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Abstract: We build a local multiresolution of meshes when the connectivity is resulting from an enhanced 
3 subdivision of a coarse mesh template. We use the concept of biorthogonality and lifting to develop a 

set of filters for local analysis and local synthesis. The enhanced 3 subdivision, we developed, takes into 
account natural surface discontinuities during the subdivision process. The multiresolution based on our 
enhanced 3 subdivision permits to obtain a great compression ratio. 

1 INTRODUCTION 

A project of surface meshing for still and animated 
images and associated software has been developed 
at L3i for several years. Our goal is to build a 
multiresolution analysis to compress mesh 
information in order to permit fast transmission of 
shapes on networks and to allow fast visualization 
via levels of details. We use wavelet theory. The 
wavelet functions are deduced from scaling 
functions based on subdivisions.  

There are two main categories of subdivision 
schemes: the subdivision inserting vertices on edges 
and the subdivision inserting vertices on faces. Each 
one of these can use an approximation method or an 
interpolation method. Among all the approximation 
methods for subdivisions inserting vertices on edges, 
we can cite (Doo et al. 1978), (Catmull and Clark 
1978) and (Loop 1987). Among interpolation 
methods for subdivisions inserting vertices on edges 
the method of (Halstead et al. 1993) is a modified 
Catmull-Clark subdivision. The most famous one is 
the “butterfly” method (Dyn et al. 1990), which 
gives a G1 continuity of the limit surface, with a 
minimal number of neighbors and whatever the 
connectivity of the vertices. A modified butterfly 
method which ensures a better continuity has been 
proposed by (Dyn et al. 1993) and (Zorin et al. 
1996). Among approximation methods for 

subdivisions inserting vertices on faces, we can cite 
the 3  subdivision of Kobbelt (Kobbelt 2000). 
Among interpolation methods, we can cite the 3  
Subdivision of Labsik and Greiner (Labsik and 
Greiner 2000). All these subdivision methods do not 
take into account the natural discontinuities of the 
surface. 

Subdivision of meshes with natural surface 
discontinuities has been studied by (Hoppe et al. 
1994). The study is focused on subdivision inserting 
vertices on edges and does not include a 
multiresolution analysis.  

The basic principles of multiresolution analysis and 
wavelets were given by (Meyer 1986), (Meyer 1988) 
for mathematical aspects, by (Mallat 1989) for 
signals and images and by (Lounsbery et al. 1997) 
and (Schröder and Sweldens 1995) for surfaces. 
Schröder and Lounsbery worked on subdivision 
inserting vertices on edges for meshes without 
natural surface discontinuities. 

A subdivision allows synthesizing a shape. It 
increases the resolution of a coarse mesh, called 
“control mesh”, and converges on a limit surface. A 
multiresolution analysis permits to decrease the 
resolution of a fine mesh without lost of information. 
In the case of a subdivided mesh, the synthesis is 
simply the subdivision of the coarse mesh and the 
analysis consists in rebuilding the coarse mesh from 
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the subdivided mesh. In the case of a complex mesh 
that is not the result of a subdivision but has the 
connectivity of a subdivided mesh, the analysis 
provides a low-resolution approximation mesh. 
There exists remeshing methods to obtain this kind 
of mesh (Eck et al. 1995), (Lee et al. 1998). In order 
to rebuild the original mesh by the synthesis of the 
low-resolution mesh, the analysis computes and 
store errors, called details, at every level. 

The multiresolution theory assures us that the 
analyzed mesh is the best approximation of the 
original mesh at this level for the chosen dot 
product. 

Because the subdivision tends to a smooth limit 
surface, the analysis of a mesh representing a 
smooth limit surface generates many null details. 
That’s why the analysed version of a mesh and the 
non null details can be stored more efficiently than 
the original mesh. 

In this paper we introduce a multiresolution analysis 
of meshes when the connectivity is resulting from an 
enhanced 3  subdivision taking into account 
discontinuities. We choose a subdivision inserting 
vertices on faces because the meshes are growing 
slower than methods by insertion of vertices on 
edges. We enhanced the original 3 subdivision of 
Labsik and Greiner to take into account the natural 
discontinuities of a surface, such as darts, creases 
and boundaries (Guillot and Gourret 2006a) (Guillot 
and Gourret 2006b). Having this subdivision 
scheme, we build a multiresolution analysis, which 
handles discontinuities. Moreover, due to the high 
amount of data in recent meshes, we develop a local 
analysis, i.e. the calculation should include only a 
part of the data at a time.  

