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Abstract: This paper describes an algorithm to compute the envelope of a set of points in a plane, which generates 
convex or non-convex hulls that represent the area occupied by the given points. The proposed algorithm is 
based on a k-nearest neighbours approach, where the value of k, the only algorithm parameter, is used to 
control the “smoothness” of the final solution. The obtained results show that this algorithm is able to deal 
with arbitrary sets of points, and that the time to compute the polygons increases approximately linearly 
with the number of points. 

1 INTRODUCTION 

The automatic computation of a polygon that 
encompasses a set of points has been a topic of 
research for many years. This problem, identified as 
the computation of the convex hull of a set of points, 
has been addressed by many authors and many 
algorithms have been proposed to compute the 
convex hull efficiently (Graham, 1972; Jarvis, 1973; 
Preparata, 1977; Eddy, 1977). These algorithms 
compute the polygon with the minimum area that 
includes all the given points (or minimum volume 
when the points are in a three-dimensional space). In 
this context, given a set of points, there is a single 
solution for the convex hull. 

For certain applications, however, the convex 
hull does not represent well the boundaries of a 
given set of points. Figure 1 shows one example. In 
this example, where the points could represent trees 
in a forest, the region defined by the convex hull 
does not represent the region occupied by the trees. 

This same problem, or similar problems, has 
already been addressed by other authors (e.g. 
(Edelsbrunner, 1983; Galton, 2006; Edelsbrunner, 
1992a; Edelsbrunner, 1992b; Amenta, 1998)). In 
(Edelsbrunner, 1983) the concept of alpha-shapes 
was introduced as a solution to this same problem. 
The concept of alpha-shape was further developed in 
(Edelsbrunner, 1992a; Edelsbrunner, 1992b) and 

other solutions, such as crust algorithms (Amenta, 
1998), were also proposed. However, most of the 
proposed approaches address the reconstruction of 
surfaces from sets of points, belonging to that 
surface and, therefore, are not optimized for the 
referred problem. 

 

 
Figure 1: The area of the convex hull does not represent 
the area occupied by the set of points. 

In other words, little work was devoted to the 
problem described in this paper, as also recognized 
by Galton et al. (Galton, 2006). In their paper, 
Galton et al. describe this same problem and present 
a few examples of applications that could benefit 
from a general solution to compute what they call 
the “footprint” of a set of points. They also describe 
the existing approaches, including the Swinging 
Arm algorithm (SA), and define a criterion with 9 
“concerns” to evaluate those solutions. We therefore 
refer to this paper for a description of previous work 
on this subject. 
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This paper also addresses this problem, by 
proposing a new algorithm for the computation of a 
polygon that best describes the region occupied by a 
set of points. 

The algorithm described in this paper was 
developed within the context of the LOCAL project 
(LOCAL, 2006) as part of a solution for a broader 
problem. The LOCAL project aims to conceive a 
framework to support the development of location-
aware applications, and one of its objectives is to 
develop a process to automatically create and 
classify geographic location-contexts from a 
geographic database (Santos, 2006). As part of this 
process, we faced the problem of identifying the 
“boundaries” of a set of points in the plane, where 
the points represent Points Of Interest (POIs).  

In order to solve this problem, we developed a 
new algorithm to compute a polygon representing 
the area occupied by a set of points in the plane. 
This new algorithm filled the needs of our research 
project and, we believe, can be used in similar 
situations where the assignment of a region to a set 
of points is required. 

This paper is organized as follows: section 2 
presents the problem of creation of polygons given a 
set of points. Section 3 describes the Concave Hull 
algorithm developed for the computation of 
polygons with convex and non-convex shapes. 
Section 4 introduces the implementation undertaken, 
presents some examples of the obtained results, and 
discusses performance issues through numerical 
evaluation of the implemented algorithm. Section 5 
concludes with some remarks and future work. 

