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Abstract: This paper proposes a new compression algorithm for dynamic 3d meshes. In such a sequence of meshes,
neighboring vertices have a strong tendency to behave similarly and the degree of dependencies between their
locations in two successive frames is very large which can be efficiently exploited using a combination ofPre-
dictiveandDCT coders (PDCT). Our strategy gathers mesh vertices of similar motions into clusters, establish
a local coordinate frame (LCF) for each cluster and encodes frame by frame and each cluster separately. The
vertices of each cluster have small variation over a time relative to the LCF. Therefore, the location of each
new vertex is well predicted from its location in the previous frame relative to the LCF of its cluster. The dif-
ference between the original and the predicted local coordinates are then transformed into frequency domain
using DCT. The resulting DCT coefficients are quantized and compressed with entropy coding. The original
sequence of meshes can be reconstructed from only a few non-zero DCT coefficients without significant loss
in visual quality. Experimental results show that our strategy outperforms or comes close to other coders.

1 INTRODUCTION

Animated objects are frequently used in e-commerce,
education and movies and are the core of video
games. The animation in these applications can be
either generated using motion capturing systems or
simulated by sophisticated software tools like Maya
and Max 3D.

The most common representation of animated
three dimensional objects is the triangle mesh which
consists of the geometric information describing ver-
tex positions and connectivity information describ-
ing how these vertices are connected. 3D animation
consists then of a sequence of consecutive triangle
meshes.

As animation becomes more realistic and more
complex, the corresponding frame meshes become
bigger and bigger, consuming more and more space.
It is therefore indispensable to compress the anima-
tion datasets. Key-frame animation is one of the most
famous and dominant animation representations used
in the industry to represent the animation compactly.
A set of key frames are chosen to describe certain im-

portant key poses in the animation sequence at certain
times. Then all frames in between are generated us-
ing interpolation techniques. For such applications,
even the number of key-frames can be very large, re-
quiring a large memory space and need for effective
compression techniques.

The current coders are dedicated to compress the
triangular meshes of fixed connectivity so that the
connectivity needs to be encoded, stored or transmit-
ted once, then the geometry coding comes into play.

There are several criteria by which developed cod-
ing techniques can be distinguished. One of these cri-
teria is if the approach considers the entire sequence
where the coherency is globally exploited by using
the principal component analysis (PCA) transform or
frame by frame where the coherency is locally ex-
ploited by using for example predictive coding.

In PCA based coding, the global linear behavior
of the vertices through all frames is approximated in
terms of linear space. The animation sequence can
be reduced to a few principal components and coef-
ficients. The efficiency of this technique increases
when the datasets are segmented or clustered, so that
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each group is individually encoded by PCA. This type
of method supports progressive transmission. The
drawback of this approach is it is computationally ex-
pensive.

In predictive methods, for each frame, the differ-
ence between the predicted and the current locations
is encoded with very few bits. These approaches are
simple, not expensive, lossless and well suited for
real-time applications. The drawback of these meth-
ods is that they don’t support progressive transmis-
sion.

Affine transformations well approximate the be-
havior of sets of vertices relative to the initial posi-
tion (the first frame, eventually the I-frame). This
type of method is very effective for animations based
on motion capturing, if the mesh is well partitioned
into almost rigid parts, since the vertices are attached
to the bones and move according to their represen-
tative joints. Therefore, exploiting the coherence in
this animation and finding the transformation that best
matches each group of vertices is easier than finding
a transformation that approximates each part in de-
formed meshes (like a cow animation). The draw-
back of this technique is that it can be computation-
ally expensive depending on the splitting process or
the affine transformation optimization.

In this paper, we propose a new compression algo-
rithm based on predictive and DCT transform in the
local coordinate systems.

The method is inspired from video coding. We
first split the animated mesh into several clusters (sim-
ilar to macroblocks in video coding) using a simple
and efficient clustering process (Amjoun and Strasser,
2006). Then, we perform a prediction in the local co-
ordinate systems. Finally, we transform the resulting
delta vectors (between the predicted and the original
vertex locations) of each cluster in each frame into the
frequency domain using Discrete Cosine Transform.