The multiresolution analysis developed in this paper 
works with every subdivision scheme. An analogous 
approach is done by (Olsen et al. 2005). Their 
calculation starts from a very small neighbourhood 
which is recursively enhanced by a method similar 
to the lifting scheme. So, the size of filter is growing 
until an optimization of the magnitude of details is 
reached. We build our wavelets with only one lifting 
scheme. Then a recursive approach constrains the 
number of null details. Moreover our method uses 
natural discontinuities to minimize magnitude of 
details. 
 
In section 2, we present the principles of a global 
multiresolution and some definitions. In section 3, 
we explain how to process the local calculus of 
scaling and wavelet functions using biorthogonality 

and lifting scheme. In Section 4 we describe how to 
perform locally a synthesis and in section 5 we 
describe how to perform locally an analysis. Section 
6 is dedicated to results, and section 7 is dedicated to 
conclusion and future works. 

2 MULTIRESOLUTION 
ANALYSIS BASED ON 
SUBDIVISION 

2.1 Our Enhanced 3 Subdivision 

The enhanced 3  subdivision is based on the 
insertion of a new vertex in each triangular face. We 
start from a control mesh at subdivision level j=0. A 
vertex is inserted in each face. Then new faces are 
created joining the new vertices to the initial vertices 
and to the new vertices in immediate 
neighbourhood. 
Doing this, a new vertex always shares 6 faces. 
The mesh resulting from one subdivision of level j is 
called the level j+1. 
A mesh Mj of level j has nj vertices and fj faces. We 
call Yj the set of vertices in the mesh of level j and 
Kj its connectivity, so Mj = (Kj, Yj) represent the 
level j. 
A direct property is that  
nj+1 – nj = fj = 3.fj-1 = …= 3j.f0 
Far of natural surface discontinuities and far of 
extraordinary vertices (non 6 connected vertices), 
our enhanced 3 subdivision uses the method of 
Labsik-Greiner or of Kobbelt (for accuracy we 
introduce the name Labsik-Greiner formula and 
Kobbelt formula in this paper). Otherwise we 
developed a formulation explained in (Guillot and 
Gourret 2006b). 

2.2 Multiresolution Analysis 

Generally a mesh M is obtained from a cloud of 
points acquired by a 3D scanner. So the number of 
vertices and the connectivity are not the result of 
recursive subdivisions (K ≠ Kj). Our multiresolution 
analysis method needs that the connectivity of the 
starting high level mesh is the result of a recursive 
subdivision (K = Kj). We suppose that K = Kj in 
what follows. It means for example that most of the 
vertices are 6-connected and that extraordinary 
vertices, of connectivity different of 6, are 
sufficiently spaced. Note that as said in section 2.1, a 
new vertex always shares 6 faces: it is always of 
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connectivity 6, so the extraordinary vertices are not 
introduced by the subdvisivion process. They are 
defined in the control mesh M0 and they remain 
through the recursive subdivisions.  
 

 
Figure 1: Analysis from level 2 to level 0. 

The analysis of a level j+2, builds a level j+1 and a 
set of details called Zj+1. Recursively the level j+1 
can be analysed as a level j and a set of details Zj. 
Let’s call Aj the matrix that transform Yj+1 into Yj 
and Bj the matrix that transform Yj+1 into Zj. 
The detail Zj+1 has exactly three times more vertices 
than Zj. We show in Figure 1 the analysis from level 
2 to level 0. 
Let’s call Yj(n) the nth vertex of Yj. The details Zj are 
considered as a list of virtual points (points not 
connected via Kj).  
In what follows Vi is the ith vertex of Yj, V’i is the ith 

vertex of Yj+1 and Wi is the (i - nj)th vertex of Zj. 

2.3 Multiresolution Synthesis 

The synthesis is the reconstruction of the level j+1 
from the level j and the details Zj. A second 
synthesis rebuilds the level j+2 from the level j+1 
rebuilt and from the details Zj+1. Thus the level j+2 
can be obtained from the level j and the details Zj 
and Zj+1. 

 
Figure 2: Synthesis from level 0 to level 2. 