2 COMPUTING REGIONS’ 
BOUNDARIES 

The problem we faced in the LOCAL project was 
how to calculate the boundary of a geographic area 
defined by a set of points in the geographic space. 
These points represent POIs which are a common 
part of geographic databases and navigation systems. 
Figure 2 shows an example of an artificial set of 
POIs within a given geographic area. In this data set, 
one (we, humans) can easily identify 7 different 
regions, in addition to a number of “noise” points. 

Our goal in the LOCAL project was to 
automatically detect these regions, while removing 
the noise points, and calculate the polygons that 
define the respective boundaries. The final result 
should be as shown in Figure 3. 

 

 
Figure 2: Initial data set. 

The approach we adopted to achieve the goal 
depicted in Figure 3 was to divide the identification 
of the groups of points (identification of the points 
belonging to each region and noise removal), from 
the calculation of the polygons describing those 
regions, as described in (Santos, 2006), and also as 
suggested in (Galton, 2006). 
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Figure 3: The goal. 

For the first phase, an implementation of the 
Shared Nearest Neighbours (SNN) clustering 
algorithm was used (Ertoz, 2003). The SNN is a 
density-based clustering algorithm that has as its 
major characteristic the fact of being able to detect 
clusters of different densities, while being able to 
deal with noise and with clusters with non-globular 
(and non-convex) shapes. SNN uses an input 
parameter, k, which can be used to control the 
granularity of the clustering process. The groups of 
points depicted in Figure 3 were obtained using 
SNN with k=8. The noise points were also discarded 
by SNN (slashed points in Figure 3). In this 
example, the task of SNN was easy, as the seven 
groups of points are clearly separated from the noise 
points. However, with real POIs, the regions might 
not be so clearly defined and the regions might be of 
very “strange” shapes. 

The second phase of the process is, for each 
group of points found by SNN, to compute the 
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corresponding polygon that defines the boundaries 
of the region. In this data set there are two distinct 
types of regions: the “circle shaped” regions (A, C 
and G), and the other regions with less regular 
shapes (B, D, E and F). For the first group, there are 
a set of algorithms that could be used to calculate the 
convex hull of the points. However, for the other 
group of regions, the convex hull approach is not 
clearly a good solution, as shown in Figure 1 for the 
D region. 

In the next section we describe the solution that 
was developed to overcome the limitations of the 
convex hull approach for this kind of applications. 

3 THE CONCAVE HULL 
ALGORITHM 

The goal of the algorithm described in this section 
is, given an arbitrary set of points in a plane, to find 
the polygon that best describes the region occupied 
by the given points. While there is a single solution 
for the convex hull of a set of points, the same is not 
true for the “concave hull”. In the statement that 
defines our goal (previous paragraph), the 
expression “best describes” is ambiguous, as the 
“best” might depend on the final application. As an 
example, consider the two polygons shown in Figure 
4, which describe the region E. Which of the two 
polygons, a) or b), “best describes” region E? 

 

 
a) 

 
b) 

Figure 4: Which one is the best? Two polygons for the 
same set of points. 

Since there are multiple solutions (polygons) for 
each set of points, and the “best” solution depends 
on the final application, our approach to compute the 
polygons should be flexible enough to allow the 
choice of one among several possible solutions for 
the set of points. The other implication of this 
ambiguous definition of “best” is that it turns very 

difficult to assess the correctness of any algorithm 
used to compute the polygon, and even to compare 
different algorithms. For this last purpose, we will 
adopt the criteria described in (Galton, 2006) (see 
Section 4). 

3.1 k-Nearest Neighbours Approach 

Our approach to calculate the Concave Hull of a set 
of points is inspired in the Jarvis’ March (or “gift 
wrapping”) algorithm used in the calculation of the 
convex hull (Jarvis, 1973). In this algorithm, the 
convex hull is calculated by finding an extreme 
point, such as the one with lowest value of Y (in the 
yy axis), and then by finding the subsequent points 
by “going around” the points – the next point is the 
one, among all the remaining points, that is found to 
produce the largest right-hand turn. 