2 STATE-OF-ART

During the last decade, extensive research has been
done on static mesh compression, producing a large
number of schemes (see, e.g., (Rossignac, 2004)
or (Alliez and Gotsman, 2005) for comprehensive
surveys of the developed techniques). While re-
search still focuses on efficient compression for huge
static meshes (Isenburg and Gumhold, 2003) ani-
mated meshes have become more and more important
and useful every where. However, the current tech-
niques for the compression of sequences of meshes
independently are inefficient.

Lengyel (Lengyel, 1999) suggested the decom-

posing of the mesh into submeshes whose motions
are described by rigid body transformations. The
compression was achieved by encoding the base sub-
meshes, the parameters of the rigid body transforma-
tions, and the differences between the original and the
estimated locations. Zhang et al. (Zhang and Owen,
2004) used an octree to spatially cluster the vertices
and to represent their motion from the previous frame
to the current frame with a very few number of motion
vectors. The algorithm predicts the motion of the ver-
tices enclosed in each cell by tri-linear interpolation
in the form of weighted sum of eight motion vectors
associated with the cell corners. The octree approach
is later used by K. Mueller et al. (Muller et al., 2005)
to cluster the difference vectors between the predicted
and the original positions. Very recently, Mamou et
al. (Mamou et al., 2006) proposed skinning based rep-
resentation. In their algorithm, the mesh is also par-
titioned, then each submesh in each frame is associ-
ated an affine motion and each vertex is estimated as a
weighted linear combination of the clusters motions.
Finally, the prediction errors are compressed using a
temporal DCT coding.

In prediction techniques, assuming that the con-
nectivity of the meshes doesn’t change, the neigh-
borhood in the current and previous frame(s) of the
compressed vertex is exploited to predict its loca-
tion or its displacement (J.H. et al., 2002; Ibarria
and Rossignac, 2003). The residuals are compressed
up to a user-defined error. For example, Ibarria and
Rossignac (Ibarria and Rossignac, 2003) extended the
parallelogram prediction used in static mesh compres-
sion to animation case and introduced two predictors:
Extended Lorenzo Predictor, a perfect predictor for
translations, andReplica Predictor, which is capa-
ble of perfectly predicting the location of the vertices
undergoing any combinations of translation, rotation,
and uniform scaling.

In PCA based approaches, Alexa et al. (Alexa and
Müller, 2000) used PCA to achieve a compact repre-
sentation of animation sequences. Later, this method
is improved by Karni and Gotsman (Karni and Gots-
man, 2004), by applying second-order Linear Pre-
diction Coding (LPC) to the PCA coefficients such
that the large temporal coherence present in the se-
quence is further exploited. Sattler et al. (Sattler et al.,
2005) proposed a compression scheme that is based
on clustered PCA. The mesh is segmented into mean-
ingful clusters which are then compressed indepen-
dently using a few PCA components only. Amjoun
et al. (Amjoun et al., 2006) suggest the use of local
coordinates rather the world coordinates in the local
PCA based compression. They showed that the local
coordinate systems are more compressable with PCA
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than the world coordinates.
Guskov et al. (Guskov and Khodakovsky, 2004)

used wavelets for a multiresolution analysis and ex-
ploited the parametric coherence in animated se-
quences. The wavelet detail coefficients are progres-
sively encoded. Payan et al. (Payan and Antonini,
2005) introduced the lifting scheme to exploit the
temporal coherence. The wavelet coefficients are
thereby optimally quantized. Briceno et al (Briceno
et al., 2003) transform the mesh sequences into ge-
ometry images which are then compressed using stan-
dard video compression.

3 OVERVIEW

The local coordinate system has an important prop-
erty that can be very useful for compression of ani-
mation. It exhibits a large clustering over time and the
locations of the vertex tend to form a cluster around
one position (over all frames). Regardless what kind
of deformation the vertices undergo, i.e. rotation, or
translation or scaling or combination of all three rela-
tions, the vertices will generally keep their positions,
at least between two successive frames.

Our technique uses this property to guide the clus-
tering process and to perform a predictive coder.

Basically, our algorithm consist of four steps:

1. Clustering process: The vertices are clustered
into a given number of clusters depending on their
motion in the LCFs. Indeed, the vertex should be-
long to the cluster where its deviation in the LCF
through all frames is very small compared to the
other LCFs. Thereby, the efficiency of the predic-
tion through a time increases. Moreover, the clus-
tering will preserve the global shape when DCT
coding is performed (spatially) in each cluster.

