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Abstract: This paper presents an interactive method to compute multiple scattering in non-homogeneous participating 
media with an effective phase function approximation. The volume is represented by grids, which allows us 
to render dynamic scenes. We achieve interactive computation rate by factorizing the phase function in 
transport equation with singular value decomposition (SVD) and keeping only the first few low-order 
approximation terms. These terms are paired 2D incident-direction texture maps and 2D outgoing-direction 
texture maps. The complicated integral calculation of in-scattering in each rendering pass is efficiently 
approximated by simply retrieving data from textures. Graphics hardware is also employed for on-the-fly 
computation. Using the proposed algorithm, we demonstrate rendering of multiple scattering in dynamic 
scenes at interactive rates. 

1 INTRODUCTION 

Realistic rendering in participating media has been a 
long standing and difficult problem in computer 
graphics. A detailed overview of rendering 
techniques in participating media can be found in 
(Cerezo, 2005). Back in the early 1990s, the Monte 
Carlo light tracing by (Pattanaik, 1993) uses a 
sampling process to calculate the points of 
absorption or scattering of the bundles within the 
volume. Later (Jensen, 1998) introduced photon 
mapping to volume containing photons in the 
participating media. Both of these methods can 
accurately simulate complicated lighting models. 
However, they are far from interactive. Nowadays, 
solution times with the fastest Monte Carlo approach 
still may take dozens of minutes. 

Graphics hardware advanced rapidly in recent 
years, resulting in emergences of a great number of 
techniques that improve realism in near real-time. 
Most of the algorithms adopt simplified physics 
models or have constraints on media type. To name 
a few of these algorithms, (Harris, 2001) proposed a 
real-time cloud shading technique, but only multiple 

scattering in forward direction was precomputed. 
(Sloan, 2002) achieved interactively rendering 
multiple scattering assuming isotropic phase 
function and distant illumination. (Premože, 2004) 
provided a method that avoids direct numerical 
simulation of multiple scattering through spatial 
spreading. However, this approach only considered 
the overall statistics of the phase function, not its 
particular shape. (Hegeman, 2005) modified the 
previous method with hardware acceleration and 
achieved interactive rendering rates. 

(Szirmay-Kalos, 2005) suggested a real-time 
method to compute multiple scattering in non-
homogeneous participating media having general 
phase functions. This implementation adopted 
particle system and solved the transport equation 
iteratively with little simplification. Real-time 
performance was achieved by reusing light 
scattering paths that were generated with global line 
bundles traced in sample directions in a pre-
processing phase. Nevertheless, once the particle 
moves, the light scattering paths have to be re-
calculated, which is a time-consuming job. Thus, the 
volume is supposed to be static. In our paper, we 
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Figure 1: The appearance of participating media changes as the medium density is decreased from left to right. Multiple
scattering appears distinctive in the image on the left and is less obvious in the one on the right. Results are produced by
the proposed method at 2fps. The scene is illuminated by area light. 

propose a method to solve the transport equation in 
volume represented by grids rather than particles. As 
a result, the calculation for the light scattering paths 
is avoided. With this approach, we realize rendering 
dynamic scenes. 

Separable decomposition technique was 
introduced by (Kautz, 1999), and it has been used 
for BRDF rendering. Later (Wang, 2004) and (Liu, 
2004) applied singular value decomposition (SVD) 
to glossy BRDFs in PRT. In addition, (Wang, 2005) 
introduced SVD to the approximation of BSSRDFs 
by separating Henyey-Greenstein (HG) phase 
function. Similarly, our proposed method 
decomposes HG phase function in the rendering of 
multiple scattering in participating media in order to 
accelerate the computation. 

2 BACKGROUND 

2.1 Multiple Scattering in Participating 
Media 

When light travels in participating media, its 
radiance undergoes changes due to emission, in-
scattering, absorption and out-scattering. The former 
two phenomena increase the radiance, while the 
latter two reduce it. The differential transport 
equation of radiance L  in distance dxr  is: 

The increased radiance by emission can be 
expressed as ( ) ( )eLx xακ

r r
, where ( )eL xr  is the 

emission density, and ( )xακ
r  is the absorption 

coefficient, which is related to the density of 
participating media at point xr . 