The approach adopted for the calculation of the 
concave hull is similar, except that only the k-nearest 
neighbours of the current point (last founded vertex) 
are possible candidates to become the next point in 
the polygon. Figure 5 illustrates this concept. 

The first step of the process is to find the first 
vertex of the polygon (point A in Figure 5a) as the 
one with the lowest Y value. In the second step, the 
k points that are nearest to the current point are 
selected as candidates to be the next vertex of the 
polygon (points B, C and D in Figure 5a, for k=3). In 
this case, point C is selected as the next vertex of the 
polygon, since it is the one that leads to the largest 
right-hand turn measured from the horizontal line 
(xx axis) that includes the first point (point A). Since 
C is now a vertex of the polygon (as well as A), it 
must be removed from subsequent steps while 
searching for the k-nearest neighbours. 

In the third step, the k-nearest points of the 
current point (point C) are selected as candidates to 
be the next point of the polygon (points B, D and E 
in Figure 5b). In this case, the point that results in 
the largest right-hand turn, corresponding to the 
largest angle between the previous line segment and 
the candidate line segment, is selected (point E). As 
before, point E is now part of the polygon and will 
never be considered in the next steps. 

The process is repeated until the selected 
candidate is the first vertex. For the first vertex 
(point A) to be elected as a candidate, it must be 
inserted again into the data set after the first four 
points of the polygon are computed (before that, if 
the first point is selected as the best candidate, a 
triangle is computed). By the end of the process, the 
polygon is closed with the first and the last point 
being the same (point A). 
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a)    b) 

Figure 5: The k-nearest neighbours approach. 

In this example, three candidates were 
considered in each step (k=3). If a larger number of 
candidates were considered, the computed polygon 
would become “smoother”. The number of 
neighbours cannot, however, be larger than the 
number of remaining points in each step. If, in a 
particular step, the number of remaining points 
(candidates) is smaller than k, then the algorithm 
automatically considers all the remaining points 
(without any user intervention). 

This approach works for the majority of the 
cases. However, there are two special cases that 
must be pointed out. One of them is when the 
selected candidate results in a polygon edge that 
intersects one of the already computed edges. This 
case is depicted in Figure 6a. In this example (step 
5), the candidate that results into the largest right-
hand turn is point B. However, this candidate leads 
to a polygon edge that intersects one of the existing 
edges and, therefore, should be discarded. In cases 
like this, the next candidate should be considered 
(point G in this example). If none of the candidate 
points (the k-nearest neighbours) is acceptable, then 
a higher number of neighbours must be considered, 
by increasing the value of k and starting again. 

The other special case may occur when the 
spatial density of the initial set of points is not 
uniform. Figure 6b illustrates this case with a set of 
points where there are clearly two different 
“regions”. This case should not be very common if 
the initial data set has gone through the clustering 
process (e.g using SNN), since, in that case, this data 
set would be separated into two different clusters. 
Anyway, in an arbitrary data set this special situation 
may occur and must be addressed. 

 

 
 

a) 

 
 

b) 
Figure 6: Special cases: a) where the new edge intersects 
another existing edge of the polygon; b) where the points 
are not uniformly distributed in the space. 

In this second case, the first point of the polygon 
is in the lower-left region (the point with the lowest 
Y value) and, therefore, the process starts by looking 
for candidates that are near this first point. However, 
since the points in the upper-right group are too far 
away from the points in the lower-left group, they 
are never considered as candidates if the number of 
neighbours (value of k) considered in each step of 
the process is small. As a consequence, the points in 
the upper-right group are left out of the polygon. To 
solve this issue, a higher number of neighbours must 
be considered. Since the value of k chosen by the 
user might be too small, the algorithm must verify, 
at the end, that all the points are within the generated 
polygon. If not, a higher value of k is automatically 
tried by the algorithm using a recursive process that 
stops when all the points are within the computed 
polygon. 

