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Abstract: Forman introduced in (Forman, 1998) a theory for cell complexes that is a discrete version of the well known

Morse theory. Forman theory finds several applications in digital geometry and image processing where
the data to be processed are discrete, see for instance (Lewiner et al., 2002a), (Lewiner et al., 2002b). In

(DeFloriani et al., 2002b), we have introduced a Smale-like decomposition of a scalaf fiefithed on a
triangulated domai based on aiscrete gradient fielthat simulates well the behavior of the gradient field

in the differentiable case. Here, we extend our discrete gradient vector field so that the extended form coincides
with a Forman gradient field. The extended gradient field does not change the Smale-like decomposition

components and, thus, inherits properties of both smooth Morse and discrete Forman functions.

1 INTRODUCTION (Watson et al., 1985) and (Nackman, 1984). Then,
Morse theory is used to extract critical points and

Morse theory is a powerful tool for understanding the cfitical lines that bound the cells of a Morse com-
topology and the geometry of a manifold on which plex. This operation depends on the approximation

a C2-differentiable function is defined. This theory Performed and is expensive in term of computation
has been developed in the middle of the last cen- ime and memory space. To reduce that, other au-
tury by Thom, Morse, Milnor and Smale. ArG/- thors tried to treat the data of a two-d|men5|_onal_|m-
differentiable function (withn > 2) can be approxi-  29€ (Peucker and Douglas, 1_975)and (J.Toriwaki and
mated with its derivatives by a Morse function, (Mil- Fukumura, 1975) by performing a local study around
nor, 1963). Thom (Thom, 1949), followed by Smale each paint. Other authors (Bajaj and Shikore, 1998),
(Smale, 1960), has shown that a manifilééndowed (Bajaj_ et al., 1998) ano! (Edelsbrunner et al., _200.1)
with a Morse function admits £W representation have interpolated the discrete data by piecewise lin-
composed of cells, callestabld or unstablg man- ear functions, loosing, thus, the differentiability ad-

ifolds. Each cell is associated with a critical point Vantages.

of the function. This decomposition is based on the In 1998, Forman introduced for cell complexes a
study of the behavior of the gradient vector field of the novel theory thatis a discrete equivalentto Morse the-
function. Another decomposition of the manifold into ory (Forman, 1998). He has proven similar results to
handles can be performed by following the growth of those proven within the smooth Morse theory. For-
level sets of the function (Milnor, 1963). The topol- man theory handles the data discretely in a new way
ogy (i.e., the homotopy type) of the level sets changes differently from all the other methods known simu-
when a critical point is reached. Thus, critical points lating the differentiable case. Forman succeeded to
have a crucial role in Morse theory. prove all the main theorems of smooth Morse the-
For a discrete scalar field, the field values are known ory for discrete functions. Forman theory is finding
only on a discrete set of points scattered over a grid several applications in computer graphics (see, for in-
(regular or irregular). To study a scalar field, an inter- stance, (Lewiner et al., 2002b) and (Lewiner et al.,
polation by a differentiable function is usually done, 2002a)).
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In (DeFloriani et al., 2002b), we have intro- 2 BACKGROUND
duced a Smale-like decomposition a of triangulated
dimensional domaiM associated with a scalar field | this Section we recall some fundamental notions
f. We deduced a discrete gradientvector flétdd f,  on functions and some combinatorial notions that we
which we have been used in (DeFloriani et al., 2002a) need in the remainder of the paper.
to extract, and classify critical points and to extract Let f be a differentiable real-valued function de-
a discrete Morse decomposition that represents thefined on a manifold of dimensionn. The gradient
topology structure of the field. We have shown in s ¢ ata pointP € M is a vectoiGrade f tangent tavi

