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Abstract: The interactive styling and rendering of virtual hair is essential for creating realistic looking human avatars 
for use in computer games, virtual worlds, and movie special effects. Hair models can contain tens of 
thousands of hair strands and hence it is important to develop techniques to modify the hair in a realistic 
fashion and to render it at interactive frame rates. In this paper we present a GPU-based framework for 
styling and rendering of virtual hair. We use wisps to represent basic units of hair strands and present an 
improved statistical model for hair wisp generation which allows the creation of smooth and fringy styles. 
Fast modelling is achieved by using create, edit, delete and copy and paste operations for key strands 
representing wisp. The styling process is simplified by using a local coordinate system for hair strands in 
order to define preferred styling (brushing) directions. Fast photo-realistic rendering is achieved by using 
the latest GPU functionalities for both the light reflection calculation and the shadow generation of hair 
strands. We also propose a new method for real-time anti-aliasing using GPU programming. 

1 INTRODUCTION 

Computer generated realistic virtual humans are 
required in applications such as the movie industry 
(CGI – computer generated imagery), computer 
games, and as avatars for virtual worlds. An 
important factor for achieving a realistic human 
appearance is the development of a realistic hair 
model. Psychological studies have shown that hair is 
a determining factor of a person’s first impression 
when meeting his or her counterpart (Lafrance, 
2005). Therefore, the styling and rendering of virtual 
hair is an active field of research in Computer 
Graphics. Hair styling is challenging since the 
complex behaviour of each hair strand and the 
interactions among the hair strands during animation 
and styling must be controlled in a physically 
realistic way. 

In this paper we present a GPU-based framework 
for styling and rendering of virtual hair. Section 2 
gives an overview of hair modelling techniques and 
section 3 introduces our wisp based model and an 
improved statistical model for hair wisp generation. 
Section 4 presents algorithms for fast photo-realistic 
rendering using improved data structures and more 
efficient GPU algorithms for the light reflection 

calculation and shadow generation. Section 5 
proposes methods for real-time antialiasing using 
GPU programming. Section 6 contains implementa-
tion details and section 7 discusses our results. We 
draw conclusions about our research in section 8 and 
finish with a listing of future work in section 9. 

2 INTERACTIVE HAIR 
MODELLING AND STYLING 

In order to develop efficient styling tools it is 
important to find the most suitable hair model. 
Popular approaches are polygonal surfaces, 
volumetric textures, and strand-based and wisp-
based models. 

Parke introduced a fast and simple way to model 
hair which uses simple texture mapped polygonal 
surfaces to capture the shape and appearance of hair 
(Parke, 1974). Since the surface representation does 
not model the complex geometry of hair strands the 
specular lighting effects are not correct and the 
resulting rendered images lack realism. 
In contrast strand-based models represent every hair 
strand explicitly either by thin cylinders, which are 
slow to render and suffer from aliasing artefacts, or 
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by using connected line segments (Anjyo, Usami, 
and Kurihara, 1992; Rosenblum, Carlson, and Tripp, 
1991). This type of model is suitable for simple 
styles using long, animated hair, but it is not 
practical for creating complex hairstyles due to the 
large number of strands which must be moved.  

An improvement is achieved by grouping hair 
strands into wisps whose shape and movement is 
defined by using key strands. The idea is based on 
the observation that adjacent hair strands tend to 
form wisps due to static attraction and artificial 
styling products. Daldegan et al. use a triangular 
head mesh and define key hair strands at each 
triangle vertex in order to interpolate the wisps’ hair 
strands (Daldegan et al., 1993). Yang et al. use 
generalized cylinders to represent hair wisps (Yang 
et al., 2000). Plante et al. propose an animation 
method to deal with the interactions among wisps 
and to simulate complex hair motions (Plante et al., 
2001). The above three models have the advantage 
that they make it easy to control hair styling. 
However, the methods are not effective for 
controlling complex hairstyles such as curly hair.  

In 2002 Kim and Neumann proposed a multi-
resolution hair modelling system, which can handle 
fairly complex hairstyles (Kim and Neumann, 2002). 
The model makes it possible to define the behaviour 
of hair over the entire range from hair wisps down to 
individual hair strands. Different hair styles can be 
created rapidly using high-level editing tools such as 
curling, scaling and copy/paste operations. 
Subsequently Choe and Ko introduced a statistical 
wisp model to generate a wide range of human 
hairstyles (Choe and Ko, 2005). The authors 
simulate hair deformation by applying physical 
properties of hair such as gravity and collisions 
response. The model is capable of handling a wide 
range of human hair styles but is unsuitable for 
simulating hair animation due to a lack of real-time 
performance of their modelling algorithm and failing 
in collision detection in some cases. 