2. Lossless coding of LCFs:The locations of the
vertices that contribute to the construction of the
LCF of each cluster should be losslessly encoded.
In order to ensure that the decoder could use the
same LCF, we decode and reconstruct the LCF to
be used during the compression of the remaining
vertices.

3. Predictive coding: This step allows the reduc-
tion of space-time redundancy. It is performed on
the local coordinates rather than the world coor-
dinates, which makes the coding more efficient.
It allows the prediction errors to tend to be very
small. The powerfulness of the predictor strongly
relies on the clustering process. If the vertex is as-
sociated with a LCF whose motion is not similar
to its motion then the local coordinates of the ver-
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Figure 1: Overview of the compression pipeline.

tex will have a large variation over all frames and
the prediction will produce large delta vectors.

4. Transform-based coding or DCT: For further
compression, the coordinates of delta vectors are
represented as 1D signals then transformed into
frequency domain using DCT, producing uncor-
related coefficients. These coefficients are more
compressable with the entropy coding than delta
vectors. Moreover, many coefficients of low val-
ues can be zeroed without significant loss in visual
quality.

To avoid error accumulation that may occur, we
simulate the decoding process during encoding to
make sure that during the encoding, we use exactly
the same information available to decoding algorithm.
After the compression of each frame we should sub-
stitute the original vertex locations by the decoded lo-
cations.

4 COMPRESSION PIPELINE

Given a sequence of triangle meshesMf , f =
1, ..., F with V vertices andF frames (meshes), we
encode the first frame separately from the rest of the
frames in the sequence using static mesh compres-
sion (Gumhold and Amjoun, 2003).

An overview of the whole compression pipeline is
illustrated in Figure 1.

4.1 Local Coordinate Frames

4.1.1 Seed Triangles Selection

The first step in our algorithm is to findN seed trian-
gles upon which we construct the LCFs.
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Figure 2: Illustration of the local coordinate frames.

We selectN seed vertex using the far distance ap-
proach (Yan et al., 2001). The first seed is selected as
the vertex corresponding to the largest euclidian dis-
tance from the geometrical center of all vertices in the
first frame. The next seeds are selected one after the
other until allN seeds are selected whereas the next
seed is selected to be the vertex with the farthest dis-
tance from the set of already selected seeds.

We associate with each seed one of its incident tri-
angles and call this triangle the seed triangle. We de-
note the three vertices of seed triangle ofk-th cluster
in thef -th frame as(pf

k,1,p
f
k,2,p

f
k,3)

4.1.2 Local Coordinate Frame Construction

We assume that each cluster is initialized with the
three vertices of the seed triangle. Each clusterCk has
its own LCF defined on the seed triangle(p1,p2,p3)
as illustrated in figure 2. The origino is the center of
one of its three edges (typically(p1,p2)), thex-axis
(red arrow) points down the edge(p1,p2), they-axis
(green arrow) is orthogonal to thex-axis in the plane
of the seed triangle and thez-axis is orthogonal to the
x- andy-axis.

The transformation of a pointp to its local co-
ordinate systemq can be accomplished by an affine
transformation with a translationo and a linear trans-
formationT (T is an orthonormal matrix):

q = T(p − o)

In our algorithm, for each framef (1 ≤ f ≤ F )

and for each clusterCf
k (1 ≤ k ≤ N), we have

{Tf
k ,o

f
k} computed from the points of the seed tri-

angle(pf
k,1,p

f
k,2,p

f
k,3).

4.2 Motion in LCF Based Clustering

The clustering process starts with several seed trian-
gles upon which the LCFs are constructed. Then the
clustering is obtained by assigning the vertices to the
seed triangle in whose LCF they have minimal local
coordinate deviation across the F frames. The cluster-
ing process consists of the following steps:

1. Initializes theN clusterCk, k = 1, ..., N , to be
empty. All vertices are unvisited.

Figure 3: Results of the clustering process: dance with 14,
dolphin with 9, chicken with 10 and cow with 6 clusters.
Each cluster is colored differently and encoded separately.

2. Initializes the clusters with the three vertices of
their seed triangles upon which the LCFs are con-
structed.

3. Given an unvisited vertexpf
i , we do the follow-

ing:

• Transform its world coordinates into the
N LCFs constructed in each framef , so:
{qf

1,k,q
f
2,i, ...,q

f
N,i}, wheref = 1, ..., F .

