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Abstract: The GreedyDual-Size (GD-Size) replacement algorithm is a static-cache-size approach that yields a higher 
hit ratio than the basic LRU replacement algorithm. Yet, maintaining a given hit ratio needs dynamic cache 
size tuning, and this can only be achieved by the MACSC (model for adaptive cache size control) model so 
far. Since the GD-Size yields a higher hit ratio than the basic LRU, it is proposed in this paper to replace the 
LRU unit in MACSC with the GD-Size algorithm. The replacement creates a new and more efficient 
dynamic cache size tuner, Dynamic GreedyDual-Size (DGD-Size). 

1 INTRODUCTION 

In this paper mobile business (m-business) is used as 
an example to show how caching is related to time-
critical web application success. M-businesses 
involve e-shops operating on the mobile Internet, 
and the key issue is how to galvanize customers 
quickly within their short attention spans (Venkatesh 
2003). In fact, the galvanization power depends on 
consistent short client/server service roundtrip time 
(RTT). This power can be magnified by techniques. 

Caching performance generally ties in with the 
cache hit ratio, higher the better. Although 
conventional caching strategies (Podlipnig 2003) 
may produce high hit ratios, they cannot maintain 
them because they work with a fixed-size cache. In 
contrast, the novel dynamic GreedyDual-Size 
(DGD-Size) replacement strategy proposed in this 
paper works with a variable cache size, which is 
adjusted adaptively on the fly. The DGD-Size 
strategy normally maintains a hit ratio higher than 
the given one. For this reason it is tremendously 
suitable for time-critical web applications such as m-
businesses and telemedicine setups.  

A higher hit ratio (i.e. higher chance of finding 
the requested object in the proxy cache) means a 

shorter RTT because it reduces the need for cyber 
foraging (Garlan 2002). If the proxy server cannot 
find the requested object in its local cache, it has to 
enlist help from other remote data sources (e.g. 
collaborating nodes, proxies, or web servers over the 
Internet). This enlisting process is cyber foraging, 
which involves the Internet domain name server 
(DNS) and thus a longer delay. Let us visualize this 
delay in terms of a m-business setup, which normally 
has two phases: mobile commerce (m-commerce) 
and electronic commerce (e-commerce).   

a) M-commerce focuses on how to galvanize 
customers effectively with attractive promotional 
material. Via mobile devices (i.e. small-form-factor 
(SFF) devices such as PDA and mobile phone) the 
customers browse promotions to window-shop 
electronically. Some customers may end up buying 
goods from different e-shops and have their 
transactions handled by the e-commerce phase. In m-
business, service RTT has two meanings: M-
commerce service RTT for promotional purposes: 
This occurs between the customer and the “m-
commerce hub”, which is modeled as a proxy server 
in Figure 1. This service RTT is the “first-leg” delay 
in m-business. 
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Figure 1: The two legs in the service RTT of a caching system. 

b) E-commerce service RTT for transactional 
purpose: This is the delay between the proxy server 
and the e-shop, modeled as the remote e-shop in 
Figure 1. This is the transaction-oriented “second-
leg” interaction in m-business.  

To summarize, a complete m-business venture 
should have two “legs” of service delays. If the 
customer only window-shops electronically, solely 
the first leg is involved. If an e-shop is involved (e.g. 
checking details of the goods or paying 
electronically), the second leg is also needed. 

In reality, the m-commerce hub is an e-trading 
(electronic trading) platform/firm, which charges a 
fee for completing electronic transactions. For 
effective promotional purposes the firm would 
gather adverts of popular goods from different e-
shops and cache them to function like an electronic 
catalogue. Then, the customers can browse these 
adverts without the need to go directly to the e-
shops. Since only the first-leg delay is present, the 
response is much faster. How the adverts are 
selected, endorsed and organized is a matter of 
business policy. For example, the successful 
Japanese NTT DoCoMo i-mode (information mode) 
m-business setup, which operates over the mobile 
Internet by packet switching, maintains a list of e-
shops endorsed by the company with stringent 
criteria. 

