
A FRAMEWORK FOR INTERACTIVE GPU-SUPPORTED
RENDERING AND STYLING OF VIRTUAL HAIR

Rui (Ray) Zhang and Burkhard C. Wünsche
Department of Computer Science, Private Bag 92019, University of Auckland, New Zealand

Keywords: Hair modelling, interaction techniques, GPU algorithms, wisp model, key strands.

Abstract: The interactive styling and rendering of virtual hair is essential for creating realistic looking human avatars
for use in computer games, virtual worlds, and movie special effects. Hair models can contain tens of
thousands of hair strands and hence it is important to develop techniques to modify the hair in a realistic
fashion and to render it at interactive frame rates. In this paper we present a GPU-based framework for
styling and rendering of virtual hair. We use wisps to represent basic units of hair strands and present an
improved statistical model for hair wisp generation which allows the creation of smooth and fringy styles.
Fast modelling is achieved by using create, edit, delete and copy and paste operations for key strands
representing wisp. The styling process is simplified by using a local coordinate system for hair strands in
order to define preferred styling (brushing) directions. Fast photo-realistic rendering is achieved by using
the latest GPU functionalities for both the light reflection calculation and the shadow generation of hair
strands. We also propose a new method for real-time anti-aliasing using GPU programming.

1 INTRODUCTION

Computer generated realistic virtual humans are
required in applications such as the movie industry
(CGI – computer generated imagery), computer
games, and as avatars for virtual worlds. An
important factor for achieving a realistic human
appearance is the development of a realistic hair
model. Psychological studies have shown that hair is
a determining factor of a person’s first impression
when meeting his or her counterpart (Lafrance,
2005). Therefore, the styling and rendering of virtual
hair is an active field of research in Computer
Graphics. Hair styling is challenging since the
complex behaviour of each hair strand and the
interactions among the hair strands during animation
and styling must be controlled in a physically
realistic way.

In this paper we present a GPU-based framework
for styling and rendering of virtual hair. Section 2
gives an overview of hair modelling techniques and
section 3 introduces our wisp based model and an
improved statistical model for hair wisp generation.
Section 4 presents algorithms for fast photo-realistic
rendering using improved data structures and more
efficient GPU algorithms for the light reflection

calculation and shadow generation. Section 5
proposes methods for real-time antialiasing using
GPU programming. Section 6 contains implementa-
tion details and section 7 discusses our results. We
draw conclusions about our research in section 8 and
finish with a listing of future work in section 9.

2 INTERACTIVE HAIR
MODELLING AND STYLING

In order to develop efficient styling tools it is
important to find the most suitable hair model.
Popular approaches are polygonal surfaces,
volumetric textures, and strand-based and wisp-
based models.

Parke introduced a fast and simple way to model
hair which uses simple texture mapped polygonal
surfaces to capture the shape and appearance of hair
(Parke, 1974). Since the surface representation does
not model the complex geometry of hair strands the
specular lighting effects are not correct and the
resulting rendered images lack realism.
In contrast strand-based models represent every hair
strand explicitly either by thin cylinders, which are
slow to render and suffer from aliasing artefacts, or

204
(Ray) Zhang R. and C. Wünsche B. (2007).
A FRAMEWORK FOR INTERACTIVE GPU-SUPPORTED RENDERING AND STYLING OF VIRTUAL HAIR.
In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - AS/IE, pages 204-211
DOI: 10.5220/0002085602040211
Copyright c© SciTePress

by using connected line segments (Anjyo, Usami,
and Kurihara, 1992; Rosenblum, Carlson, and Tripp,
1991). This type of model is suitable for simple
styles using long, animated hair, but it is not
practical for creating complex hairstyles due to the
large number of strands which must be moved.

An improvement is achieved by grouping hair
strands into wisps whose shape and movement is
defined by using key strands. The idea is based on
the observation that adjacent hair strands tend to
form wisps due to static attraction and artificial
styling products. Daldegan et al. use a triangular
head mesh and define key hair strands at each
triangle vertex in order to interpolate the wisps’ hair
strands (Daldegan et al., 1993). Yang et al. use
generalized cylinders to represent hair wisps (Yang
et al., 2000). Plante et al. propose an animation
method to deal with the interactions among wisps
and to simulate complex hair motions (Plante et al.,
2001). The above three models have the advantage
that they make it easy to control hair styling.
However, the methods are not effective for
controlling complex hairstyles such as curly hair.

