expansion of an ASL
specification into the related executable code. This
expansion is based on an attribute grammar
specifying both syntax and static semantics by a
definite clause grammar and Prolog rules. It
provides a simple language translator prototype,
which tackles the ASL as the input language, and a
target executable language as the output language.

The resulted prototyping technique uses
interconnected node prototype boards with
microprocessors equipped with a simple real-time
operating system kernel. While the timing and
communication primitives are mapped onto relevant
real-time executive services and communication

SPECIFICATION-DRIVEN DESIGN OF EMBEDDED SYSTEMS - Design Support for Networked Embedded Software
Applications

25

services of the operating system kernel, the rest of
ASL specification is prototyped by the executable
code generated with the help of the Prolog translator
prototype introduced above.
3.3 Structural Specifications
The Class Specification Language, CSL, relates to
language constructs for description of definitions
and assumptions on specification in the form of
logical formulas. The specifications and
assumptions provide for the proof system that
verifies whether a specification is valid under the
given assumptions. The specification means
consists, from the structural point of view, of the
language of predicate logic and the language of
object calculus. Their synthesis provides a base
language with expressive power of higher-order
logics. In terms of logic, this language contains
standard predicate logical symbols, i.e. quantifiers
and propositional connectives, and constants as
objects defined by terms of object calculus. Those
terms are interpretable in the object calculus;
concurrently, the language allows quantification
over the set of constants. The Gentzen deduction
system may be used as a formal proof system for
this language.

A specification consists of a set of classes that
forms a model of the specified system. The
reasoning about specification involves the use of the
above-mentioned sequent proof system. Because the
specification language in this case is object-based,
the classes are represented as special objects. A class
is a basic structure of specifications that covers
implementations of objects and logical judgments on
properties of objects.

The logic represents a higher-order theory based
on typed object calculus. It consists of a small set of
primitive syntactic forms. An object is defined as a
collection of attributes. The following two
operations only can operate on objects: (i) attribute
selection a.l that results in the term obtained as an
evaluation of the attribute body, and (ii) attribute
update that has the form a.l ← b. The letters a, b
represent terms of the language and l is a label.
Computational semantics of the calculus for both
operations arise from the rules for reduction relation.
A select operation provides reduction to a term that
arises from the body of a selected attribute in which
all occurrences of the bind variable are replaced by
the object supplying the selected attribute. The result
of update operation defined by reduction relation
provides a new object identical with the target object
up to the update attribute, which body is that of the
updating term.

The logic includes a type theory constraining the

set of well-formed terms. Typing rules of the
calculus permit subtyping while providing for
special treatment with bool type. Although the
language does not contain functions, they can be
easily inferred as simple objects. A function
abstraction λ(x : A).a of type A → B denotes the
structure [x = ζ(s : T)s.x, val = ζ(s : T) a {x ←s}] provided
that T ≡ [x : A, val : B]. Then a function application MN
is directly given as (M:x ← N).val. Instances of bool
type represent, from the computational viewpoint,
conditional expressions and serve as constants of
propositional types considering theirs logical
meanings. The propositional connectives are
introduced as a set of constants with usual meanings.
Moreover, quantifiers and predicates are introduced
inside the object language. To model classes,
predicates allow writing constraints on types that
delimit sets of objects satisfying intended conditions.
Subtype creation uses operator + for denoting that a
new type is obtained by adding new attributes to the
old type.

The logic calculus of objects provides a suitable
formal environment for specifying and logical
reasoning with properties of objects. However,
writing specifications directly in this calculus is
tedious. More practical notation, the Class
Specification Language (CSL), enables to write
compact specifications, but preserves possibility to
transform any specification straightforwardly to the
object calculus whenever required for reasoning.

A class is defined by specifying all of its visible
properties. The term property means in this case a
field that represents the state of an object, or an
observer that serves for the read-only access to an
object, or a modifier whose execution can change
the state of an object. A field declaration includes
the field name and class. Specification of a field may
be refined using invariant statement.