The lower half (under the boundary) of Figure 1 
models the generic 2-leg RTT for web applications. 
The upper half describes how the m-business 
operations fit into this generic model. The generic 
proxy server represents the m-commerce hub, which 
caches and manages the popular adverts 

(descriptions of the goods including places of origin, 
prices, and functions) as data objects. Customers 
browse these data objects via mobile or SFF devices 
(i.e. the first-leg RTT). When a customer buys goods 
from the e-shops, it is the e-commerce phase (i.e. the 
RTT second-leg in Figure 1) that handles the 
electronic transactions of legal implications 

2 RELATED WORK 

Caching provides two main advantages as follows: 
a) Shortening the service RTT between the client 
and server: This is achieved because the cache hit 
ratio υ  reduces the involvement of the “second leg” 
or leg-2 operation (Figure 1). For illustration 
purposes let us assume: 8.0=υ , T as the average 
service RTT for the “first leg” or leg-1 operation, 
10T as the average service RTT for leg-2 operation 
(due to the remoteness of the external data sources 
such as web servers), and  as the speedup due to 
caching. Then, the speedup is 

CS
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fold. The speedup ratio  increases with CS υ  and is 
independent of T. 
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b) Reducing the physical RTT: Since the number 
of data objects to be transferred across the network 
is reduced by caching, more backbone bandwidth is 
automatically freed for public sharing. As a result 
less chance of network congestion reduces the T 
value above as a fringe benefit.   

Our literature search indicates that researchers 
are incessantly trying to find effective caching 
techniques to achieve the following: 

a) Yielding a high υ  without deleterious effects: 
The solution computation must be optimal in a real-
time sense. That is, this solution should be ready 
before the problem has disappeared. Otherwise, the 
solution would correct a spurious problem and 
inadvertently lead to undesirable side effects (i.e. 
deleterious effects) that cause system instability or 
failure. The survey in (Wang 1999) presented the 
various ways (deployed and experimental) whereby 
υ  can be enhanced. But, the most researched topic 
is replacement algorithms, which decide which 
objects in the cache should be evicted first to make 
room for the newcomers. 
b) Maintaining υ  on the fly: This school of thought 
is called dynamic cache size tuning (Wu 2004), and 
the only published model, which works with a 
variable cache size, is the MACSC (Model for 
Adaptive Cache Size Control (Wong 2003). In 
contrast, other extant dynamic caching techniques 
work with a static/fixed cache size; they may yield a 
high hit ratio but do not maintain it. 

2.1 Replacement Algorithm 

Some researchers compared the hit ratios by 
different replacement algorithms that work with a 
static cache size by trace-driven simulations (Cao 
1997, Wasf 1996, Asawf 1995); LRU (least 
frequently used), LFU (least frequently used), Size 
(Williams 1996), LRU-Threshold, Log(Size)+LRU, 
Hyper-G, Pitkow/Recker, Lowest Latency First, 
Hybrid (Wooster 1997), and LRV (lowest relative 
value). The simulations showed that the following 
five consistently produce the highest hit ratios: a) 
LRU (least frequently used), b) Size, c) Hybrid, d) 
LRV (lowest relative value) and (e) GreedyDual-
Size (or GD-Size). The GD-Size yielded the highest 
hit ratio of them all, but its hit ratio can dip suddenly 
because of the fixed-size cache, which cannot store 
enough data objects to maintain a high hit ratio. So 
far, the only known model for dynamic cache size 
tuning from the literature is the MACSC [Wong 
2003]. All the available MACSC performance data, 
however, was produced together with the basic LRU 

replacement algorithm as a component. In effect, the 
MACSC makes the LRU mechanism adaptive for 
MACSC adjusts the cache size on the fly; the cache 
size is now a variable. Since the previous experience 
(Cao 1997) had confirmed that the GD-Size 
algorithm yields a higher hit ratio than LRU, it is 
logical to combine MACSC and GD-Size to create 
an even more efficient caching framework. This 
combination, which is proposed in this paper, creates 
the novel dynamic GD-Size (DGD-Size) 
replacement strategy. The DGD-Size should be able 
to maintain a higher hit ratio than the previous LRU-
based MACSC’s. 

2.2 The MACSC Concept 

Figure 2 shows the popularity profile over time for 
the same set of data objects. The A, B and C curves 
represent the three instances of the profile changes. 
These instances were caused by changes in user 
preference towards certain data objects. Any such 
change is reflected by the current profile standard 
deviation, for example, SDA, SDB and SDB C. From 
the perspective of a changeable popularity spread, 
any replacement algorithm designed to gain a high 
hit ratio with a fixed-size cache C  works well only 
for CL

S
SS ≤∇ . That is, the cache size 

∇L accommodates the given hit ratio equal to L 
times the standard deviation ∇ of the data object 
popularity profile. If the expected hit ratio is for 

S

1=L  (i.e. 68.3%), then the cache size  is 
initialized accordingly. In the MACSC case, CS  is 
continuously adjusted with respect to the current 
relative data object popularity profile on the fly. 
Conceptually, CL∇  always holds; t

C  is the 
adjusted cache size at time t. From two successive 
measured standard deviation values the MACSC 
computes the popularity ratio (PR) for tuning the 
cache size. The PR is also called the standard 
deviation ratio (SR) as shown by equation (2.1), 
where SR  is the new cache size adjustment and 
the current SR is inside the brackets.    