Let’s call Pj the matrix that subdivide Yj and call Qj 
the matrix that uses the details Zj. The action of Qj 
on Zj gives the difference between Yj+1 and the 
subdivision of Yj. We show in Figure 2 the synthesis 
from level 0 to level 2. 

3 LOCAL COMPUTATION OF 
SCALING AND WAVELET 
FUNCTIONS 

In order to build a multiresolution, we need a scaling 
function φ and a wavelet function ψ. They define the 
global matrices Pj and Qj as shown in Figure 3. We 
never compute the whole Pj or Qj matrices, only 
rows or columns of these matrices. 
 

 
Figure 3: Definition of the global matrices P0 and Q0. 

3.1 Local Computation of φj 

Note that “local computation of φj ” means that the 
computation itself is local, not the function φj. Let’s 
V’i be a vertex in Yj+1 and D’i be the d-disk in Yj+1 

centred on V’i. The d-disk centered on V’i is the set 
of vertices connected to V’i by less than d edges. 
In what follows, we will suppose that every 
calculation is local around a vertex, which means 
that to synthesize a vertex V’i in Yj+1, we need to 
consider some vertices in Yj and some points in Zj. 
The vertices of Yj and the points of Zj are in  
Di = {V i ; V’i є D’i } U { W i ; W’i є D’i }. 
 
If i is in [1,nj], φj

i represents the influence of the 
vertex Vi in the computation of the new vertices in a 
one level subdivision, it is the scaling function 
associated with Vi. The influence of the vertex Vi is 
local, so we can compute it locally, in fact Vi only 
influences the vertices of D’i.  
The scaling function φj

i depends on the connectivity 
of the vertices around D’i. 
For example, when we use the Labsik-Greiner 
interpolation formula with twelve neighbours 
(Figure 4) the disk D’i is shown in Figure 5. Note 
that because the Labsik-Greiner formula is an 
interpolation method only black vertices are 
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influenced by Vi, white vertices are not influenced 
by Vi. 
 

 
Figure 4: Stencil of Labsik-Greiner formula (the twelve 
circled neighbours are weighted a, b or c to calculate the 
black vertex V’k). 

 
Figure 5: 3-Disk D’i  for Labsik-Greiner formula (Vi 
influences black vertices, with a, b, c weights). 

For example, when we use Kobbelt formula (Figure 
6), D’i is the  2-disk shown in Figure 7. Note that 
because Kobbelt is an approximation method, black 
and white vertices are influenced by Vi. 
 

      
Figure 6: Stencils for kobbelt formula. 

 
Figure 7: D’i for the Kobbelt formula. 

D’i depends on the method of subdivision and on the 
proximity or not of natural discontinuities or 
extraordinary vertices. See (Guillot and Gourret 
2006b) for more explanations on the enhanced 

3 subdivision. Calculations are now implemented 

in our software MEFP3C (Khamlichi and Gourret 
2004). Note that taking discontinuities into account 
enlarges the size of D’i. 
 
For every V’k in Yj+1, we note φj

i(k) the influence of 
Vi on the computation of V’k. If V’k is not in D’i, Vi 
has no influence, so φj

i(k) = 0. If V’k is in D’i , φj
i(k) 

can be obtained by simulating the calculation of V’k 
in the subdivision algorithm, we obtain the weight of 
Vi in the stencil around V’k.  

3.2 Local Computation of ψj 

Note that “local computation of ψj ” means that the 
computation itself is local, not the function ψj. For k 
in [1 , nj+1- nj ] ψj

k is the wavelet function associated 
with Wk (Wk = Zj (k - nj)). 
Knowing the φj function, we should build the ψj 
function using the global orthogonal condition 
between φj and ψj :  
For all i in [1,nj], for all k in [1 , nj+1- nj ]        
< φj

i , ψj
k > = 0. 

But a global computation is too expensive. So we 
release this constraint to something local. 
 