Other models have been proposed such as 
volumetric textures for modelling fur and short hair 
styles (Perlin, 1989; Kajiya and Kay, 1989) and 
particle-based hair models, which simulate hair 
strands as trajectories of particles shot from the head 
(Stam, 1995). 

In conclusion wisp-based models are the most 
flexible hair models since they support high-level 
operations such as copy/paste between wisps when 
designing a hair style, but also give control about 
details of a hair style. Disadvantages of this 
approach are the large amount of time needed to 
handle the interactions between hair strands such as 

collision detection and difficulties in simulating 
convincing hair animation. However, for many 
applications with little animation, such as hair 
styling, the advantages outweigh the disadvantages, 
and we therefore use a wisp-based model. 

3 STYLING TOOLS  

Our hair model is based on the static wisp-based 
model proposed by Choe and Ko (2005). Hair 
strands are placed on a high resolution triangle mesh 
head model shown in figure 1. 

 
Figure 1: A head model represented by a triangle mesh. 
The scalp region is coloured brown. 

Inspired by Kim and Neumann’s interactive 
hair modelling system (Kim and Neumann, 2002) 
we added tools to enable users to manipulate wisps. 
Since a scalp can have tens of thousands of hair 
strands we need a system to easily control groups of 
hair strands. The user is able to group several 
triangles on which to grow a wisp. The size (number 
of strands) of a wisp is dependent on the area of 
selected triangles. The smallest wisp is defined by a 
single triangle. This level of detail is sufficient for 
defining a wide variety of hair styles since the 
triangles are small compared to the scalp’s area. 

The geometry of a wisp is controlled using a key 
strand as illustrated in figure 2. The key strand 
defines the geometry for all strands of a wisp which 
are then obtained by translating them as described in 
subsection 3.2. We use Catmull-Rom splines 
(Catmull and Rom, 1974) to represent hair strands 
since they are smooth (C1 continuous) and because 
they interpolate their control points which makes 
designing a particular hair style more intuitive. 
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Figure 2: A key strand defining a wisp for a group of four 
triangles on the scalp. The dark area on the scalp defines 
the selected triangles. The blue square points are the 
control points on the key strand. 

Figure 3: An overview of the components of our hair 
styling toolset. 

The components of our hair styling toolset are 
illustrated in figure 3. The key strand selection 
component enables users to choose triangles to grow 
a wisp or to select an existing wisp for editing. After 
a group of triangles has been selected it is recorded 
together with the location of its current key strand. 
The location of the key strand is determined as the 
centre of the first triangle of the selected group of 
triangles (see section 3). The selection of scalp 
triangles and strand control points has been 
implemented with the OpenGL “select” mechanism. 
This enables us to detect whether the projection of a 
graphical primitive onto the view plane overlaps 
with a hit region surrounding the mouse location in 
which case we select the front most primitive. 

3.1 Key Strand Control 

Users are able to interactively modify a key strand 
by adding, deleting and moving control points. The 
interface for changing the 3D coordinates of the 
control points of a key strand is illustrated in figure 
4. Since the mouse movements on the screen are in 
2D we have to map this into a suitable 3D motion. A 
common solution in modelling applications is to 
restrict movements to the coordinate directions, 
parallel to the view plane or within a user defined 
plane.  

 
Figure 4: The user interface for changing the 3D positions 
of a key strand’s control points. The red arrow indicates 
the currently active direction in which the control point 
can move forward and backward. The yellow arrows 
indicate the non-active directions. 

  

Figure 5: Rotation of the local coordinate system at a 
control point. 

We found that in hair styling the preferred hair 
movement direction depends on a particular style, 
e.g. “brushing” hair backwards, lifting it up, pulling 
it down or curling it. We therefore define for each 
key strand a local coordinate system of styling 
directions represented by three orthogonal arrows. 
The currently active styling direction is indicated by 
a red arrow. A new styling direction is obtained by 
choosing one of the non-active arrows or by 
changing the local coordinate systems as illustrated 
in figure 5. 