(Danovaro et al., 2003) that our discrete gradient vec- ¢ p that is defined by the first derivatives bfat P.
tor field simulates well the behavior of the differen- We haveGradef — (af of ), where(xe, ..., %n)

tiable gradient field case. L0 O .
Here, we construct an extended form of our dis- &€ local coordinates arouril The set ojall gradi-
crete gradient vector field that corresponds to the gra-?nt vgc(;ors 'tmg 's Ca”g? th\;c\?radlentthve“;:tp ) f'elc.?f
dient field of a Forman functio®R whose restriction . a}n ) ?n?i i t}hGra d Et’ sayt & |.sha C”R-t
over vertices ofM coincides with the initial scalar €& Pointof T it the gradient vector vanishes et |
field f. We give the explicit formulation of Forman It is well known that the gradient vector field indi-

functionF that satisfies the above property. As a con- g?éi:t:e Séeerpgzt.ggaecrg‘t)_?] 'ntw:'cpa;h‘;:]'{'”gi?gr'?é%
sequence, we have that: Ing. Curves integrating the gradient v l

(i.e., everywhere tangent to the gradient vector field)
e All Forman results (specifically, simplification  are calledntegral curves Integral curves follow the
and compression process) can be applied to our(gradient) direction in whictf has the maximal in-

discrete scalar field. creasing growth. Hence, integral curves cannot be

closed, nor infinite (in a compact manifold), and they

e For a triangulated embedded domain, not all the do notself-intersect. They are emanating from critical

values over the cells of a Forman function are points, or from boundary components of the domain

necessary to study the morphology of the domain. and converge to other critical points, or to boundary

Only values at the vertices are required. components.
Let now recall some combinatorial notions, for de-
tails we refer to (Agoston, 1976). Lktbe an integer,
a k-simplexor a k- dimensional simpleis the con-
vex hull of (k+ 1) affinely independent points, called
vertices A faceo of a k-simplexy, o Cv, is a j-
simplex (0< j < k) generated byj + 1) vertices ofy.
A simplicial complex Kis a collection of simplexes,
called also cells, such thatyfis a simplex inK, then
e The compatibility of our extended gradient field each faces C y is in K, and, the intersection of two
with both smooth Morse and discrete Forman gra- simplexes is either empty or a common face of them.
dient fields provides a powerful tool to handle we call atop simplex inK a simplex which is not the
qontinuous and discrete properties at the sameproper face of any simplex iK.
time. Thecarrier | K | of a simplicial compleX is the
The remainder of this paper is organized as fol- space of all points in simplexes &f. In this caseK
lows. In the next Section we summarize some results is called ariangulationof | K |.
relative to smooth functions, and we recall some com-  LetK be a simplicial complex anglbe a cell inK.
binatorial notions. In Section2, we present the main Thestarof yis the seSt(y) of all cells inK which are
properties of smooth Morse theory. In Section 4, we incident aty. Thus,St(y) = {o € K: yC o}. The star
report some results from Forman theory that we need of y describes the neighborhood pin the complex
for our construction. In Section 5, we review briefly (see Figure 1(a)). The closure of a set of cElls the
our Smale-like decomposition and we discuss some of smallest subcomplex of K containingl”. Clearly,l”
its properties. In Section 6, we present the construc- consists of all cells of plus their faces.
tion of the process that extends our discrete gradient  The link of cell y is the subcomplexk(y) of K
vector field to a Forman one. This proves the compat- defined a&k(y) = St(y) — St(y), whereyis the closure
ibility of our Smale-like decomposition with Forman of y. The link describes the boundary 8f(y) (see
theory. In the last section, we describe our on-going Figure 1(a)).
work. A conefrom a vertexw to a simplexy is the con-
vex combination of all vertices gfwith w. We denote

o Differentiability simulation of the induced gra-
dient vector field allows us to understand the
behavior of the corresponding Morse function
well, and hence its decomposition into stable and
unstable components.
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it by (y,w). If wis affinely independent of the vertices
of y, then the cone fromvto yis a simplex of dimen-
siondim(y) + 1, wheredim(y) denotes the dimension
of y.

©
Figure 1: The shaded region is the stawvofThe graph in
bold is the link of the vertew.