·Absorption and out-scattering are respectively 
represented by ( ) ( )x L xακ

r r  and ( ) ( )s x L xκ r r , where 
( )L xr  is the radiance at point xr . ( )s xκ r  is the 

scattering coefficient, and it is also related to density.  
· In-scattering is due to photons originally 

moving in a certain direction being scattered into the 
considered direction. The number of scattered 
photons from differential solid angle 

i
d ωσ  equals to 

 
where 0( , )ip ω ω  is the phase function. The phase 
function can be interpreted as the scattered intensity 
in direction 0ω , divided by the intensity that would 
be scattered in that direction if the scattering were 
isotropic (i.e. independent of the direction). Ω  
denotes the set of directions on the sphere around 
point xr .  

The simplest phase function is the isotropic one. 
Rayleigh phase functions are used to model 
scattering processes produced by spherical particles 
whose radii are smaller than around one-tenth the 
light wavelength, while Mie phase functions are 
generally used when particle size is comparable to 
the radiation wavelength (Cerezo, 2005). In this 
paper, we take scattering in clouds and fog as 
examples, so the simple mathematical 
approximation of Mie phase functions, HG phase 
functions(Henyey, 1940)(Cornette, 1992), is used in 
our transport light model. The HG phase function is: 

where ( 1,1)g∈ −  is the media property describing 
how strongly the media scatters forward or 
backward, and θ  denotes the angle between iω  and 

0ω . 
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Figure 2: Phase Function (3). 

The scattering properties of materials is depicted 
with the Figure 2, which is a plot of HG Phase 
function (3), where g  is respectively 0.5, 0.4, 0.35, 
and 0.25. 

2.2 Singular Value Decomposition 
(SVD) Factorization 

In Mathematics, separable decompositions can 
approximate (to arbitrary accuracy) a high-
dimensional function f with a sum of products of 
lower-dimensional functions kg  and kh : 

Separable decompositions are usable for 
remarkably compressing the original function f  
when a good approximation can be found with a 
small N . In addition, they are capable of dividing 
variables into separate expressions, namely kg  
and kh . Further calculation which involves one 
variable may not need to refer to function f  but to 
only one of the post-decomposition functions kg  or 

kh  instead. Redundant calculation can be avoided 
by adopting separable decompositions. 

With the introduction of separable 
decomposition into pre-computing phase function in 
radiant Equation (1), the calculation speed is 
expected to be drastically enhanced. In this paper, 
we adopt the SVD method of decomposing phase 
function in order to considerably reduce the 
rendering time. We use SVD because it can produce 
relatively optimal approximations (Kautz, 1999). 
SVD of matrix A is the factorization that TA USV= , 
where [ ]kU u= ,  [ ]kV v=  and ( )kS diag ξ= . S  is a 
diagonal matrix of singular values kξ . As a result, 
after SVD, each function ( , )f x y  can be 
approximated as: 

3 THE PROPOSED METHOD  

In this section, we elaborate our method for 
approximating transport equation using separable 
phase functions. We also present error estimation of 
our approximation compared with the original phase 
functions. 

3.1 Discretization of the Transport 
Equation 

The transport Equation (1) can be discretized into 
the form 

where D  is the number of sample directions. The 
above equation can be solved by iterations. Suppose 
at iteration step n , we have the light radiance ( )nL xr , 
the light radiance of step 1n +  can be obtained after 
one iteration: 

where ( ) ( ) ( )t sx x xακ κ κ= +
r r r

. For physically 
visible materials, this iteration is convergent. 

3.2 Separable Phase Function and 
Error Estimation 

3.2.1 Factorizing the Phase Function 

In the general phase function 0( , )ip ω ω , 0ω  
represents the incident light, and iω  is the arbitrary 
outgoing light. We can sample the D  directions in 
the whole direction space and construct a D D×   
matrix A . Each element in column 0ω  and row iω  
of A  represents the value of 0( , )ip ω ω . We apply 
SVD on A  and obtain: 

SVD approximates the multivariate phase 
function 0( , )ip ω ω  as a sum of products of functions 
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ku  and kv  of lower dimensionality. In Equation (8), 
N  is the number of terms used in approximation. By 
this approach, phase function is divided into two 
parts 0( )ku ω  and ( )k iv ω , which are only pertinent 
with iω  and 0ω  respectively. Consequently, the 
phase function is approximated by a few low-order 
terms. Each of them can be represented by a 2D 
texture map 0( )k kuξ ω  or ( )k k ivξ ω  respectively 
indexed by the incident direction 0ω  or an outgoing 
direction iω  in Ω . We name 

0( )k kuξ ω  incident-
direction map and ( )k k ivξ ω  outgoing-direction 
map. 