We use the concept of biorthogonality with lazy 
wavelet (Sweldens 1996). For ψlazy k we choose the 
dirac δk. Let’s Va, Vb and Vc be the vertices of the 
face of Yj in which we insert W’k. Our lifting 
operation to enhance the orthogonality of the lazy 
wavelets consists in writing : 
ψj

k = ψj
lazy k+ α. φj

a + β. φj
b + γ. φj

c, where α, β, γ are 
real numbers that we compute for every k and every 
j writing the system :  
 
< φj

a , ψj
k > = 0 

< φj
b , ψj

k > = 0 
< φj

c , ψj
k > = 0 

 
It is a 3x3 system, easily solved, done for every k. 
φj

a is known by its values on every vertex of Yj+1 so 
it can be seen as a vector of Rnj+1. Let’s consider ψj

k  
as a vector of Rnj+1. To calculate < φj

a , ψj
k > we use 

the Euclidean inner product of φj
a and ψj

k as vectors 
of Rnj+1. We do not use the usual inner product first 
defined by Lounsbery. 
Our wavelet function is the sum of three scaling 
functions. Thus we can compute locally ψj

k . An 
example for the regular case of the Labsik-Greiner 
formula is shown in Figure 8. 
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Figure 8: 4-Disk D’k of the wavelet function ψj

k associated 
with the Labsik-Greiner formula. 

4 LOCAL SYNTHESIS 

The synthesis is the sum of the result of the Pj and Qj 
matrices applied to Yj. The synthesis is computed 
with the matrices Pj and Qj as show in Figure 9. 

 

 
Figure 9: Synthesis from level 0 to level 1. 

The action of Pj on Yj is exactly the result of the 
subdivision which is a local computation, i.e. the 
computation of Yi

 j+1 is local around Yi
j. 

To compute the action of Qj on Zj, we need the ith 
row of Qj. We have already assumed that this row 
has only non null factors in the columns representing 
the vertices of D’i. Let’s Wk be a point of Zj. We 
know how to compute ψk

j where only the ith 
coefficient interests us. 
The calculation of the ith row of Qj needs just the 
calculation of ψk

j for every Wk in Zj. 
 
 
 
 
 
 

Figure 10: Computation scheme of Y0
i = Q0

i.Y0. 

5 LOCAL ANALYSIS 

The analysis is globally computed with the matrices 
Aj and Bj as shown in Figure 11. 
 

 
Figure 11: Analysis from level 1 to level 0. 

Aj and Bj are usually computed as the inverse of the 
global matrix [PQ]j whose properties are shown in 
Figure 12. 
 

 
 

 
Figure 12: Global matrices. 

5.1 Local Analysis: the Built of Yj 

Let’s Vi be in Yj. The ith row of Aj applied on Yj+1 
gives us Vi. 
We assume that the action of Aj around Vi can be 
computed locally on D’i. If Aj

ik is the term of Aj on 
the ith row and the kth column, we can assume that 
Aj

ik = 0 if Yj+1(k) is not in D’i. To compute the result 
of the ith row of Aj, we need the (Aj)ik for k verifying 
Yj+1(k) in D’i. In section 3 we saw that we can 
compute φk and ψk for every k. 
Let’s Aj

i be the ith row of Aj with only the 
coefficients corresponding to a column h that verify 
Yj+1(h) in D’i.  
Let’s call (Pj

k)kєD’i the matrix containing the Pj
k 

where k is in D’i. It is also the matrix containing the 
φk

j when Yj+1(k) in D’i, with just the rows of number 
h verifying Yj+1(h) in D’i.  
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From the equation Aj.Pj = Id we have just kept some 
rows and some columns so we can write the 
following equation: 
Aj

i .(Pj
k)kєD’i = (0, 0, 0, …, 1, 0, 0, …, 0) 

The one is placed as i in D’i. 
In the same way we build (Qj

k)kєD’i as the matrix 
containing the ψj

k when Yj+1(k) is in D’i with just the 
rows of number h when Yj+1(h) is in D’i. The 
equation Aj.Qj = 0 gives 
Aj

i .(Qj
k)kєD’i = (0, …, 0) . 

The matrix [(Pj
k)kєD’i, (Qj

k)kєD’i] is a square matrix (of 
size given by the number of vertices in D’i). We 
compute Aj

i with the inverse of [(Pj
k)kєD’i, (Qj

k)kєD’i]. 
Eventually, Vi = Aj

i . Yj+1. 

5.2 Local Analysis: the Built of Zj 

The ith row of Bj applied on Yj+1 gives us Wi+nj. 
Let’s use again the matrices Bj

i, (Pj
k)kєD’i and 

(Qj
k)kєD’i, from the equations: 

Bj.Pj = 0 and Bj.Qj = Id  
we can write: 
Bj

i. (Pj
k)kєD’i = 0 and Bj

i. (Qj
k)kєD’i = (0, 0, …, 1, 0, 

…,0) with the one placed as i in D’i. 
By just inverting [(Pj

k)kєD’i, (Qj
k)kєD’i] we obtain Bj

i 
and so Wi. 