3 SMOOTH MORSE THEORY

A Morse functionon a manifold M is a C?-
differentiable real-valued functioti defined onM
such that itcritical points are non-degenerate (Mil-
nor, 1963). This means that the Hessian matrix
Hess f of the second derivatives dfat any poinP €

R on which the gradient of vanishesGrade f = 0)

is non-degenerat®gt(Hess f £ 0). Morse (Milnor,
1963) has proven that there exists a local coordinate

system(y?, ...,y") in a neighborhood of any critical
pointP, with y/(P) =0, forall j = 1,...,n, such that
the identity

f=fP) - () - — () + 2+ + ()

holds onU, wherel is the number of negative eigen-
values ofHessf, and it is called théndexof f atP.
The above formula implies that the critical points of a
Morse function are isolated. This allows us to study
the behavior off around them, and to classify their
nature according to the signs of the eigenvalues of the
Hessian matrix off. If the eigenvalues are all pos-
itives, then the poinP is a strict local minimum(a
pit). If the eigenvalues are all negatives, tHeis a
strict local maximun(a peak). If the index of f at
point P is different from 0 andh, then the poinP is
neither a minimum nor a maximum, and, thus, it is
called an-saddlepoint (a pass).

The decomposition of the manifold domain asso-
ciated withf, introduced by Thom (Thom, 1949) and
followed by Smale (Smale, 1960), is based on the
study of the growth off along its integral curves. In-
tegral curves originating from a critical point of index
I form ai-cellC®, called astable manifoldIn the same
way, integral curves converging to a critical point of
index1 form a dual(n—1)-cell CY, called anunstable
manifold Stable manifolds are pair-wise disjoint and

REPRESENTATIONS OF DISCRETE SCALAR FIELDS

decompose the field domaM into open cells, (see
Figure 2). The cells form a complex, as the boundary
of every stable manifold is the union of lower dimen-
sional cells. Similarly, the unstable manifolds decom-
poseM into a complex dual to the complex of stable
manifolds.

Figure 2 gives an example of a stable decomposition
of a two-dimensional scalar field, which is assumed to
be a Morse function. It has three minima (shown by
o), two maxima (shown by»), and five saddle points
(shown by <). Integral curves originate from each
minimum in all directions and from the right side of
the boundary. Each integral curve converges either to
a saddle, to a maximum, or to a boundary component.
Two integral curves originate from each saddle point.
Integral curves originating from a minimum (or from
the right side boundary) sweep a 2D cell, while inte-
gral curves emanating from a saddle point form a seg-
ment containing the saddle point in its interior. Inte-
gral curves connecting saddles to other critical points
are calledseparatrices

. £

Figure 2: Decomposition of a domain into four stable 2-
manifolds.

4 FORMAN THEORY

In this Section, we discuss discrete Morse functions,
introduced by Forman, and their main properties as-
proved in (Forman, 1998). L& be simplicial com-
plex, we denote witto(P) a simplex of dimensiomp.

By o < 1 we indicate that is a face of the simplex.

Definition 1 Let f be a real valued function defined
on K. We say that f is discrete Morse functhmr a
Forman functiorif and only if, for every simples(P)

fo)} <1 1)
flo)} <1 )
We observe immediately that, ffis a discrete Morse
function onK, then—f is not necessarily a discrete

Morse function orK. This fact is not true in the dif-
ferentiable case.

#1PtD > 6P f(1) <
#{(vP~Y < olP: f(v) >

Definition 2 We say that a cels(P) is a critical cell
of f if and only if
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(p+1) (p) -
#{T( o > 0( s 3)
#HVIP~H < a'P: f(v)

A simple example of a Forman function is given in in
Figure 3a).

5 3 4
1 -1
4 3
-2
(a) (b)

Figure 3: The function defined on the complex(a)j is a
Forman function, while the function defined on the complex
in (b) is not a Forman function (vertex of image 5 and edge
of image -2 violate conditions 2) .