We observe that 0( , )ip ω ω  only varies with the 
angle between 0ω  and iω , so A should be real 
symmetric. Symmetric matrix A can be diagonalized 
into the form TA QMQ= , where diagonal element of 
M  are the eigenvalues of A , and the column 
vectors of Q  are the corresponding eigenvectors. As 
described in Section 2.2, matrix A can be factorized 
with SVD into TA USV= . In this case, U V Q= =  
and S M= , so 0( )k kuξ ω  and ( )k k ivξ ω  should 
only differ by the sign.  

After applying SVD to the phase function, the 
iterative transport equation is transformed into, 

3.2.2 Error Estimation of SVD 
Approximation 

SVD can be applied to general phase functions, and 
the approximation can be arbitrarily accurate. We 
are going to demonstrate the result of our 
approximation of phase functions with cloud 
rendering. In this case, HG phase functions 
(Equation (3)), are most frequently adopted. 
Therefore, we present the root mean squared error 
(RMES) of SVD approximation for HG phase 
functions here. We apply SVD to HG phase 
functions and obtained the RMES, which is shown 
in Figure 3. 

From the bellow figure, the approximation takes 
greater number of terms to achieve certain accuracy 
as g  grows. The RMSE of SVD is about 10% for 
approximations of 24 terms when g  equals 0.5. It is 
a numerically acceptable approximation, and it is 
used for cloud rendering in this paper.  
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Figure 3: Relative RMSE of HG SVD. 

4 IMPLEMENTATION 

4.1 Precomputation 

We use the software MATLAB for precalculating 
the SVD results of phase functions. The incident-
direction map 0( )k kuξ ω  and outgoing-direction 
map ( )k k ivξ ω  are precomputed and respectively 
stored in textures: Incident-Direction Texture and 
Outgoing-Direction Texture. Both of them are 2D 
textures indexed by column number (1, )k N∈  and 
row number (1, )i D∈  

In Figure 4, we plotted the original HG phase 
function values and the approximated HG phase 
function values after applying SVD, using 8 and 24 
approximating terms respectively. 

4.2 Runtime Rendering Pipeline 

We represent our grids with what is called a flat 3D 
texture (Harris, 2003). A flat 3D texture represents 
actually a 3D volume, as shown in Figure 5. Flat 3D 
textures can be updated in a single rendering pass.  
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Original HG Phase Function and SVD-
Approximated HG Values Plotted Using 8 and 24 Terms. 
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This means that a 3D simulation can be 
implemented in the same number of passes as that 
required by an equivalent 2D simulation. Thus, it 
provides a quick and inexpensive way to perform 3D 
simulation. 

 
                       (a)                                     (b) 
Figure 5: 3D texture (a) and its corresponding flat 3D 
texture (b). 

This section presents the rendering pipeline with 
hardware acceleration during runtime. In every pass 
of fragment program, we input Density Texture, 
Radiance Texture, Incident Texture and Outgoing 
Texture at iteration step n  to update the values of 
step 1n + . The Density Texture and the Radiance 
Texture respectively contain the density and 
radiance values at each point in the rendering 
volume. The Incident Texture indexes 

0
( )

k k
uξ ω  

with k , and the Outgoing Texture contains the value 
of 

for each k at each point. The rendering pipeline at 
runtime is illustrated in Figure 6.  

For each iteration, the process runs through the 
fragment program a number of D  times. During 
each pass of fragment program, the radiance 

1
0( , )nL x dx ω+ +

r r  in direction (1, )d D∈  is updated 
with Equation (9), and 
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N D
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is also calculated. 0( )k kuξ ω  is indexed from 
Incident Texture, and  

is indexed from Outgoing Texture. In this way, the 
original integral calculation: 

in Equation (9) is avoided by simply retrieving 
values from a texture. 