CS

tSS ≤ S

CS

 
Figure 2: Spread changes of the relative data object 
popularity profile over time. 
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Conceptually the MACSC should predict the 
true/ideal mean μ and the true/ideal standard 
deviation δ of the current popularity profile for 
equation (2.2). In practice it is rare that the exact 
values for μ  and δ can be computed statistically. 
To differentiate μ  and δ  from their estimated 
values by the MACSC mechanism the following are 
defined: 
a) Estimated mean ( x ): This is calculated for a 
sample of arbitrary size n, and the minimum value 
for n should be greater than 10 or . 10≥n
b) Estimated standard deviation sx: This is 
calculated from the same n data points above. In the 
MACSC operation the finally settled sx is the ∇  
value in equation (2.1) (i.e. accepted measurement 
for the specified error tolerance).  
If xδ  is the measured standard deviation for the 
curve plotted with a collection of x  values (i.e. 
means of different x  samples), by the central limit 
theorem the relationship (2.2)  holds, provided that n 
is large enough and there is a sufficient number of x  
values. The estimated sx for every sample of size n 
usually differs from xδ . Since estimating the 
acceptable mean and the standard deviation of an 
unknown distribution is a guessing game, it is 
necessary to set a reasonable error tolerance. By 
assuming the following tolerance parameters the 
“ equationN − ” (2.3) can be derived [Chis92]: 
a) Error tolerance E: It is the fractional/percentage 
error about μ (ideal/true mean) by the estimated 
mean x for a sample of n data points (i.e. x  
variables) collected on the fly. 
b) The tolerance k: It is the number of standard 
deviations that x  is away from the true mean μ and 
still be tolerated (E and k connote same error). 

3 THE DYNAMIC  
GREEDY-DUAL SIZE 
FRAMEWORK 

The dynamic GreedyDual-Size (DGD-Size) 
conceptual framework has two basic parallel tasks: 
a) P1 - the original static GreedyDual-Size (GDS) 
mechanism, and b) P2 - the MACSC dynamic cache 
size tuner. P1 computes the utility of every newly 
cached/accessed data object. If there is not enough 
space to cache a new object, the object(s) in the 
cache with the lowest utility minU will be evicted 
one by one until enough space is made available. In 
every eviction cycle the utilities of all the extant 
objects are reduced by the current minU , as shown 
by  “step 2” of P1. The utility of an object is 

recomputed when it is accessed. The parallel task P2 
samples data points on the fly to capture the current 
relative object popularity profile for the cache 
[Wong03]. With these data points MACSC 
computes the popularity ratio and the current cache 
size adjustment SRCS  to maintain the given hit ratio. 
In fact, P1 works with the current  by P2 in a 
transparent manner.  

SRCS

 
 Par (P1 and P2):  /* P1 and P2 are 2 parallel 
tasks of Dynamic GreedyDual-Size */ 

  { P1:  
    step 1: dzdcpodU )()( += ;   
     /* To computes the utility U(d) of  
    every newly cached/accessed object */ 
    step 2:  While (not enough cache space) 
        do { /* Evict object of lowest utility  
                   and the utilities of all cached 
                   objects minus */ minU
     Evict ( );  

minUO min)()( UdUdU −= }  
              } /* End P1 –DGS mechanism */  
     P2:  
     {    

      }  /* End P2 - dynamic cache tuning */   
      } /* end of DGD-Size domain*/      

Figure 3: DGD-Size pseudo-program. 

)2.2...(
nx

δδ =  

)3.2)..((
N

kkE x
x

δδμ ==  

4 EXPERIMENTAL RESULTS 

Many experiments were performed to verify that the 
novel DGD-Size framework (also referred to as the 
EMCGDS - our research code name for the 
“MACSC + GreedyDual-Size” implementation) can 
really achieve the following: 
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a) Produce and maintain a hit ratio higher than the 
given one. 
b) Outperform the conventional static GD-Size (or 
simply GDS) approach. 
c) Outperform the original dynamic “MACSC + 
LRU” implementation (customarily called 
EMCLRU). 