In 2002 Kim and Neumann proposed a multi-
resolution hair modelling system, which can handle
fairly complex hairstyles (Kim and Neumann, 2002).
The model makes it possible to define the behaviour
of hair over the entire range from hair wisps down to
individual hair strands. Different hair styles can be
created rapidly using high-level editing tools such as
curling, scaling and copy/paste operations.
Subsequently Choe and Ko introduced a statistical
wisp model to generate a wide range of human
hairstyles (Choe and Ko, 2005). The authors
simulate hair deformation by applying physical
properties of hair such as gravity and collisions
response. The model is capable of handling a wide
range of human hair styles but is unsuitable for
simulating hair animation due to a lack of real-time
performance of their modelling algorithm and failing
in collision detection in some cases.

Other models have been proposed such as
volumetric textures for modelling fur and short hair
styles (Perlin, 1989; Kajiya and Kay, 1989) and
particle-based hair models, which simulate hair
strands as trajectories of particles shot from the head
(Stam, 1995).

In conclusion wisp-based models are the most
flexible hair models since they support high-level
operations such as copy/paste between wisps when
designing a hair style, but also give control about
details of a hair style. Disadvantages of this
approach are the large amount of time needed to
handle the interactions between hair strands such as

collision detection and difficulties in simulating
convincing hair animation. However, for many
applications with little animation, such as hair
styling, the advantages outweigh the disadvantages,
and we therefore use a wisp-based model.

3 STYLING TOOLS

Our hair model is based on the static wisp-based
model proposed by Choe and Ko (2005). Hair
strands are placed on a high resolution triangle mesh
head model shown in figure 1.

Figure 1: A head model represented by a triangle mesh.
The scalp region is coloured brown.

Inspired by Kim and Neumann’s interactive
hair modelling system (Kim and Neumann, 2002)
we added tools to enable users to manipulate wisps.
Since a scalp can have tens of thousands of hair
strands we need a system to easily control groups of
hair strands. The user is able to group several
triangles on which to grow a wisp. The size (number
of strands) of a wisp is dependent on the area of
selected triangles. The smallest wisp is defined by a
single triangle. This level of detail is sufficient for
defining a wide variety of hair styles since the
triangles are small compared to the scalp’s area.

The geometry of a wisp is controlled using a key
strand as illustrated in figure 2. The key strand
defines the geometry for all strands of a wisp which
are then obtained by translating them as described in
subsection 3.2. We use Catmull-Rom splines
(Catmull and Rom, 1974) to represent hair strands
since they are smooth (C1 continuous) and because
they interpolate their control points which makes
designing a particular hair style more intuitive.

A FRAMEWORK FOR INTERACTIVE GPU-SUPPORTED RENDERING AND STYLING OF VIRTUAL HAIR

205

Figure 2: A key strand defining a wisp for a group of four
triangles on the scalp. The dark area on the scalp defines
the selected triangles. The blue square points are the
control points on the key strand.

Figure 3: An overview of the components of our hair
styling toolset.

The components of our hair styling toolset are
illustrated in figure 3. The key strand selection
component enables users to choose triangles to grow
a wisp or to select an existing wisp for editing. After
a group of triangles has been selected it is recorded
together with the location of its current key strand.
The location of the key strand is determined as the
centre of the first triangle of the selected group of
triangles (see section 3). The selection of scalp
triangles and strand control points has been
implemented with the OpenGL “select” mechanism.
This enables us to detect whether the projection of a
graphical primitive onto the view plane overlaps
with a hit region surrounding the mouse location in
which case we select the front most primitive.

3.1 Key Strand Control

Users are able to interactively modify a key strand
by adding, deleting and moving control points. The
interface for changing the 3D coordinates of the
control points of a key strand is illustrated in figure
4. Since the mouse movements on the screen are in
2D we have to map this into a suitable 3D motion. A
common solution in modelling applications is to
restrict movements to the coordinate directions,
parallel to the view plane or within a user defined
plane.

Figure 4: The user interface for changing the 3D positions
of a key strand’s control points. The red arrow indicates
the currently active direction in which the control point
can move forward and backward. The yellow arrows
indicate the non-active directions.