Suitable default directions for the local 
coordinate system at a control point are the curve 
tangent at that point, the surface normal at the scalp 
point closest to the control point and the vector 
perpendicular to these two vectors. 

3.2 Wisp Control 

Users can change the size of a wisp by changing the 
triangles defining the area on which the strands of 
this wisp grow. High-level copy/paste and mirror 
operations between wisps are provided by the key 
strand copy/paste and mirror component. After 
selecting the triangles for a wisp, the geometry of a 
key strand can be copied or mirrored from an 
existing wisp to a new one as illustrated in figure 6. 

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

206



 

  
The source wisp 

  
The mirrored wisp 

Figure 6: The red key strand in the right image is a mirror 
version of the key strand in the left image. 

The wisp generation component is able to 
generate all hair strands determined by their key 
strands and to distribute all hair strands over the 
scalp uniformly based on the hair density specified 
for different scalp regions. 

The hair strands within a wisp tend to be similar, 
although some variations are required to improve 
realism. Choe and Ko observed that the degree of 
similarity can be controlled by a length distribution, 
radius distribution and strand variation (Choe and 
Ko, 2005). The length distribution determines the 
length variance between the key strand and a 
member strand within a wisp. The radius distribution 
controls the distance between the key strand and a 
member strand within a wisp. Finally the strand 
distribution gives the shape variation of each strand 
compared to the key strand.  

Rather than varying the position of each control 
point of a member strand with respect to the key 
strand (Choe and Ko, 2005) we define for each 
control point an offset vector which linearly 
increases in length for each subsequent control 
point. The initial offset vector is randomly selected 
using a uniform distribution over a sphere. In order 
to maintain the overall shape of the strand the offset 
vector is defined with respect to a torsion 
minimising reference frame for the spline curve 
representing the strand (Bloomenthal, 1990). 

Figure 7 illustrates this process. The key strand 
on the right is reproduced at the new root position. 
We then define a random offset vector for the first 
control point subject to a maximum length indicated 
by the circle in the figure. The offset vector’s length 
linearly increases for subsequent control points. 
Applying it with respect to the key strand’s 
reference frame generates a new curve of similar 
appearance. We also implemented a strand 
distribution but found that the hair styles using it 
were indistinguishable from the ones using just 
length and distance variations. 

 
 

Figure 7: The original key strand (left) and the resulting 
member strand (right).  

4 RENDERING ALGORITHMS 

We have developed two rendering algorithms which 
take advantage of new GPU functionalities in order 
to render hair realistically in real-time. Both 
algorithms implement an anisotropic reflection 
model for the illumination of hair strands (Kajiya 
and Kay, 1989) and use opacity shadow maps (Kim 
and Neumann, 2001) for simulating self-shadowing. 
The algorithms differ in terms of data structures and 
utilised GPU features. More details are described in 
the implementation section and a comparison and 
evaluation is given in the result section. 

5 ANTIALIASING 

Because hairs are very fine structures with a width 
and inter-hair distance of equal or below the image 
pixel size, rendering hair can result in aliasing 
artefacts. While increasing the sampling frequency 
would help this is not an option when interactive 
performance is required and we have to employ 
instead antialiasing techniques which can be 
grouped into three approaches: prefiltering, 
supersampling, and postfiltering. 

Prefiltering is the best way to perform 
antialiasing because it removes high frequencies in 
the view of a scene before rendering an image. This 
can be achieved by calculating for each rendered 
primitive its coverage of an image pixel. If the 
coverage is below 100% the values for all primitives 
contributing to that pixel are averaged. Analytical 
prefiltering removes high frequencies of the 
intensity function representing the image by using 
mathematical operators (Chan and Durand, F., 
2005). Supersampling uses an increased sampling 
frequency. High frequency components are removed 
using a low pass filter (e.g. a box filter), before 
down-sampling the image to the required size. 
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Postfiltering also uses convolution kernels, but 
operates directly on the final resolution image.  
Our hair rendering antialiasing implementation is 
based on supersampling and postfiltering techniques 
implemented on the GPU and is described in more 
detail in the next section. 

6 IMPLEMENTATION  

6.1 Rendering Algorithms 

We have implemented two rendering algorithms 
which both have three components: data preparation, 
which converts data into the required format and 
loads it into memory, opacity shadow maps (OSM) 
generation and hair rendering. 
 

 
Figure 8: Overview of the first rendering algorithm. 