3.2 Concave Hull Algorithm 

The steps behind the Concave Hull concept 
described in the previous section were used to 
develop the algorithm that is shown on the next page 
(Algorithm 1). 
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Algorithm 1: The Concave Hull algorithm. 

CONCAVEHULL [pointsList, k] 
Input. List of points to process (pointsList); number of neighbours (k) 
Output. An ordered list of points representing the computed polygon 
 
 1: kk ← Max[k,3]   ► make sure k>=3 
 2: dataset ← CleanList[pointsList]  ► remove equal points 
 3: If Length[dataset] < 3 
 4: Return[null]  ► a minimum of 3 dissimilar points is required 
 5: If Length[dataset] = 3 
 6: Return[dataset]  ► for a 3 points dataset, the polygon is the dataset itself 
 7: kk ← Min[kk,Length[dataset]-1]  ► make sure that k neighbours can be found 
 8: firstPoint ← FindMinYPoint[dataset] 
 9: hull ← {firstPoint}  ► initialize the hull with the first point 
10: currentPoint ← firstPoint 
11: dataset ← RemovePoint[dataset,firstPoint]  ► remove the first point 
12: previousAngle ← 0 
13: step ← 2 
14: While ((currentPoint≠firstPoint)or(step=2))and(Length[dataset]>0) 
15: If step=5 
16:  dataset ← AddPoint[dataset,firstPoint]  ► add the firstPoint again 
17: kNearestPoints ← NearestPoints[dataset,currentPoint,kk]  ► find the nearest neighbours 
18: cPoints ← SortByAngle[kNearestPoints,currentPoint,prevAngle] ► sort the candidates 
(neighbours) in descending order of right-hand turn 
19: its ← True 
20: i ← 0 
21: While (its=True)and(i<Length[cPoints])  ► select the first candidate that does not intersects any 
of the polygon edges 
22:  i++ 
23:  If cPointsi=firstPoint 
24:   lastPoint ← 1 
25:  else 
26:   lastPoint ← 0 
27:  j ← 2 
28:  its ← False 
29:  While (its=False)and(j<Length[hull]-lastPoint) 
30:   its ← IntersectsQ[{hullstep-1,cPointsi},{hullstep-1-j,hullstep-j}] 
31:   j++ 
32: If its=True  ► since all candidates intersect at least one edge, try again with a higher number of neighbours 
33:  Return[ConcaveHull[pointsList,kk+1]] 
34: currentPoint ← cPointsi 
35: hull ← AddPoint[hull,currentPoint]  ► a valid candidate was found 
36: prevAngle ← Angle[hullstep,hullstep-1] 
37: dataset ← RemovePoint[dataset,currentPoint] 
38: step++ 
39: allInside ← True 
40: i ← Length[dataset] 
41: While (allInside=True)and(i>0)  ► check if all the given points are inside the computed polygon 
42: allInside ← PointInPolygonQ[dataseti,hull] 
43: i-- 
44: If allInside=False 
45: Return[ConcaveHull[pointsList,kk+1]]  ► since at least one point is out of the computed polygon, 
try again with a higher number of neighbours 
46: Return[hull]  ► a valid hull was found! 
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This algorithm makes use of the following 
functions: 
CleanList[listOfPoints]: returns the given 
listOfPoints with no more than one copy of each point 
(removes duplicates). 
Length[vector]: returns the number of elements of the 
given vector. 
FindMinYPoint[listOfPoints]: returns the element 
({x,y} pair) of the given listOfPoints with smaller 
value of Y. 
RemovePoint[vector,e]: returns the given vector 
without the given element e. 
AddPoint[vector,e]: returns the given vector with 
the given element e appended as the last element. 
NearestPoints[listOfPoints,point,k]: returns a 
vector with the k elements of listOfPoints that are 
closer to the given point. In the current implementation, 
this function uses the Euclidean distance to select the 
nearest points. However, the distance functions can be 
used. This function internally re-computes the value of k 
as the minimum value between the given value of k and 
the number of points present in the dataset. 
SortByAngle[listOfPoints,point,angle]: returns 
the given listOfPoints sorted in descending order of 
angle (right-hand turn). The first element of the returned 
list is the first candidate to be the next point of the 
polygon. 
IntersectQ[lineSegment1,lineSegment2]: returns 
True if the two given lines segments intersect each other, 
and False otherwise. 
PointInPolygonQ[point,listOfPoints]: returns 
True if the given point is inside the polygon defined by 
the given listOfPoints, and False otherwise. 