The above definitions extend to a finite CW- Joint components.

complex K. Forman has shown that inequalities
(1 & 2) cannot be equalities in the same time. This

Figure 4: lllustration of a gradient vector field. Criticalts
are those which are not the tail nor the end of a vector.

5 SMALE-LIKE
DECOMPOSITION PROCESS

In (DeFloriani et al., 2002b), we have introduced an
algorithm that decomposesdadimensional triangu-
lated domairK associated wit

a scalar fieldf into a collection of pair-wise dis-
This decomposition is similar
to Thom-Smale’s decomposition in the differentiable
case. We have defined a discrete gradient vector field

find simultaneously a facé?~% and a co-face(Pt1)
of a celloP such thatf (1) < f(o) < f(v). From the
above definitions iK is regular then the absolute min-

Here, we recall the basic idea of this decomposition
and how to construct the corresponding discrete gra-
dient vector field. Without loss of generality, we as-

imum of f should occur at a vertex and if the car- sume thatf (u) # f(v) for all verticesu # v. This can

rier of K has no boundary components then the ab- Pe obtained through a local perturbation of the scalar

mensional cell, see Figure 3(a). decomposition. We maintain a current complek

In the literature the negative gradient vector field is Which is initialized to be equal t&. We consider
usually used instead of the gradient field. We will @ vertexvin K’ corresponding to the global maxi-
stick to this convention and we will call the negative Mum of f. The values off at the vertices oBt(v)
gradient vector field simply the gradient vector field. are thus less thafi(v). In this step, we define the
The (negative) gradient field indicates the steepest di- componen€(v)corresponding te to beSt(v). We set
rections in which the function decreases so that the 0C(v) := Lk(v). Then, for each top simplexin aC(v)
gradient flow is uniform. This idea has been used by thatis incident in another simpléy, w) in K’ —C(v),
Forman to define discrete gradient vector fieldor ~ we compare the values 6fat vertices ofy with f(w).
discrete Morse functions. Forman has shown that crit- If f(w) is less than all of them, then we exte@() to

ical cells and non critical cells are uniquely character- beC(v) U (y,w)and we replacgin oC(v) by all faces

ized by the discrete gradient vector field.

Let o(P) be a cell in a regular complex. If there
exists a cel(P*1) such thaio < T and f (1) < f(0),
then we draw a vector from to T and we repeat thia
for all cells of K. The set of such vectors is thigs-
crete gradient vector fieldorresponding to Forman
function f. Obviously, the corresponding functional
definition is that, such a cetP*! is the image obP
by a functiong. Relations(1,2) imply that a cell can

be the tail or the end of at most one vector. From re-

lation (3), critical cells are not the tail nor the end of

of cone(y,w) that contairnw.

We thus iteratively extend(v) at each step to bound a
region on whichf decreases. The process stops when
the region cannot be further extended while maintain-
ing the above property. At this point, we delete such
region fromK’, and we repeat the process.

The result of the above algorithm is, thus, a decompo-
sition D of M into unstablecomponent€; = C(v;),
each of which corresponds to a local maximunt of
To reduce the number of components we add a merg-
ing step that merges two adjacent compon@its)

a vector, see Figure 4 below. This property allows us andC(v;) if and only if v; or vj belongs to the bound-

to recognize critical cells in a regular complex.
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of this decomposition is shown in Figure 5 (a) for a
synthetic function and in Figure (b) for a real data set.
The decomposition algorithm described above al-

(b)

Figure 5: In (a), Unstable decompositions of a synthetic
function f(x,y) = sinx+ sinyrepresenting the eggs plateau

(0)

Figure 6: In (a), the decomposition processof compo-
nent corresponding to the vertex with the field value equal
to 8 with its discrete gradient vector field. In (b), the fi-
nal components decomposiigand their discrete gradient
vector field.

surface. In (b), 119 unstable components produced by ourg EXTENDED GRADIENT FIELD

decomposition algorithm applied to a triangulation of the
Mount Marcy consisting of 69718 triangles.

lows us to define a discrete form of the gradient vec-
tor field for a scalar fieldf. A discrete (negative)
gradient vector fieldis defined by the following two
functions. A multi-valued functiopwhich associates
each local maximunv, corresponding to a compo-
nentC(v) of M, with the top cellsy in St(v) , i.e.,
o(v) ={y :Y isatopcellinSt(v)}.