Figure 8 illustrates our first implementation 
which uses vertex buffer objects to store hair data as 
OpenGL server side objects on the graphics card. 
The GPU can access the vertex buffer objects 
directly without transferring the data set from the 
CPU. Opacity shadow maps are created from the 
vertex buffer objects by rendering the hair geometry 
using the light position as view point. The fragment 
shader outputs the opacity value sequentially to the 
frame buffer through the fixed function pipeline of 
OpenGL by using the Multiple Render Targets 
technology which allows a fragment shader to write 
to up to four buffers within the frame buffer.  
Sixteen maps can be generated in one rendering pass 
as we store up to four maps in four channels of each 
buffer. 

Hair strands are rendered using vertex shaders 
which implement an anisotropic reflection model 
(Kajiya and Kay, 1989) to compute the correct 
illumination at the polylines’ vertices. The fixed 
OpenGL functionalities interpolate the colour values 
and then pass the values to the fragment shader. The 
shader computes the opacity value of each strand’s 
incoming fragment by linearly interpolating the two 
adjacent shadow maps loaded from the GPU texture 

memory (Koster, Haber and Seidel, 2004). We use 
the following fast interpolation function which 
avoids branch statements for searching (Nguyen and 
Donnelly, 2005): 
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Ω  is the opacity value of a point, iΩ  is the 
corresponding opacity value on the ith map, n is the 
total number of maps, iz  is the distance of ith map 
from the light position, z  is the distance of the point 
from the light position, and dz  is the distance 
between two adjacent maps using the assumption 
that all the distances between maps are equal. We 
have proven the validity of this formula (Anonymous, 
2006). 

 

 
Figure 9: Overview of the second rendering algorithm. 

The second rendering algorithm, outlined in 
figure 9, uses two OpenGL contexts with copies of 
the hair data in order to make use of the render-to-
texture technology: one copy is for the opacity 
shadow map generation and one for the hair 
rendering. The render-to-texture technology is 
currently the only way in GPU programming to 
enable a fragment shader to output data directly to 
the texture memory on the GPU. Hence this is the 
fastest way to put the data of the opacity shadow 
maps into the texture memory. The OSM is 
generated as for the first implementation, except that 
the fragment shader outputs the data directly into the 
texture memory. 

The advantage of the first implementation is that 
it always runs in the same OpenGL context, i.e. no 
expensive OpenGL context switching is required. 
Drawbacks are the cost of copying data from the 
frame buffer to the texture memory and that it 
requires more powerful GPUs which offer multiple 
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render targets. In addition the sample rate of the 
shadow maps is fixed to the screen resolution of the 
OpenGL context. The second implementation is 
more widely supported by graphics hardware. 
However, the cost for OpenGL context switching is 
high and the amount of memory consumed is almost 
1.4 times as large as for the first implementation.  

6.2 Antialiasing 

Postfiltering is performed by copying the rendered 
image from the frame buffer to the texture memory 
in the GPU. Fast processing is achieved by using a 
fragment shader which averages pixel values 
according to the selected convolution kernel. The 
resulting colour of the fragment is processed by the 
fixed functionality OpenGL pipeline and written to 
the frame buffer. We restrict processing of 
fragments to the minimal quadrilateral covering the 
hair region since skin and other scene objects don’t 
have the same fine structures as hair. 

Supersampling is similar to postfiltering but 
differs in three points: (a) We need to adjust the 
OpenGL context to a larger screen size in order to 
accommodate the high resolution supersampled 
image. The highest possible resolution is depended 
on the capability of the graphics hardware. (b) We 
use the “render-to-texture” capability of modern 
GPUs to render to the texture memory of the GPU 
directly instead of copying the data back from the 
frame buffer to the texture memory. (c) In order to 
apply the convolution kernel to the incoming 
fragment we need to find the texture coordinates of 
all the neighbour pixels required by the kernel. The 
texture coordinates can be computed by considering 
the ratio between the supersampling resolution and 
the rendering resolution. 

7 RESULTS  

7.1 Effectiveness 

Our hair styling toolset is capable of creating a 
variety of moderately complex styles. Depending on 
the complexity of a new hair style it can take up to 
several hours for a user without modelling 
experience to create it. Adjusting the key strands is 
the most time consuming step when making a 
specific style. Two examples of completed hair 
styles created by us are shown in figure 10. Our hair 
styling toolset can model and render real hair styles 
effectively as demonstrated in figure 11. Shadow 
effects in hair volumes are compared in figure 12. 