Figure 5: Rotation of the local coordinate system at a
control point.

We found that in hair styling the preferred hair
movement direction depends on a particular style,
e.g. “brushing” hair backwards, lifting it up, pulling
it down or curling it. We therefore define for each
key strand a local coordinate system of styling
directions represented by three orthogonal arrows.
The currently active styling direction is indicated by
a red arrow. A new styling direction is obtained by
choosing one of the non-active arrows or by
changing the local coordinate systems as illustrated
in figure 5.

Suitable default directions for the local
coordinate system at a control point are the curve
tangent at that point, the surface normal at the scalp
point closest to the control point and the vector
perpendicular to these two vectors.

3.2 Wisp Control

Users can change the size of a wisp by changing the
triangles defining the area on which the strands of
this wisp grow. High-level copy/paste and mirror
operations between wisps are provided by the key
strand copy/paste and mirror component. After
selecting the triangles for a wisp, the geometry of a
key strand can be copied or mirrored from an
existing wisp to a new one as illustrated in figure 6.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

206

The source wisp

The mirrored wisp

Figure 6: The red key strand in the right image is a mirror
version of the key strand in the left image.

The wisp generation component is able to
generate all hair strands determined by their key
strands and to distribute all hair strands over the
scalp uniformly based on the hair density specified
for different scalp regions.

The hair strands within a wisp tend to be similar,
although some variations are required to improve
realism. Choe and Ko observed that the degree of
similarity can be controlled by a length distribution,
radius distribution and strand variation (Choe and
Ko, 2005). The length distribution determines the
length variance between the key strand and a
member strand within a wisp. The radius distribution
controls the distance between the key strand and a
member strand within a wisp. Finally the strand
distribution gives the shape variation of each strand
compared to the key strand.

Rather than varying the position of each control
point of a member strand with respect to the key
strand (Choe and Ko, 2005) we define for each
control point an offset vector which linearly
increases in length for each subsequent control
point. The initial offset vector is randomly selected
using a uniform distribution over a sphere. In order
to maintain the overall shape of the strand the offset
vector is defined with respect to a torsion
minimising reference frame for the spline curve
representing the strand (Bloomenthal, 1990).

Figure 7 illustrates this process. The key strand
on the right is reproduced at the new root position.
We then define a random offset vector for the first
control point subject to a maximum length indicated
by the circle in the figure. The offset vector’s length
linearly increases for subsequent control points.
Applying it with respect to the key strand’s
reference frame generates a new curve of similar
appearance. We also implemented a strand
distribution but found that the hair styles using it
were indistinguishable from the ones using just
length and distance variations.

Figure 7: The original key strand (left) and the resulting
member strand (right).

4 RENDERING ALGORITHMS

We have developed two rendering algorithms which
take advantage of new GPU functionalities in order
to render hair realistically in real-time. Both
algorithms implement an anisotropic reflection
model for the illumination of hair strands (Kajiya
and Kay, 1989) and use opacity shadow maps (Kim
and Neumann, 2001) for simulating self-shadowing.
The algorithms differ in terms of data structures and
utilised GPU features. More details are described in
the implementation section and a comparison and
evaluation is given in the result section.

5 ANTIALIASING

Because hairs are very fine structures with a width
and inter-hair distance of equal or below the image
pixel size, rendering hair can result in aliasing
artefacts. While increasing the sampling frequency
would help this is not an option when interactive
performance is required and we have to employ
instead antialiasing techniques which can be
grouped into three approaches: prefiltering,
supersampling, and postfiltering.

Prefiltering is the best way to perform
antialiasing because it removes high frequencies in
the view of a scene before rendering an image. This
can be achieved by calculating for each rendered
primitive its coverage of an image pixel. If the
coverage is below 100% the values for all primitives
contributing to that pixel are averaged. Analytical
prefiltering removes high frequencies of the
intensity function representing the image by using
mathematical operators (Chan and Durand, F.,
2005). Supersampling uses an increased sampling
frequency. High frequency components are removed
using a low pass filter (e.g. a box filter), before
down-sampling the image to the required size.

A FRAMEWORK FOR INTERACTIVE GPU-SUPPORTED RENDERING AND STYLING OF VIRTUAL HAIR

207

Postfiltering also uses convolution kernels, but
operates directly on the final resolution image.
Our hair rendering antialiasing implementation is
based on supersampling and postfiltering techniques
implemented on the GPU and is described in more
detail in the next section.