Field fieldName : fieldClass
Inv fieldInv = formula

Modifier and observer methods include definitions consisting of
method’s name, arguments, and a pair of constraints. Declarations
differ for modifiers that disable a user to specify a result of the
method. Due to modifiers, declarations always evaluate to the
object reflecting performed changes. Constraints may involve
variables referencing actual objects and variables denoting
specified arguments of the method.

observer methodName(, arg : argClass, …) : retClass
pre methodPre = formulaPre
post methodPost = formulaPost

The language CSL enables to define a new class
by application of simple inheritance. An inherited
class automatically receives all fields and methods

ICE-B 2007 - International Conference on e-Business

26

of its parent class. To handle inheritance properly, a
schema for definition of invariants and conditions of
inherited fields and methods is needed. Considering
that class B inherits class A, then the specification of
those classes has to preserve inheritance constraints
assuming each inherited field and method in the
schema as follows:

fieldInvB ⇒ fieldInvA
methodPreA ⇒

methodPreB ∧ methodPostB ⇒ methodPostA

The definition of inheritance constraints in this
manner enables method overriding. The
precondition of the overridden method relaxes
constraints of method execution, contrary to post-
conditions that involve additional constraints.

The logic calculus defines directly certain
common classes as they depend on particular aspects
of the calculus. The class of Bool is defined simply as
a predicate on propositional type. The logic
evaluates all possible instances of this class to T and
F objects declared previously as abbreviations. The
class of Natural numbers exploits recursive object
type. It consists of three attributes; two of them
serve as links to predecessor and successor objects.
The iszero attribute marks the numeral zero. Usual
notations 0, 1, 2 ... explicitly denote related
numerals.

4 CASE STUDY

This section demonstrates the above-introduced
concepts and tools applied to development of a gas-
pipes pressure analyzer consisting of pressure
sensors interconnected by Internet (Sveda and Vrba,
2006). The application is based on the IEEE 1451
family of standards, which is introduced in
subsection 4.1. Subsection 4.2 explains a subset of
the application functions selected for formal
specifications in the rest of this section. To provide
examples of specification styles using developed
tools, the next two subsections present selected
facets of the pressure analyzer specification. While
subsection 4.3 demonstrates structured specifications
using ASL, subsection 4.4 exemplifies object-
oriented specifications using CSL.

4.1 IEEE 1451.1 Architecture

The IEEE 1451 consists of the family of
standards for a networked smart transducer interface
that include namely (i) a smart transducer software

architecture, 1451.1 (IEEE 1451.1 Standard for a
Smart Transducer Interface for Sensors and
Actuators -- Network Capable Application Processor
Information Model, IEEE, New York, April 2000),
targeting software-based, network independent,
transducer applications, and (ii) a standard digital
interface and communication protocol, 1451.2, for
accessing the transducer or a group of transducers
via a microprocessor modeled by the 1451.1. The
next three standards extend the original hard-wired
parallel interface 1451.2 to serial multidrop 1451.3,
mixed-mode (i.e. both digital and analog) 1451.4,
and wireless 1451.5 interfaces.

The 1451.1 software architecture provides three
models of the transducer device environment: (i) an
object model of a network capable application
processor (NCAP), which is the object-oriented
embodiment of a smart networked device; (ii) a data
model, which specifies information encoding rules
for transmitting information across both local and
remote object interfaces; and (iii) network
communication model, which supports client/server
and publishers/subscribers paradigms for
communicating information among NCAPs. The
standard defines a network and transducer hardware
neutral environment in which a concrete
sensor/actuator application can be developed.

The object model definition encompasses a set of
object classes, attributes, methods, and behaviors
that specify a transducer and a network environment
to which it may connect. This model uses block and
base classes offering patterns for one Physical
Block, one or more Transducer Blocks, Function
Blocks, and Network Blocks. Each block class may
include specific base classes from the model. The
base classes include Parameters, Actions, Events,
and Files, and provide component classes.

All classes in the model have an abstract or root
class from which they are derived. This abstract
class includes several attributes and methods that are
common to all classes in the model and provide a
definition facility for instantiation and deletion of
concrete classes including attributes. Block classes
form the major blocks of functionality that can be
plugged into an abstract card-cage to create various
types of devices. One Physical Block is mandatory
as it defines the card-cage and abstracts the
hardware and software resources that are used by the
device. All other block and base classes can be
referenced from the Physical Block.

The Transducer Block abstracts all the
capabilities of each transducer that is physically
connected to the NCAP I/O system. During the
device configuration phase, the description is read

SPECIFICATION-DRIVEN DESIGN OF EMBEDDED SYSTEMS - Design Support for Networked Embedded Software
Applications

27

from hardware device what kind of sensors and
actuators are connected to the system. The
Transducer Block includes an I/O device driver style
interface for communication with the hardware. The
I/O interface includes methods for reading and
writing to the transducer from the application-based
Function Block using a standardized interface. The
I/O device driver provides both plug-and-play
capability and hot-swap feature for transducers.