• Compute the total deviation (motion) of the ver-
tex between each two adjacent framesf and
f − 1 in euclidian space:

θk,i =
F

∑

f=1

‖qf
k,i − q

f−1

k,i ‖2

θk,i represents the total motion of the vertexi in
the LCF associated with the clusterk. A small
value means that the vertex position has motion
that is similar toCk. Thus the vertex should
belong to the clusterk for which the deviation
is very small, notekmin:

kmin := argmin1≤k≤N{θk,i}

• We iterate over all vertices, adding the unvis-
ited vertex whose local coordinates are almost
invariant in theLCF to the clusterCk and store
its local coordinates for the next step (compres-
sion).
The iteration stops if no more candidate ver-
tices exist. When a vertex is added to a cluster,
it is marked as visited. We end up withN clus-
ters that haveVk vertices each. The results of
the clustering technique can be seen in figure 3

4.3 Differential Coding of LCFs

Generally, our approach first transforms the world co-
ordinates of each vertex into local coordinate frame
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of its cluster. Then, it performs the compression. At
reconstruction, the local coordinates are decoded then
transformed back to world coordinates. A lossy com-
pression of the vertices of the seed triangle may dam-
age the coordinate frames at the decoding step and
as a result, the transformed local coordinates will be
damaged. Therefore, the LCF of each cluster should
losslesslyencoded.

We assume that the LCFs of the first frame is al-
ready encoded. For each frame and for each new LCF,
we encode the locations of their three vertices with the
differential encoding. We subtract their coordinates
in previously encoded frame from its current coordi-
nates. We quantize the prediction differences, we ap-
ply the arithmetic coder to the resulting integers and
we update the current locations with the decoded lo-
cations.

4.4 Spatial-Temporal Predictive Coding

Once the segmentation process is finished, and all
LCFs are decoded (during the coding), the prediction
assumes that the current point does not change rela-
tive to the LCF of its cluster. So, for each new point
p

f
k,i in the clusterCf

k of the framef , one transforms

its world coordinate into local coordinatesq
f
k,i. Then,

one predicts its location from the decoded local coor-
dinates of its location in previous framef − 1 by:

pred = q̃
f−1

k,i

The delta vectors are computed:

δ
f
k,i = q

f
k,i − pred

Unlike the current predictive animated mesh com-
pression techniques (J.H. et al., 2002; Ibarria and
Rossignac, 2003; Muller et al., 2005) where the delta
vectors are encoded in world coordinate frame, here
they are computed in the local coordinates.

4.5 DCT Coding

After prediction, we represent the x,y,z coordinates of
the delta vectors of each clusterC

f
k as 1D separate

signals of lengthVk − 3 (Vk − 3 is the number of
vertices in the clusterCk, minus the three vertices of
seed triangle) and encode them with DCT coding.

For each cluster we have three signals:

X
f
k = {xf

k,4, x
f
k,5, ..., x

f
k,Vk

}

Y
f
k = {yf

k,4, y
f
k,5, ..., y

f
k,Vk

}

Z
f
k = {zf

k,4, z
f
k,5, ..., z

f
k,Vk

}

wherek ∈ 1, ..., N andf ∈ 1, ..., F .
For the whole sequences, the number of signals

we obtain isN × 3 × F . We transform each sig-
nal vector into the frequency domain using 1D DCT
to obtain a more compact representation. Simple 1D
DCT is defined as:

X f
k,l = α(l)

Vk
∑

i=4

x
f
k,icos(

π(l − 4)(2(i − 4) + 1)

2(Vk − 3)
)

for l = 4, ..., Vk, andα(l) is defined as:

α(l) =

{

1√
Vk−3

for l = 4
√

2

Vk−3
for l 6= 4

The inverse DCT is similarly defined as:

x
f
k,i =

Vk
∑

l=4

α(l)X f
k,lcos(

π(l − 4)(2(i − 4) + 1)

2(Vk − 3)
)

wherei = 4, ..., Vk.
After DCT transform, the majority of signal en-

ergy concentrates on the low frequencies and little on
the high frequencies. Hence the high frequencies (in-
significant coefficients) can be zeroed yielding a sig-
nificant reduction in the overall entropy and the signal
can then be represented by few high value coefficients
without significant distortion. Note that the high fre-
quencies close to zero can also be set to zero automat-
ically using quantization module only.