6 IMPLEMENTATION

6.1 Rendering Algorithms

We have implemented two rendering algorithms
which both have three components: data preparation,
which converts data into the required format and
loads it into memory, opacity shadow maps (OSM)
generation and hair rendering.

Figure 8: Overview of the first rendering algorithm.

Figure 8 illustrates our first implementation
which uses vertex buffer objects to store hair data as
OpenGL server side objects on the graphics card.
The GPU can access the vertex buffer objects
directly without transferring the data set from the
CPU. Opacity shadow maps are created from the
vertex buffer objects by rendering the hair geometry
using the light position as view point. The fragment
shader outputs the opacity value sequentially to the
frame buffer through the fixed function pipeline of
OpenGL by using the Multiple Render Targets
technology which allows a fragment shader to write
to up to four buffers within the frame buffer.
Sixteen maps can be generated in one rendering pass
as we store up to four maps in four channels of each
buffer.

Hair strands are rendered using vertex shaders
which implement an anisotropic reflection model
(Kajiya and Kay, 1989) to compute the correct
illumination at the polylines’ vertices. The fixed
OpenGL functionalities interpolate the colour values
and then pass the values to the fragment shader. The
shader computes the opacity value of each strand’s
incoming fragment by linearly interpolating the two
adjacent shadow maps loaded from the GPU texture

memory (Koster, Haber and Seidel, 2004). We use
the following fast interpolation function which
avoids branch statements for searching (Nguyen and
Donnelly, 2005):

])/||1,0max(*[
1

0
∑
−

=

−−Ω=Ω
n

i
ii dzzz (1)

Ω is the opacity value of a point, iΩ is the
corresponding opacity value on the ith map, n is the
total number of maps, iz is the distance of ith map
from the light position, z is the distance of the point
from the light position, and dz is the distance
between two adjacent maps using the assumption
that all the distances between maps are equal. We
have proven the validity of this formula (Anonymous,
2006).

Figure 9: Overview of the second rendering algorithm.

The second rendering algorithm, outlined in
figure 9, uses two OpenGL contexts with copies of
the hair data in order to make use of the render-to-
texture technology: one copy is for the opacity
shadow map generation and one for the hair
rendering. The render-to-texture technology is
currently the only way in GPU programming to
enable a fragment shader to output data directly to
the texture memory on the GPU. Hence this is the
fastest way to put the data of the opacity shadow
maps into the texture memory. The OSM is
generated as for the first implementation, except that
the fragment shader outputs the data directly into the
texture memory.

The advantage of the first implementation is that
it always runs in the same OpenGL context, i.e. no
expensive OpenGL context switching is required.
Drawbacks are the cost of copying data from the
frame buffer to the texture memory and that it
requires more powerful GPUs which offer multiple

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

208

render targets. In addition the sample rate of the
shadow maps is fixed to the screen resolution of the
OpenGL context. The second implementation is
more widely supported by graphics hardware.
However, the cost for OpenGL context switching is
high and the amount of memory consumed is almost
1.4 times as large as for the first implementation.

6.2 Antialiasing

Postfiltering is performed by copying the rendered
image from the frame buffer to the texture memory
in the GPU. Fast processing is achieved by using a
fragment shader which averages pixel values
according to the selected convolution kernel. The
resulting colour of the fragment is processed by the
fixed functionality OpenGL pipeline and written to
the frame buffer. We restrict processing of
fragments to the minimal quadrilateral covering the
hair region since skin and other scene objects don’t
have the same fine structures as hair.

Supersampling is similar to postfiltering but
differs in three points: (a) We need to adjust the
OpenGL context to a larger screen size in order to
accommodate the high resolution supersampled
image. The highest possible resolution is depended
on the capability of the graphics hardware. (b) We
use the “render-to-texture” capability of modern
GPUs to render to the texture memory of the GPU
directly instead of copying the data back from the
frame buffer to the texture memory. (c) In order to
apply the convolution kernel to the incoming
fragment we need to find the texture coordinates of
all the neighbour pixels required by the kernel. The
texture coordinates can be computed by considering
the ratio between the supersampling resolution and
the rendering resolution.