The Function Block provides a skeletal area in
which to place application-specific code. The
interface does not specify any restrictions on how an
application is developed. In addition to the variable
State, which all block classes maintain, the Function
Block contains several lists of parameters that are
typically used to access network-visible data or to
make internal data available remotely. The Network
Block abstracts all access to a network employing
network-neutral, object-based programming
interface supporting both client-server and
publisher-subscriber paradigms for configuration
and data distribution.

4.2 Application

The case study, based on a real-world application,
which was introduced in more detail but from
distinct perspectives by (Sveda and Vrba, 2003) and
(Sveda and Vrba, 2006), is used in this paper to
demonstrate basic features of deployment of the
specification languages ASL and CSL discussed in
subsections 3.2 and 3.3.

The application architecture comprises several
groups of wireless pressure and temperature sensors
with safety valve controllers as base stations
connected to wired intranets that dedicated clients
can access effectively through Internet. The web
server supports each sensor group by an active web
page with Java applets that, after downloading,
provide clients with transparent and efficient access
to pressure and temperature measurement services
through controllers. Controllers provide clients not
only with secure access to measurement services
over systems of gas pipes, but also communicate to
each other and cooperate so that the system can
resolve safety and security-critical situations by
shutting off some of the valves.

 Each wireless sensor group is supported by its
controller providing Internet-based clients with
secure and efficient access to application-related
services over the associated part of gas pipes. In this
case, clients communicate to controllers using a
messaging protocol based on client-server and
subscriber-publisher patterns employing 1451.1

Network Block functions. A typical configuration
includes a set of sensors generating pressure and
temperature values for the related controller that
computes profiles and checks limits for users of
those or derived values. When a limit is reached, the
safety procedure closes valves in charge depending
on safety service specifications.

In the transducer’s 1451.1 object model, basic
Network Block functions initialize and cover
communication between a client and the transducer.
The client-server communication style, which in this
application covers configurations of transducers, is
provided by two basic Network Block functions:
execute and perform. The standard defines a unique
ID for every function and data item of each class. If
the client requests to call any of the functions on
server side, it uses command execute with the
following parameters: ID of requested function,
enumerated arguments, and requested variables. On
server side, this request is decoded and used by the
function perform. That function evaluates the
requested function with the given arguments and, in
addition, it returns the resulting values to the client.
Those data are delivered by requested variables in
execute arguments.

4.3 Behavioral Specifications by ASL

The following example demonstrates the ASL
specification of a client accessing the transducer.
This specification includes in form of comments the
most important references to sections of the IEEE
1451.1 standard.

process CLIENT(oc: data_out, request; ic: response):
const number_of_channels = 10;
const interval_of_reading = 100;
const ServerDispatchAddress = NCAP;
const port_timeout = 200;
type buffer = array[1..number_of_channels] of Float32;
{IEEE 1451.1-6.1.1}

var data_out:buffer;
var i: integer;
var request, response: ArgumentArray;

{IEEE 1451.1-6.2.14}
var server_inputsarguments: ArgumentArray;
var server_outputsarguments: ArgumentArray;
var success:boolean;
var execute_mode: UInteger8;

{IEEE 1451.1-6.1.1}
var sever_operation_id: UInteger16;
var data:Float32;
i = 1;

timeloop(interval_of_reading)
{IEEE 1451.1-14.2.1}
Encode_inputsarguments(server_inputsarguments);

execute_mode = EM_RETURN_VALUE;
server_operation_id = READ_VALUE;

{IEEE 1451.1-8.2.3.5 - Ethernet}

ICE-B 2007 - International Conference on e-Business

28

MarshalArguments(server_operation_id,
server_inputsarguments, request);

send(request, ServerDispatchAddress);
wait(response,port_timeout,success);
if success and execute_mode = EM_RETURN_VALUE

{IEEE 1451.1-8.2.3.5 - Ethernet}
 then DemarshalArguments(response,

server_output_arguments);
Decode_outputsarguments(data,server_outputsarguments);

 else data = 0; fi;
data_out[i] = data;
i = i + 1; when i > number_of_channels action exit;

endloop;
endprocess;

The above exemplified behavioral specification was
prototyped using the technique mentioned at the end
of subsection 3.2 that resulted in executable model
heavily utilized for experiments during not only
early design phases, but also later on when
investigating variants for reuse and re-design of the
application.