We tested our tool with non-expert users and 
found that most functions such as wisp copy/paste, 
mirror, and preview are quite intuitive. However 
users found that they need to explicitly design the 
wisp interactions and it is a little bit difficult to 
define the directions of key strands. The current 
version of our toolkit does not perform collision 
detection between strands and wisps and does not 
use an explicit physical model and it is therefore 
difficult to model braided hairstyles. 

 
Figure 10: A curly short hair style (left) and a smooth 
medium length hair style (right).  

  
Figure 11: A real (left) and a computer generated hair 
style (right). 

The image on the left of figure 13 demonstrates that 
the distribution function by Choe and Ko, which 
uses random offsets for control points, can lead to 
slightly wavy strands even if the original key strand 
is uniformly curved. In contrast our function 
produces uniformly smooth wisps. Furthermore by 
defining the maximum length of the initial offset 
vector we can produce very smooth hair where the 
strands are virtually parallel and very fuzzy hair 
where the distance between hair strands increases at 
the end of a wisp. 
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Figure 12: A hair volume without shadow (left) and with 
shadow (right). 

      
Figure 13: A large wisp generated with Choe and Ko’s 
distribution function (left) and with our function (right). 
Note that the results were exaggerated by using large 
offset vectors in order to emphasize the differences 
between the methods.  

7.2 Efficiency 

We implemented our algorithms using C/C++ and 
OpenGL and run them on a PC with 2GB memory, a 
2 GHz Intel Pentium M Processor 760 and an 
NVIDIA GeForce Go 7800 GTX graphics card with 
256 MB memory. We found that the speed of our 
GPU-based anisotropic reflection algorithm is 
almost ten times as fast as for the equivalent CPU 
implementation (Anonymous, 2006). The complete 
algorithms including opacity shadow maps can 
render a head model with 16,215 hair strands 
(357,267 line segments) with 13-20 frames/second.  

7.3 Antialiasing 

We implemented GPU-based box filter and 
Gaussian filter kernels and found that they are able 
to partially solve the aliasing problem as illustrated 
in the images 2 and 3 of figure 14. We found that 
two times hardware build-in supersampling with and 
without Gaussian filtering (image 5 and 6 of figure 
14, respectively) yields the best antialiasing results. 
Note that the images show different hair regions, but 
in this subsection we are only interested in the 
appearance of individual hairs on skin so that this 
does not matter. 

 
(1) Aliasing 

 
(2) Box filter 

 
(3) Gaussian filter 

 
(4) 2X supersampling(GPU) 

 
(5) 2X supersampling 

(Hardware build-in) and 
Gaussian filter 

 
(6) 2X supersampling 
(Hardware build-in) 

Figure 14: Results obtained with different antialiasing 
techniques. 

The performance of all antialiasing schemes is 
satisfactory and increases total rendering time 
between 17% (box filter) and 34.2% (2x hardware 
built-in supersampling and Gaussian filter). 

8 CONCLUSIONS 

Although the hair styling process can require a 
couple of hours we found that our toolset enables 
users to create a variety of hair styles efficiently and 
effectively. The toolset provides not only high-level 
functionality such as copy/paste and mirroring of 
wisps, but also low-level modifications such as 
changing the number and positions of a key strand’s 
control points in order to modify the shape of a wisp. 
This was achieved using a novel interaction tool 
which uses a local-coordinate system for defining 
“styling directions”. 

We have introduced a new statistical method to 
generate strands from a key strand which has the 
advantage that it maintains consistency of style 
within a wisp and that it enables users to model 
smooth, fuzzy and fringy hair. With our density 
based hair distribution facility the roots of hair 
strands are distributed evenly over the scalp.  

Rendering is performed in real-time using GPU 
accelerated algorithms and the whole modelling 
process is interactive.  
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9 FUTURE WORK 

Much work remains to be done in order to make our 
model suitable for a wider range of applications. 
Hair dynamics must be implemented in order to use 
our model for animations where the hair moves 
dynamically with the body motion or through 
outside forces such as wind. We believe an 
interesting approach for interactive environments is 
to create a global deformation field for the hair 
volume rather than modelling the motion of 
individual wisps. We would also like to improve the 
styling toolset to incorporate constrained hair styles 
such as ponytails and braided styles. 
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