7 RESULTS

7.1 Effectiveness

Our hair styling toolset is capable of creating a
variety of moderately complex styles. Depending on
the complexity of a new hair style it can take up to
several hours for a user without modelling
experience to create it. Adjusting the key strands is
the most time consuming step when making a
specific style. Two examples of completed hair
styles created by us are shown in figure 10. Our hair
styling toolset can model and render real hair styles
effectively as demonstrated in figure 11. Shadow
effects in hair volumes are compared in figure 12.

We tested our tool with non-expert users and
found that most functions such as wisp copy/paste,
mirror, and preview are quite intuitive. However
users found that they need to explicitly design the
wisp interactions and it is a little bit difficult to
define the directions of key strands. The current
version of our toolkit does not perform collision
detection between strands and wisps and does not
use an explicit physical model and it is therefore
difficult to model braided hairstyles.

Figure 10: A curly short hair style (left) and a smooth
medium length hair style (right).

Figure 11: A real (left) and a computer generated hair
style (right).

The image on the left of figure 13 demonstrates that
the distribution function by Choe and Ko, which
uses random offsets for control points, can lead to
slightly wavy strands even if the original key strand
is uniformly curved. In contrast our function
produces uniformly smooth wisps. Furthermore by
defining the maximum length of the initial offset
vector we can produce very smooth hair where the
strands are virtually parallel and very fuzzy hair
where the distance between hair strands increases at
the end of a wisp.

A FRAMEWORK FOR INTERACTIVE GPU-SUPPORTED RENDERING AND STYLING OF VIRTUAL HAIR

209

Figure 12: A hair volume without shadow (left) and with
shadow (right).

Figure 13: A large wisp generated with Choe and Ko’s
distribution function (left) and with our function (right).
Note that the results were exaggerated by using large
offset vectors in order to emphasize the differences
between the methods.

7.2 Efficiency

We implemented our algorithms using C/C++ and
OpenGL and run them on a PC with 2GB memory, a
2 GHz Intel Pentium M Processor 760 and an
NVIDIA GeForce Go 7800 GTX graphics card with
256 MB memory. We found that the speed of our
GPU-based anisotropic reflection algorithm is
almost ten times as fast as for the equivalent CPU
implementation (Anonymous, 2006). The complete
algorithms including opacity shadow maps can
render a head model with 16,215 hair strands
(357,267 line segments) with 13-20 frames/second.

7.3 Antialiasing

We implemented GPU-based box filter and
Gaussian filter kernels and found that they are able
to partially solve the aliasing problem as illustrated
in the images 2 and 3 of figure 14. We found that
two times hardware build-in supersampling with and
without Gaussian filtering (image 5 and 6 of figure
14, respectively) yields the best antialiasing results.
Note that the images show different hair regions, but
in this subsection we are only interested in the
appearance of individual hairs on skin so that this
does not matter.

(1) Aliasing

(2) Box filter

(3) Gaussian filter

(4) 2X supersampling(GPU)

(5) 2X supersampling

(Hardware build-in) and
Gaussian filter

(6) 2X supersampling
(Hardware build-in)

Figure 14: Results obtained with different antialiasing
techniques.

The performance of all antialiasing schemes is
satisfactory and increases total rendering time
between 17% (box filter) and 34.2% (2x hardware
built-in supersampling and Gaussian filter).

8 CONCLUSIONS

Although the hair styling process can require a
couple of hours we found that our toolset enables
users to create a variety of hair styles efficiently and
effectively. The toolset provides not only high-level
functionality such as copy/paste and mirroring of
wisps, but also low-level modifications such as
changing the number and positions of a key strand’s
control points in order to modify the shape of a wisp.
This was achieved using a novel interaction tool
which uses a local-coordinate system for defining
“styling directions”.

We have introduced a new statistical method to
generate strands from a key strand which has the
advantage that it maintains consistency of style
within a wisp and that it enables users to model
smooth, fuzzy and fringy hair. With our density
based hair distribution facility the roots of hair
strands are distributed evenly over the scalp.