4 IMPLEMENTATION AND 
RESULTS 

The algorithm described in section 3 was 
implemented as a Mathematica (Mathematica, 2006) 
package, which was used to evaluate the algorithm 
and also as a tool to fulfil our project needs. In the 
following subsections we present a few examples of 
the hulls computed by this algorithm, as well as 
some results on its performance. The developed 
code (one Mathematica package) is available online 
on the web site of the LOCAL project, where the 
algorithm can be tried through a web interface. 

4.1 Results 

The polygons shown in Figure 3 (section 2) and 
Figure 4 (section 3) were all computed using the 
algorithm described in this paper. In Figure 7 two 
other examples are presented. 
 

 
a) 

 
b) 

Figure 7: Two hulls computed by the proposed algorithm. 

Figure 7a shows a case where the shape of the 
region occupied by the points is very irregular. For 
this data set, a value of k=5 was used. The other 
case, in Figure 7b, illustrates the result obtained for a 
set of points with a large variation in the spatial 
density of the points and with two regions. In this 
example, the algorithm was started with k=3 but, in 
order to include the right-most group of points, the 
algorithm automatically increased the value of k up 
to 18. Both results were obtained with the lowest 
value of k that permits the computation of the 
polygon. Using higher values of k would lead to 
“smoother” polygons. 

The proposed algorithm was already used in a 
real application that required the definition of 
geographic location contexts that are used to identify 
in which particular scenario a mobile user is located. 
The definition of the regions was done analysing a 
geographic database that integrates a total of 18 914 
POIs (Santos, 2006). 

4.2 Performance 

In order to evaluate the performance of the proposed 
algorithm in terms of computational load, the time 
used to compute the polygons was measured for 
several data sets of different sizes. The used test data 
sets were randomly generated within the space of a 
circle with unitary radius. For each data set, different 
values of k were also used. Each point in the 
following graphs was obtained by averaging the 
several time values needed to process 20 different 
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data sets. The obtained results are shown in Figure 8 
and Figure 9. 
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Figure 8: Time to compute the polygons vs. the number of 
points. 
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Figure 9: Time to compute the hull vs. the value of k. 

In these graphs, the absolute values of the time 
used to compute the polygons is of less importance, 
since they depend on the used computer. Instead, 
these results are intended to assess the trends in the 
computing load when some parameters are changed. 
Moreover, these results were obtained from a 
Mathematica implementation of the algorithm, that 
has not been optimised for speed. The results 
presented here were obtained by running the 
algorithm in an ordinary Pentium 4-M at 2,2 GHz 
with 768 Mbytes of RAM. 

Figure 8 shows the time (in seconds) used to 
compute the hulls for data sets of size 10, 25, 50, 
100, 250, 500 and 1000 points. The upper line 
represents the time values obtained when the 
algorithm was started with k=3. The lower lines 
represent the time values when the algorithm was 
started with k=10 and k=20, respectively. However, 
in the three cases and for some of the data sets, the 
algorithm recursively increased the value of k to go 
around the special cases described in subsection 3.1. 
These results show that the time to compute the 
polygons increases approximately linearly with the 

number of points (note the log-log scales used in the 
graph). 