In our algorithm, we arrange the DCT coefficients
from high to low values to easily set the coefficients to
zero from bottom to a certain number of coefficients
depending on the compression rate and the desired
quality.

4.6 Quantization and Arithmetic Coder

The low frequency coefficient (high values) corre-
spond to the coarse details of the cluster while the
high frequency coeffients (low values) correspond to
the fine details. On the other hand the human eye can
perceive the coarse details much more accurately than
the fine details. This means that if we use a coarse
quantization or set the low value coefficients to zero,
the cluster will still retain an acceptable visual quality
and we will obtain better compression ratio.

In this version of the algorithm, we uniformly
quantize the coefficients to a user specified number
of bits per coefficient. Typically, we use a number be-
tween 8 and 12 bits, depending on how many DCT
coefficients we zeroed. The more coefficients that are
zeroed, the more coarser the quantization is, and that
better the compression will be at the expense of visual
appearance. The finer details can be preserved when
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Figure 4: Influence of different numbers of zeroed DCT
coefficients(%): (a) on the reconstruction quality KGerror
and (b) on the bitrate using different number of clusters.

only a finer quantization is used and few coefficients
are thrown away. For example, if50% of coefficients
have zero values then we use10 bits quantization. If
90% we use8 bits only.

One might possibly improve on the present quan-
tization approach by introducing different levels of
quantization in each cluster. The high frequencies can
be coarsely quantized while the low frequencies can
finely quantized.

Note that, the delta vectors of the first frame are
encoded using 12 bits quantization while the delta
vectors of the LCFs in the whole sequence are quan-
tized to 16 bits.

For further compression the resulting integer val-
ues are well encoded with an arithmetic coder.

4.7 Reconstruction

To reconstruct the original data cluster, we simply de-
quantize the coefficients and perform the inverse DCT
to find out the delta vectors and add these latter to the
predicted location from the perviously decoded frame
to recover the original local coordinates. Then, we
transform them to world coordinates.

5 EXPERIMENTAL RESULTS

To show the efficiency of our codingPDCT, we mea-
sured the number of bits per vertex per frame (bpvf)
and we used the KGerror metric introduced by Karni
and Gotsman (Karni and Gotsman, 2004) to measure
the distortion in the reconstruction animation with re-
gard to the original animation. We used four anima-
tions generated in different ways: the chicken, cow,
dolphin and dance sequences.

We compared the compression performance of our
algorithm against several techniques: AWC (Guskov
and Khodakovsky, 2004), TLS (Payan and Antonini,

original

9.7 bvpf, 0.009 1.2 bvpf, 0.48 0.9 bvpf, 0.49

5.9 bvpf,0.009 1.5 bvpf,0.12 1bvpf, 0.14

Figure 5: Reconstruction frame60 of dolphin sequence,
original mesh (top arrow); using10 clusters (middle arrow)
and40 cluster(bottom arrow). From left to right: using dif-
ferent numbers of non-zero coefficients (%) and quantiza-
tion levels: (100%,12 bits), (2%,12 bits) and (2%,8 bits),
at various bit rates in bit per vertex per frame (bvpf) and
decoding error (KG-error).

2005), PCA (Alexa and Müller, 2000), KG (Karni
and Gotsman, 2004) and CPCA (Sattler et al., 2005).

Influence of Cluster Numbers:The number of clus-
tersN is an important compression parameter that af-
fects the compression performance. The bigger this
number is, the smoother the shape reconstruction will
be and the lower the bit rate that is obtained. If this
number is too small, the vertices of the same cluster
may behave differently relative to their LCF. Thereby,
the prediction in the LCF becomes poor yielding poor
compression. In opposite, IfN is big, the variation of
the vertex relative to the LCF of its cluster becomes
smaller and the prediction is more effective.

Figure 4 illustrates the curves DCT coeffi-
cients/bitrate and coefficients/KGerror for different
numbers of clusters.

Figure 6 also shows the rate-distortion curves for
different animations at different numbers of clusters:
chicken using10, 25 and40 clusters, dolphin using
10 and40 and dance using10, 20 and40 clusters. We
observe that40 clusters provide better error quality
and bit rate than using10 or 20 clusters.