Rendering is performed in real-time using GPU
accelerated algorithms and the whole modelling
process is interactive.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

210

9 FUTURE WORK

Much work remains to be done in order to make our
model suitable for a wider range of applications.
Hair dynamics must be implemented in order to use
our model for animations where the hair moves
dynamically with the body motion or through
outside forces such as wind. We believe an
interesting approach for interactive environments is
to create a global deformation field for the hair
volume rather than modelling the motion of
individual wisps. We would also like to improve the
styling toolset to incorporate constrained hair styles
such as ponytails and braided styles.

REFERENCES

Anjyo, K., Usami, Y., Kurihara, T., 1992. A simple
method for extracting the natural beauty of hair.
SIGGRAPH '92: Proceedings of the 19th annual
conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, pp.
111-120, 1992.

Anonymous, 2006, details deleted for this review.
Bloomenthal, J., 1990. Calculation of reference frames

along a space curve. Graphics Gems Vol. 1, Academic
Press, San Diego, CA, USA, 1990, pp. 567-571.

Catmull, E., Rom, R., 1974. A Class of Local Interpolating
Splines. Computer Aided Geometric Design, R. E.
Barnhill and R.F. Riesenfeld ed., Academic Press,
New York, 1974, pp. 317-326.

Chan, E., Durand, F., 2005. Fast Prefiltered Lines. GPU
Gems 2, Addison-Wesley, Boston, MA, USA, March
2005, pp. 345-359.

Choe, B., Ko, H., 2005. A statistical Wisp Model and
Pseudophysical Approaches for Interactive Hairstyle
Generation. IEEE Transactions on Visualization and
Computer Graphics, vol. 11, no. 2, pp. 160-170, Mar-
Apr 2005.

Daldegan, A., Thalmann, N. M., Kurihara, T., Thalmann,
D., 1993. An integrated system for modelling,
animating, and rendering hair. Proceedings of
Eurographics, vol. 12, pp. 211-221, 1993.

Kajiya, J.T., Kay, T.L., 1989. Rendering Fur with Three
Dimensional Textures. SIGGRAPH Proceedings, vol.
23, pp. 271-280, July 1989.

Kim, T., Neumann, U., 2001. Opacity Shadow Maps.
SIGGRAPH '02: Proceedings of the 12th Eurographics
Workshop Rendering, June 2001, pp. 177-182.

Kim, T., Neumann, U., 2002. Interactive multiresolution
hair modelling and editing. SIGGRAPH '02:
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, pp. 620–629, July 2002.

Koster, M., Haber, J., Seidel, H., 2004. Real-Time
Rendering of Human Hair using Programmable

Graphics Hardware. Proceedings of Computer
Graphics International, 2004, pp. 248-256.

Lafrance, M., 2005. First Impressions and Hair
Impressions. Unpublished manuscript, Department of
Psychology, Yale University, New Haven,
Connecticut. http://www.physique.com/sn/sn_yale-
study2.asp, visited on 15th July 2005.

Nguyen, H., Donnelly, W., 2005. Hair Animation and
Rendering in the Nalu Demo. GPU Gems 2, Addison-
Wesley, Boston, MA, USA, March 2005, pp. 361-380.

Parke, F. I., 1974. A Parametric Model for Human Faces.
Unpublished manuscript, PhD thesis, University of
Utah, Salt Lake City, UT, UTEC-CSc-75-047,
December 1974.

Perlin, K., 1989. Hypertexture, SIGGRAPH Proceedings,
vol. 23, pp. 253-262, 1989.

Plante, E., Cani, M. P., Poulin, P., Perlin, K., 2001. A
layered wisp model for simulating interactions inside
long hair. Proceedings of Eurographics Computer
Animation and Simulation 2001, pp. 139-148, Sep
2001.

Rosenblum, R., Carlson, W., Tripp III, E., 1991.
Simulating the structure and dynamics of human hair:
Modelling, rendering and animation. The Journal of
Visualization and Computer Animation, vol. 2, no. 4,
pp. 141-148, October-December 1991.

Stam, J., 1995. Multi-Scale Stochastic Modelling of
Complex Natural Phenomena. PhD Thesis, Dept. of
Computer Science, University of Toronto.

Yang, X. D., Xu, Z., Yang, J., Wang, T., 2000. The
Cluster Hair Mode. Graphical Models, vol. 62, pp. 85-
103, 2000.

A FRAMEWORK FOR INTERACTIVE GPU-SUPPORTED RENDERING AND STYLING OF VIRTUAL HAIR

211