The other result is that the computing time is 
smaller for higher values of k. This can be explained 
by the fact that, by starting with a higher k (e.g. 
k=20), the time to try lower values of k (e.g. 3 to 19) 
that might lead to special cases is removed from the 
total time. This is better shown in Figure 9, where 
the time to compute the hulls is shown as a function 
of the initial value of k, for k=3, 5, 10, 20 and 30, for 
two different sizes of the data set (25 and 250 points 
each). Here it is clear that lower values of k result in 
higher computing times. Figure 9 also shows the 
standard deviation on the time taken to compute the 
different 20 data sets for each value of k. Here, the 
general trend is to observe a lower variation for 
higher values of k than for lower values. 

4.3 More General Assessment 

Using the criteria defined in (Galton, 2006), and the 
same nomenclature where S denotes the given set of 
points and R(S) refers to the proposed region 
representing those points, the “concave hull” can be 
described as follows: 

1. Outliers are not permitted, meaning that all the 
points of S are within the computed polygon. 

2. There are always points of S on the boundary 
of R(S). 

3. The computed “concave hull” (polygon) is 
topological regular (unless the points are 
collinear). 

4. The “concave hull” is connected. 
5. The “concave hull” is polygonal. 
6. The boundary of the “concave hull” is a 

Jordan curve (unless the points are collinear). 
7. In some cases, such as in region D in Figure 3, 

large areas of empty space are excluded from 
the “concave hull”, unless a very large value 
for k is used. In other cases, such as the one 
shown in Figure 7b, the large area of empty 
space in the upper-left region of the data set is 
maintained within the computed polygon. 

8. The generalization of the Concave Hull 
algorithm to three dimensions might be 
possible, but not easily. 

9. The analysis of the computational complexity 
of the Concave Hull algorithm is still future 
work. 

Comparison of the Concave Hull algorithm with 
the SA algorithm described in (Galton, 2006) 
resulted in the following advantages of the Concave 
Hull. First, the use of the Concave Hull does not 
require any previous knowledge of the data set in 
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order to choose the value of k. Starting the algorithm 
with k=3 always leads to a polygon with the 
characteristics described in the above criteria. On the 
other hand, if the SA algorithm is started with a too 
low value for r, the result may not be a regular 
polygon. Therefore, the choice of r for SA requires a 
previous knowledge of the data set. This 
characteristic of the Concave Hull makes it suitable 
to process many data sets representing different 
regions, and where the spatial density of points in 
each region can be very different. Second, the 
Concave Hull algorithm adapts itself to the 
variations in the spatial density of the points within 
the same data set, as shown in Figure 7b. On the 
other hand, it seams that the SA algorithm uses a 
constant value of r to select the list of candidates to 
become the next vertex of the polygon, therefore not 
being able to adapt to variations in the spatial 
density of the points. 

5 CONCLUSIONS 

In this paper we described an algorithm to compute 
the “concave hull” of a set of points in the plane. 
The algorithm is based in a k-nearest neighbours 
approach and is able to deal with arbitrary sets of 
points by taking care of a few special cases. The 
“smoothness” of the computed hull can also be 
controlled by the user through the k parameter. 

The presented algorithm has as advantages the 
fact that it can deal with non-convex (concave) hulls 
as well as convex ones, and the fact that the user can 
adapt the polygons to its needs by choosing the k 
parameter. The algorithm was implemented as a 
Mathematica package, and the obtained results show 
that the time to compute the “concave hull” 
increases approximately linearly with the number of 
points. 

Future work on this subject includes the 
improvement of the algorithm implementation, 
namely through the use of a more efficient function 
to calculate the angles depicted in Figure 5, and a 
more efficient function to verify if two line segments 
intersect each other. The computational complexity 
of the proposed algorithm is also a subject for future 
analysis. 
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