6 RESULTS 

Examples presented are not realistic ones. There are 
only given to prove working of our method. We 
show in Figure 13, two examples. In order to get 
meshes with the connectivity of a subdivided mesh 
that are not just the result of a previous subdivision, 
we created meshes with discontinuities and we 
subdivided them 4 times with our approximation 
enhanced 3 subdivision scheme. Then we have 
implemented our multiresolution analysis from our 
interpolating enhanced 3 subdivision scheme.  
The meshes to analyse have the connectivity of 
meshes subdivided four times, so we can analyse 
them 4 times. 
We show in Figure 14 the result of four analyses. 
Note that because our enhanced 3 subdivision is 
a subdivision inserting vertices on faces, the 
discontinuities do not belong to edges of the meshes 
of odd level 1 and 3 (Guillot and Gourret 2006b), 
only the even level produced by the analysis (level 0 
and 2) should be visualized as shown in Figure 15. 
 

 
Figure 13: The construction of the meshes to analyse 
(construction with our enhanced 3 approximation 
method). 

 
Figure 14: The result of four analyses with our 
enhanced 3 interpolation method. 

6.1 Compression 

With the mesh of level 0 and the four details Z0, Z1, 
Z2 and Z3, we can rebuild exactly the original mesh. 
The size of (Y4) is the same as the size of (Y0,  Z0, 
Z1, Z2, Z3). Because the subdivision tends to a 
smooth limit surface, the analysis of a mesh 
representing a smooth limit surface generates many 
approximately null details. Considering some of this 
details as null do not generate a great difference 
between the rebuilt mesh and the original mesh. That 
is why the analysed version of a mesh and the non 
null details can be stored more efficiently than the 
original mesh. We developed a constraint on the 
details (not explained in this paper) in order to 
ensure that the rebuilt mesh will not differ from the 
original mesh by more than a given tolerance 
epsilon. It means that for every vertex i, |Yi

4
original - 

Yi
4
rebuilt| ≤ epsilon * diameter of the bounding sphere. 

We show in Table 1, the percentage of details kept 
because they cannot be considered as null factors for 
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the 2 examples. The third column when the analysis 
takes into account natural surface discontinuities. 
Our multiresolution analysis method based on the 
standard Labsik-Greiner formula, modified around 
extraordinary vertices, and without natural surface 
discontinuities processing permits to obtain a good 
compression ratio as shown in the second column of 
table 1. 
Our multiresolution analysis method based on our 
enhanced 3 subdivision, with natural surface 
discontinuities, permits us to obtain an even better 
compression ratio. 
We show in Figure 16 a third example, which is the 
second example at level 4, deformed by MEFP3C. 
 
Table 1: Compression ratio in order to archive a precision 
of ε. 

 є without 
discontinuities 

with 
discontinuities 

Example 1 1% 81% 87% 
Example 2 1% 81% 88% 
Example 2 1‰ 59% 63% 

Example 3 1% 65% 65% 

 

7 CONCLUSION AND FUTURE 
WORK 

The local multiresolution analysis of meshes 
presented in this paper uses our enhanced 3  
subdivision. Because the calculations are local, the 
algorithm could be parallelized on multiprocessor 
computers. 
Without discontinuities, the disk D’i to synthesize a 
vertex V’i is a 3-disk for the scaling function and a 
4-disk for the wavelet function. Because our 
software deduces ψ from φ, it is only necessary to 
impose the disk size for φ. Without discontinuities, 
the disk D’i to analyze a vertex V’i is a 4-disk. This 
result is an experimental result. 
The multiresolution analysis developed in this paper 
works with every subdivision scheme. 
Our multiresolution analysis method based on our 
enhanced 3  subdivision which takes into account 
natural surface discontinuities permits us to obtain a 
great compression ratio. 
We are presently working on boundaries that are 
handled by our enhanced subdivision but not yet 
implemented in our multiresolution analysis and we 
are also working on remeshing algorithms. Then we 
will be able to process realistic shapes such as faces 
and bodies. 
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