Influence of DCT Coefficients:To find the influence
of the number of DCT coefficients on the rate and on
the reconstruction of animation, we have run our cod-
ing on different resolution. Figure 4 shows the re-
sults of the number of these coefficients percent for
chicken animation. When more coefficients are dis-
carded, better compression (b) is achieved at the ex-
pense of the reconstruction quality (a).

The effect of the cluster and coefficient numbers
can also be seen in figures 5 and 7.

Influence of Quantization Level: Figure 8 illus-
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Figure 6: Rate distortion curves for the chicken (a), cow (b), dolphin (c) and dance (d) sequences usingKG error.

trates the reconstruction samples of cow animation
for different quantization levels. If a coarse quantiza-
tion is used then the low value DCT coefficients will
be zeros. Consequently, the fine details are lost and
only the coarse details are detected.

Comparison to other Coders:Figure 6 illustrate the
results of running of our coder on three animations
compared with different methods. At first glance, we
can see that our approach achieves a better rate dis-
tortion performance than the standard PCA, LPC and
TG for the three models. This result is obvious since
the animation coding based on static techniques only
exploit the spatial coherence and the linear prediction
coding only uses the temporal coherence. Further-
more, the standard PCA only approximates the global
linearity and is less effective for nonlinear animation.

For the CPCA and AWC algorithms, we achieve
better or similar results. Figure 6 (b) shows that for
the cow animation which contains extreme deforma-
tions, our method is significantly better than the KG
method and comes close to the CPCA and to wavelet
based methods (LTS and AWC).

For the dolphin and the chicken sequences our
method performs better than all the above methods.
This improvement is due to the clustering of the
model into rigid parts making the prediction more ef-
ficient in the local rather than the world, coordinates.

6 CONCLUSION

In this paper we introduced a simple and efficient
compression technique for dynamic 3D mesh based
on predictive and DCT coding. First, the algorithm
clusters the vertices into a given number of clusters
depending on their motion in their LCF. This tech-
nique is simple and can be well adapted for differ-
ent purposes. Second, the location of each new ver-
tex in the current frame, is predicted from its location
in the previous frame. The effectiveness of predic-
tion coding depends strongly on the clustering pro-

cess. Indeed, if the vertices are well clustered then
the motion relative to the LCF between two succes-
sive frames tends to be zero. Third, the delta vectors
are further encoded with DCT transform to reduce the
code length since the entropy in frequency domain is
smaller than the entropy coding of delta vectors. The
resulting DCT coefficients are quantized and encoded
with an arithmetic coder.

Experimental results show that our algorithm is
competitive when compared to the state-of-the-art
techniques. In this context, it is important to note
that our coder is applicable to meshes and point-based
models regardless of how the animation is generated.
The drawback of the proposed approach is that it
doesn’t support progressive transmission. Moreover,
for a very low and fixed number of coefficients, not all
frames can be reconstructed at the same desired level
of quality.

Future Improvement: The clustering used in our ap-
proach produces clusters of different sizes. Thereby,
different numbers of DCT coefficients are produced.
If one chooses a fixed number for all clusters then
there may be too few coefficients to recover the clus-
tered vertices at a desired accuracy and possibly too
many coefficients for other clusters. Therefore, the
selection of the number of significant coefficients and
quantization level, is necessary to properly recover
the original data of each cluster with a certain accu-
racy. Therefore, we plan to introduce a rate distortion
optimization that trades off between rate and the total
distortion, overcoming the aforementioned drawback.
We also plan to develop temporal DCT in combina-
tion with predictive coding in local coordinates. This
approach is more suitable for progressive transmis-
sion. For a large sequence of meshes, the animation
may become more complex and the clustering can
produce poor prediction for some successive frames.
Therefore, we propose to cut the sequence into short
clip and update the clustering for each new coming
clip. The first frame of each clip should be encoded
spatially as I-frame.
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(original)

(40,12,100)

(40,12,50)

(40,12,30)

(40,12,2)

(10,12,2)

(40,8,2)

(10,8,2)

Figure 7: Reconstruction sample frames of dolphin se-
quence. The numbers in the first column are the number
of clusters, quantization level and coefficient number (%).
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