These experiments were carried out on the IBM 
Aglets mobile agent platform. The choice of the 
platform was intentional because it is designed for 
open Internet applications [Aglets], and this makes 
the experimental results scalable. The preliminary 
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results from the experiments collectively indicate 
that EMCGDS outperforms EMCLRU even though 
the latter never ceased to maintain the given hit ratio 
as the minimum. In contrast, the hit ratios produced 
by the conventional GDS fluctuated drastically. The 
Intel’s VTune Performance Analyzer measures the 
execution times of EMCGDS, EMCLRU and GDS 
for comparison purposes.  

Figure 4 compares the average hit ratios by the 
three different caching strategies: EMCDGS, 
EMCLRU and GDS. Every point on a curve is the 
average hit ratio for the whole data trace or trace 
segment. The traces used were downloaded from the 
web site [Trace]. A concise explanation of the 
different traces marked on the axis is in the sequel:  
a) BU-Web-Client: This trace contains records of 
the HTTP requests and clients’ behaviour in the 
Boston University Computer Science Department. 
The time span was from 21 November 1994 to 8 
May 1995. Two segments of this trace, namely, 
BUb19 and BU272 were used to drive two separate 
simulations.  
b) Calgary-HTTP: This trace is from the 
University of Calgary's Department of Computer 
Science WWW server in Alberta, Canada. It covers 
the period from 24 October1994 to 11 October 1995. 
c) ClarkNet-HTTP: ClarkNet is an Internet service 
provider in the Metro Baltimore Washington D.C. 
area. This trace was divided into 10 segments as 
shown in Figure 6.  

d) NASA-HTTP: This trace covers the months of 
July and August 1995 and contains the HTTP 
requests to the NASA Kennedy Space Center’s 
WWW server in Florida. It was divided into 6 
segments for different simulations. 
e) Saskatchewan-HTTP: This trace contains all 
the HTTP requests to thee University of 
Saskatchewan's WWW server in Canada. 

The conclusion that can be drawn from Figure 4 
is that EMCGDS consistently produces and 
maintains a higher hit ratio than the given one 
standard deviation (i.e. one ∇ or 68.3%). In fact, for 
the selected traces (marked on the X-axis) the hit 
ratio never fell below 87% for EMCGDS. This is 
much better than the EMCLRU for which the hit 
ratio oscillates seriously even though it never fell 
below 70%. The worst performance is the 
conventional static GDS because it works with a 
static cache size. In the experiments all the cache 

sizes were initialized to 500000 bytes for 
comparison purposes.  

Time-critical web applications usually need 
fast client/server response for success. As indicated 
by the results in Figure 4, EMCGDS undoubtedly 
shortens the client/server service RTT more 
dramatically than EMCLRU. For the same 
assumptions made in the “Related Work” section, 
the minimum speedup by EMCGDS for the data 
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Figure 4: Average hit ratios by EMCGDS, EMCLRU and GDS (e.g. reference is 68.3%). 
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traces used in Figure 4 is 5.5 fold (as shown by the 
calculation below) for the minimum hit ratio by 
EMCGDS is 90%,  

The on-line timing analyses by the Intel’s VTune 
Performance Analyzer show the following: 

a) The average execution time for the 
conventional GDS Java implementation in the 
experiments is 980 clock cycles. 

b) The intrinsic part of the average execution 
time for the MACSC implemented in Java is 23425 
clock cycles.  

VTune had also confirmed that the average 
execution time for the basic LRU’s Java 
implementation is 627 clock cycles. For the 
EMCGDS and EMCLRU mechanisms the 
computation delay mainly comes from MACSC 
component, which has to sample the time series for 
its operation. The inter-arrival times among data 
points in the aggregate determines the delay because 
enough data has to be sampled for the current 
MSCSC control cycle. The MACSC mechanism 
actually runs in parallel with GDS or LRU unit. 

5 CONCLUSIONS 

The preliminary results in the EMCGDS research 
confirm that caching indeed makes time-critical web 
applications such as m-business setups successful. In 
particular, the dynamic caching size tuning 
technique contributes to maintain the given cache hit 
ratio as the minimum. This shortens the data 
retrieval roundtrip time over the Internet in a 
consistent fashion. As a result fast system response 
makes m-business customers happy and return for 
more business. In this light, the DGD-Size 
contribution is significant. The next step in the 
research is to validate EMCGDS in more open m-
business environments over the mobile Internet.      
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