With each cellyin C(v) — {0C(v) U St(v) }, which

AND COMPATIBILITY WITH
FORMAN THEORY

In this Section, we prove that the discrete gradient
field obtained from our Smale-like decomposition of
a manifoldM endowed with a scalar fiell can be
extended so that a Forman functibris defined over
M. From this point of view, the scalar fieldbecomes
the restriction of over the vertices dfl, its gradient
vector fieldGrad f becomes a subfield of the gradient

has been used in the extension process, we associat¥ector field ofF and the critical points of are a sub-

the added condy, w; ). Equivalently, the vertice@; )

are sufficient to characterize this single-valued func-
tion which we denote by. We havey((y,wi)) =
{wi}. Functionsgp and y define the discrete (nega-
tive) gradient vector field of. As in the differen-

set of critical cells of.

In the construction process of the Smale-like decom-
position seen in Section 5, the expansion of compo-
nentsC(v) begins by attaching t8t(v), wherev is a
local maximum, other conely,w) wherey is a top

tiable case, it denotes the directions in which the func- simplex inLk(v) and f(w) is less than all values of
tion decreases, and characterizes the critical cells andf over vertices ofy. Then functionp associates, the

points. To obtain a geometric representation of func-

tions@ andy, we draw vectors from the initial vertex
v, to all top cells inSt(v), and a vector frony to the
cones(y,w;) used in the decomposition process. We
obtain a collection of vectors that indicate the direc-
tions in which the scalar field is decreasing (cf., Fig-
ures 6).

Referring to the example in Figure 6(a), we con-

(n—1)-simplex,y with vertexw. For each paity,w),
functiony can be extended, to a functign over all
faceso' of y, withi = 0 todim(y) — 1=n—2 by asso-
ciatinga' with vertexw. Geometric equivalent exten-
sion consists of emanating vectors from all facey of
towards vertexv. This is compatible with our decom-
position process sincw) < f(w') for all verticesw

of y, see Figure 7 below. Note that, according to this

sider the vertices at which the scalar field reaches its construction, all faces of are not critical since they

maximum, which is equal to 8. We show the process are tails of vectors. Since a simplex cannot be the
of growing the component. The shaded regions in tail and the end of a vector at the same time, then if
Figure 6(a) is the component associated with value a simplexy = (6("~2),w) is used to expandC(v) in

8. In Figure 6(b), we show the final decomposition the Smale-like decomposition process, the vector cor-
of the complex in 6(a) with its gradient vector field. responding tali(c"~2) has to be removed. This al-
Each shaded region correspond to an unstable Smalé¢eady characterizes a Forman function over all faces
component. of C(v) — St(v).

Thus, the extended functich can be explicitly de-
fined by

e if yis a (n—1)-simplex expandingC(v) then
U(y) := W(y) = {w}, such that(y,w) expands
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C(v).

For alli-simplexess' € y, withi =0,...,n—3 we
set{(a') := {w} if P(c') has not been defined
before when anothgn — 1)-simplexy incident is
¢' was considered. Otherwis#, is skipped since
it has already an attached value py

Fori = n—2 and such thato"~2,w) does not par-
ticipate to the expansion processif), we have
B(c"?) = {w}.