Figure 6: Implementation Pipeline. 

It remarkably reduces required calculation amount 
during every rendering pass, thus the rendering 
speed is considerably increased. At the same time, 

1( , ) ( )n
d k k dL x vω ξ ω+ r  (14) 

 
is added to the Temporary Outgoing Texture for 
each (1, )k N∈ , and d  is increased afterwards. 
When d  reaches D , an iteration is complete. Thus 

1
0( , )nL x ω+ r  in all D  directions has been updated. 

Meanwhile, the value of each grid in the Temporary 
Outgoing Texture has been updated to be 
 

 
Temporary Outgoing Texture and the Outgoing 
Texture are switched for the next iteration. Iteration 
continues, and eventually 1

0( , )nL x ω+ r  differs little 
with

0( , )nL x ωr , which indicates the convergence of 
iteration. 
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5 RESULTS AND DISCUSSIONS 

The proposed technique has been implemented in 
Direct3D/HLSL environment and run on an 
NV7800GT graphics card. The volume resolution is 
64 64 64× × . 

In Figure 1, we demonstrate the appearance of 
multiple scattering in participating media with 
different uniform densities. The scene is illuminated 
with parallel light rays travelling downwards from a 
window in the ceiling. The number of discrete 
directions, D , is 128.  The albedo is 0.9. The 
multiple scattering is more representative in medium 
with a larger density, while single scattering 
dominates the scene of smaller density. We compute 
one iteration in each frame, and when the uniform 
density changes, we take the solution of the previous 
frame as the initial value of the iteration, which 
results in fast convergence. The scene is simulated 
as 2fps. A dynamic scene is rendered interactively. 

In Figure 7, we follow the converging process of 
a piece of cloud after different iteration steps. The 
image on the left displays the cloud after 20 
iterations. At that time, the part closer to the sun is 
firstly illuminated. In the images in the middle, the 
energy gradually transports to other parts of the 
cloud. Notice that the thicker part of the cloud 
appears darker because of high extinction. The 
image on the right shows the final stable appearance 
of the cloud, which indicates the convergence of 
transport equation. The number of discrete 
directions D  is 256, and 1.5fps was achieved.  

In Figure 8, we present an example of HG phase 
function factorized by SVD. The image on the left is 
rendered without factorizing the phase function. On 
the right is an image shaded with our method, using 
24-term SVD approximation. g  is 0.5 in both 
simulations. From the comparison, the cloud appears 
a little darker in our proposed model, especially in 
the thick part. It is due to that the reconstructed 
value of the phase function with our method is 
generally smaller than the original one, and phase 

function is only related to the in-scattering part of 
the transport equation. Therefore, the approximated 
in-scattering energy is smaller than the actual value. 
However, a rendering speed of 1.5fps is achieved 
with the proposed algorithm compared with 0.2fps 
of the unfactorized model. Moreover, visually good 
results are obtained by the approximation. With our 
approach, rendering speed is considerably enhanced, 
while realism is mostly preserved.  

  
Original                                    N = 24 

Figure 8: SVD factorization example, illuminated by the 
sun. 

6 CONCLUSIONS 

We have presented a method for interactively 
rendering multiple scattering in participating media 
with little physics simplification and constraints on 
media type. Compared with the Monte Carlo 
rendering method, our approach achieves much 
higher rendering speed. Meanwhile, compared with 
other near real-time algorithms, such as (Harris, 
2001) and (Sloan, 2002), ours has little constraints 
on the lighting conditions. The material properties 
and the scattering phase function. We approximate 
phase functions in transport equation with singular 
value decomposition. Using the proposed algorithm, 
rendering of dynamic scenes can be implemented 
with grid system. This technique greatly reduces the 
required calculation amount and enhances the 

20 iterations                                               40 iterations                                                60 iterations 

Figure 7: A cloud illuminated at sun set. The images show appearances of the cloud with different iteration steps. 
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rendering speed. The proposed method successfully 
models dynamic scenes that do not change rapidly. 

However, as to highly dynamic scenes, the 
transport equation takes more time to converge. 
Once the change occurs before the convergence, 
error appears and accumulates successively. 

Therefore, we plan to focus on developing a 
better model which converges faster in future work. 
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