4.4 Structural Specifications by CSL

The following example demonstrates the CSL
specification of the NCAP Block class in frame of
the class hierarchy of Block objects. The Block
abstract class provides the root for the class
hierarchy of all Block objects. The BlockMajorState
type is enumeration of possible block states. The
state blUninitalize is reserved for local activities
related to creating that Block object and performing
any related local preparations. The object in the state
blInactive is able to configure its network properties,
initialize itself, and diagnose and maintain the
BlockMajorState. The working state blActive is reached
after all initialization and start-up procedures and
represents the state in which the object remains for
the time of its normal activity.

BlockMajorState :: {blActive, blInactive, blUninitialized}
IEEE1451Block :: [GetBlockMajorState : BlockMajorState,
GoActive : IEEE1451Block, GoInactive : IEEE1451Block,
Reset : IEEE1451Block, Initialize : IEEE1451Block,
Owns : IEEE1451Entity → bool] + IEEE1451Entity

A behavior of the object may implicitly change the
state of this object usually in response to the
environment stimulus, and a set of defined
operations drives the object to change its state
explicitly. The meanings of those operations are
defined by sets of constraints. The behavior of the
object influenced by those operations is specified in
form of IEEE1451BlockBehavior invariant.

INV IEEE1451BlockBehavior(x : IEEE1451Block) ≡
x.GetBlockMajorState ↔ blInactive

⊃ x.GoActive.GetBlockMajorState ↔ blActive
∧ x.GetBlockMajorState ↔ blActive
⊃ x.GoInactive.GetBlockMajorState ↔ blInactive
∧ x.Reset.GetBlockMajorState ↔ blUninitialized
∧ ¬x.GetBlockMajorState ↔ blActive
⊃ x.Initialize.GetBlockMajorState ↔ blInactive

The NCAP Block class provides resources and
operations within an NCAP process to support
Block, Service, and Component management.

NCAPBlockState :: {nblInitialized, blUninitialized, nbErro}
IEEE14 51Block :: [GetNCAPBlockState : NCAPBlockState,
RegisterObject : IEEE1451Block,
DeregisterObject: IEEE1451Block,
registers : IEEE1451Entity → bool] + IEEE1451Block
The state space derived from Block object is divided
into more specialized substates that reflect purpose
of NCAP Block objects. The state of object, which is
stored in GetNCAPBlockState item, may obtain values
of NCAPBlockState type.

For the exemplified static structural specification
some of its properties were proved using the PVS
system, see a next paper currently under preparation.

5 CONCLUSIONS

This paper discusses in more detail executable
specifications and rapid prototyping for structured
design, and structural specifications and
verifications for object-oriented design. Main
attention focuses both on architectural and
behavioral specifications of either reactive or real-
time activities utilizing either structured or object-
oriented approach depending on application
requirements. The paper presents Asynchronous
Specification Language and Class Specification
Language developed for that purpose. A case study
respecting real world constraints demonstrates
utilization of the developed approach.

The presented paper introduces some relevant
facets of a currently launched project – for
complementary information see (Sveda and Vrba,
2006) and (Sveda, et al., 2005) -- that aims at front-
end parts of networked, distributed system
application designs. The project targets creation of a
formal specification, verification and prototyping
framework for network applications ranging from
large information systems down to small
components embedded e.g. in mobile devices. The
design approach, fully respecting dependability
requirements of real-world applications, can
eliminate not only behavioral and structural faults
but also security flaws caused by design errors.

SPECIFICATION-DRIVEN DESIGN OF EMBEDDED SYSTEMS - Design Support for Networked Embedded Software
Applications

29

Reflecting current trends in engineering software-
intensive systems, main attention focuses both on
architectural and behavioral formal specifications of
either reactive or real-time system actions, utilizing
either structured or object-oriented approach
depending on application requirements. Formal
specification tools considered include temporal
logics, real-time logics, object calculi, process
algebras and transition systems. The implementation
and integration phases of the project provide pilot
versions of techniques and tools for conceptual
design, for behavioral and structural specifications,
and for rapid prototyping. Moreover, formal
verification support will include dedicated tools both
for model checking and for proving

ACKNOWLEDGEMENTS

The research has been supported by the Czech
Ministry of Education in the frame of Research
Intentions MSM 0021630528: Security-Oriented
Research in Information Technology and MSM
0021630503 MIKROSYN: New Trends in
Microelectronic Systems and Nanotechnologies; and
in part by the Grant Agency of the Czech Republic
through the grants GACR 102/05/0723: A
Framework for Formal Specifications and
Prototyping of Information System’s Network
Applications and GACR 102/05/0467: Architectures
of Embedded Systems Networks. The current
contribution, which stems from the previous paper
(Sveda and Vrba, 2005), delivers not only an
overview of the work done after the preceding
publication, but also a brief information about the
contents of a research intention, Security-Oriented
Research in Information Technology, which focuses
also on relationships between safety and security.