Otherwise {i(c"?) = 0. In this case,

cone (o"2,w) represents a new ex-
panding (n — 1)-simplex of C(v) and
O((6"2,w)) = P((6"2,w)). Then we re-

turn to the first point to defing over faces of
(a"2,w).
For simplicity, we present in Figure 7 the extended
gradient vector field for a 2-dimensional scalar field.
Simplexesy are edges and their facesare vertices
(i.e., we have onlyi = 0). Vectors emanating from

0

Figure 7: lllustration of the extended gradient vector field
for a 2-dimensional scalar field. The extension here acts

vertices towards edges are added if the edges do noPnly on vertices. Arrows are added to edges that do not

participate in the expansion process of the comp
nent construction. For example, segmgnt [6;7]
expand<(8) by adding triangle\ labeled as &7 and
5. Functiony associates segmefi; 7] with vertex
{5}. An arrow from|[6; 7] towards{5} is drawn. End
points of segmenB; 7] are the(n — 2)-simplexes de-
scribed above. Cone (i.e., segmé6ip) does not
participate in the expansion of the new component
C(v) :=C(v)UA. Thus, function](6) = {5} and a
vector emanating fron§6} towards{5} is added to
edge[6;5. The other verteX7} of segment6; 7,

with vertex 5 forms an edge that expands the updated
C(v), then()(7) = 0 and no vector is emanating from
{7} towards{5} is drawn in triangleA. Note that
the same verteX7} is revisited again when trian-
gle (7;3;2) is considered. Functiofi associate$7}

with {2} since edge7;2] does not expan@(v). Ver-

tex {7} is revisited again a last time when triangle
(7;5;2) is considered. The process skips here ver-
tex {7} since it has already a non-empty value(by

We see clearly that each simplex in the triangulation
emanates or receives at most one vector. Hence, the
extended gradient vector field is a Forman gradient.
Critical cells are those which are not the tail nor the
end of vectors. We have here only one (global) min-
imum {0} and the entire sta®t(8) as a singular cell
corresponding to the maximal value 8.

In the general case, functidhis not uniaue and can
be defined in many ways. In the following, we present
an explicit construction of. Lety be a(n— 1)-
simplex expanding a componetv) to C(v) U {w}
and leto' be a face oy wherei € {1,...,n—1}. Sup-
pose thay and its faces are visited for the first time.
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o- participate to the expansion process of compo@gn} with
f(v)=8.

1. We setF(y) ;== max f(V) : V is a vertex ofy} +

(n—1)g, whereg is positive number chosen so that
F(y) < f(v). Then we definé (y,w) := F(y).

For faces(a')"2, we setF(a') := max{ f(V) :
V is a vertex o'} +ig, for alli € {1,...,n—1}.
Note that fori = 0, simplexess® are simply ver-
tices ofy for which we haver (a%) = f(a?).

Let ¢ be a face of another simplew’ C
y (i.e., i < j), then vertices ofd' are in-
cluded in the set of vertices of/. Hence
max f(V) : V isavertex ofa'} < max{f(V) :
V isavertex ofc!} and consequently (c') <
F(o’). This implies that faces of are set to be
critical at this definition step excepfrom which
an arrow in emanated towards cofyaw).

2. For conega',w), we defineF ((o',w)) := F(d'),

for all i € {0,1,...,n—2}. This means that
from each faces' we emanate an arrow towards
cone(a',w) This definition ensures that Forman
relations (1) and (2) are satisfied.

3. Now, for the expansion process of the up-

dated componeri(v), (n— 1)-simplexes of type
(o"?,w) are considered. Let updagéo be equal
to (6"2,w). At this momenty and each of its
faces adjacent ta receive an arrow from a face
of "2, We update them to be the new added
point. Sincey is expanding componef@(v) to
a new congy,w), then new arrows will be em-
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anated from faces of towardsw. Hence, values
of faces ofy by F should be re-initialized to make
them, first, critical inC(v). To do that, we up-
date, first, value of to be equak — £ and then
we return to stefl.). Value ofe is updated for
the following reason. Simplexis adjacent to two
n— simplexes, the old cong@,w) C C(v) and the
new cone(y,w) expandingC(v). Then, to pre-
serve Forman relations (1) and (2), valueydfy

F should be less then the value of the old cone
(Y, w).

Step (1.) definesF over (y,w), y and all its
faces. Values of vertices (i.e., 0-simplexes) are
preserved. We return, then to stgp) to define

F over all faces of typéc',w). New arrows are
hence drawn from faces to (o', w) and we go so
on. If a face is re-visited from another expanding
simplex then we assign to the simplex a value that
preserves Forman relations (1) and (2).

Figure 8: Definition of a Forman function that extends the
scalar field over all simplexes and that corresponds to the
extended gradient vector field described in Figures 7 and 9

By a such construction Forman relations are satisfied with valuee = 0.1.

over all the simplexes of the complex.

The simplest way to extenél over St(v) is to con-
sider that all simplexes in the interior 8f(v) are crit-
ical for F since they are the immediate neighbors of
v which is critical for f. We can defing= for ani-
dimensional face!' of St(v) to bef (v) +ic. Relations
(3) are, thus, satisfied over all simplexesstfv).

In Figure 8, we give an example of construction of
a Forman function that extends the scalar fiélde-
scribed in Figure 7 with value= 0.1. The extended
function preserves Forman relations (1) and (2) and
corresponds to the above formulas definingThus,
the function obtained in the example is a Forman
function. _

Function@ describing the gradient vector field over

St(v) can be associated with the restrictionFobver
St(v) and function() describing the gradient vector

field overC(v) — St(v) can be associated with the re-

striction of F overC(v) — St(v).

OutsideSt(v), the extended gradient vector field fol-

lows, naturally, the decreasing growth of the function
f over the triangulation simplexes.

To keep the differentiability simulation of the ex-

tended gradient vector field over the entire domain,

we keep the geometric representation (by vectors) of

function @ over stars{St(v)} of local maxima{v}.
In order to be consistent with the extensifnof Y
over proper faces of simplexgs we extend func-
tion @, to a functiong over all simplexes irst(v) by
emanating vectors frona towards all simplexes in-
cident tov. The extended functiow is defined by
o(v) ={y :Y isasimplex inStv)}. .

In Figure 9, we show the representation of betnd

( for the same scalar field represented in Figure?.

4 5

0

Figure 9: General representation of the extended gradient
vector field for a 2-dimensional scalar field over all the tri-
angulated domain.

7 CONCLUDING REMARKS

Here, we have presented an extended form of a dis-
crete gradient vector field associated with a Smale-
like decomposition in order to define a Forman func-
tion compatible with the decomposition. A Smale-
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like decomposition simulates well the differentiable Edelsbrunner, H., Harer, J., and Zomorodian, A. (2001).
case. Thus, we obtain a good representative of a dis- Hierarchical morse complexes for piecewise linear 2-
crete gradient field that combines properties of both manifolds. _ InProc 17th Sympos. Comput. Geom.

smooth Morse and discrete Forman theories. Inour ~ P39es 70-79.

future work, we are planning to implement processes Forman, R. (1998). Morse Theory for Cell Complexés.-

for two- and three-dimensional scalar fields in order vances in Mathematic434:90-145.

to apply them on real image processing data basesJ.Toriwaki and Fuk_umura, T. (1975): Extraction of struc-
We will apply the Forman simplification meshes and tural information from grey pictures. Computer

its compression process to our extended gradient field Graphics and Image Processiig30-51.

in order to define multi-resolution approach based on Lewiner, T., Lopes, H., and Tavares, G. (2002a). Opti-
both Morse and Forman theory. mal discrete morse functions for 2-manifolds. Techni-

- . L 7 cal report, Pontificia Universidade Catolica do Rio de
Since the algorithm is dimension-independent, a fur- Janerg.
ther development of this work consists of applying the

. Lewiner, T., Lopes, H., and Tavares, G. (2002b). Visualiz-
approach for clustering .

ing forman’s discrete vector field. In H.-C. Hege, K.
P. E., editor,to appear in Proceed. of Mathematical
Visualization Ill, Springer
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