The authors appreciate contributions of their
colleagues from the Department of Information
Systems and the Department of Microelectronics -
namely Ondrej Rysavy, Roman Trchalik, Pavel
Ocenasek, Petr Matousek, Jarek Rab, Rudolf Cejka
and Frantisek Scuglik -- to this work.

REFERENCES

Broy, M., 2006. The ‘Grand Challenge’ in Informatics:
Engineering Software-Intensive Systems. IEEE
Computer, Vol.39, No.10, pp.72-80.

Harel, D., 2001. From Play-In Scenarios to Code: An
Achievable Dream. IEEE Computer, Vol.34, No.1,
pp.53-60.

Hessami, A.G., 2004. A Systems Framework for Safety
and Security: The Holistic Paradigm. Systems
Engineering, Vol.7, No.2, pp.99-112.

Holzmann, G.J., 1997. The Model Checker Spin. IEEE
Transactions on Software Engineering, Vol.23, No.5,
pp.279-295.

Jackson, M., 2006. What Can We Expect from Program
Verification? IEEE Computer, Vol.39, No.10, pp.65-71.

Kim, G., L. et al., 1997. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, Vol.1,
No.1-2, pp.134-152.

Lamport, L., 2002. Specifying Systems, Addison-Wesley,
Boston, USA.

Melhart, B. and S. White, 2000. Issues in Defining,
Analyzing, Refining, and Specifying System
Dependability Requirements. Proceedings of the IEEE
Conference and Workshop ECBS'2000, IEEE
Computer Society Press, Edinburgh, Scotland,
pp.334-340.

Owre, J.M., et al., 1992. PVS: A Prototype Verification
System. Automated Deduction, (D. Kapur, Ed.),
Lecture Notes in Artificial Intelligence, Vol.607,
pp.748-752, Springer, New York, USA.

Rysavy, O. and M. Sveda, 2003. A Minimal Formal
Language for Object-Oriented Specifications.
Proceedings of the IEEE TC-ECBS and IFIP WG10.1
Joint Workshop on Formal Specifications of
Computer-Based Systems. University of Stirling, UK,
pp.35-40.

Rysavy, O., 2005. Specifying and Reasoning in the
Calculus of Objects, PhD Dissertation, Brno
University of Technology, Brno, Czech Republic.

Sveda, M. and R. Vrba, 2001. Executable Specifications
for Distributed Embedded Systems. IEEE Computer,
Vol.34, No.1, pp.138-140.

Sveda, M. and R. Vrba, 2003. An Integrated Framework
for Internet-Based Applications of Smart Sensors.
IEEE Sensors Journal, Vol.3, No. 5, pp.579-586.

Sveda, M. and R. Vrba, 2005. An Approach to the Design
of Networked Embedded Systems. Proceedings of the
16th IFAC WORLD CONGRESS, Praha, pp.2223-2228.

Sveda, M., et al., 2005. Introduction to Industrial Sensor
Networking. A book chapter in: Ilyas, M., and I.
Mahgoub, (Eds.). Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems, CRC
Press LLC, Boca Raton, FL, USA, pp.10.1-10.24.

Sveda, M. and R. Vrba, 2006. Internet-Based Embedded
System Architectures -- End-User Development
Support for Embedded System Applications.
Proceedings of the International Joint Conference on
e-Business and Telecommunications (ICETE 2006,
ICE-B), INSTICC and IEEE, Setúbal, Portugal, 2006,
pp.63-68.

Wieringa, R., 1998. A Survey of Structured and Object-
Oriented Software Specification Methods and
Techniques. ACM Computing Surveys, Vol.30, No.4,
pp.459-527.

Woodcock, J., 2006. First Steps in the Verified Software
Grand Challenge. IEEE Computer, Vol.39, No.10,
pp.57-64.

ICE-B 2007 - International Conference on e-Business

30

