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Abstract: Forman introduced in (Forman, 1998) a theory for cell complexes that is a discrete version of the well known
Morse theory. Forman theory finds several applications in digital geometry and image processing where
the data to be processed are discrete, see for instance (Lewiner et al., 2002a), (Lewiner et al., 2002b). In
(DeFloriani et al., 2002b), we have introduced a Smale-like decomposition of a scalar fieldf defined on a
triangulated domainM based on adiscrete gradient fieldthat simulates well the behavior of the gradient field
in the differentiable case. Here, we extend our discrete gradient vector field so that the extended form coincides
with a Forman gradient field. The extended gradient field does not change the Smale-like decomposition
components and, thus, inherits properties of both smooth Morse and discrete Forman functions.

1 INTRODUCTION

Morse theory is a powerful tool for understanding the
topology and the geometry of a manifold on which
a C2-differentiable function is defined. This theory
has been developed in the middle of the last cen-
tury by Thom, Morse, Milnor and Smale. AnyCn-
differentiable function (withn ≥ 2) can be approxi-
mated with its derivatives by a Morse function, (Mil-
nor, 1963). Thom (Thom, 1949), followed by Smale
(Smale, 1960), has shown that a manifoldM endowed
with a Morse function admits aCW representation
composed of cells, calledstable( or unstable) man-
ifolds. Each cell is associated with a critical point
of the function. This decomposition is based on the
study of the behavior of the gradient vector field of the
function. Another decomposition of the manifold into
handles can be performed by following the growth of
level sets of the function (Milnor, 1963). The topol-
ogy (i.e., the homotopy type) of the level sets changes
when a critical point is reached. Thus, critical points
have a crucial role in Morse theory.
For a discrete scalar field, the field values are known
only on a discrete set of points scattered over a grid
(regular or irregular). To study a scalar field, an inter-
polation by a differentiable function is usually done,

(Watson et al., 1985) and (Nackman, 1984). Then,
Morse theory is used to extract critical points and
critical lines that bound the cells of a Morse com-
plex. This operation depends on the approximation
performed and is expensive in term of computation
time and memory space. To reduce that, other au-
thors tried to treat the data of a two-dimensional im-
age (Peucker and Douglas, 1975)and (J.Toriwaki and
Fukumura, 1975) by performing a local study around
each point. Other authors (Bajaj and Shikore, 1998),
(Bajaj et al., 1998) and (Edelsbrunner et al., 2001)
have interpolated the discrete data by piecewise lin-
ear functions, loosing, thus, the differentiability ad-
vantages.

In 1998, Forman introduced for cell complexes a
novel theory that is a discrete equivalent to Morse the-
ory (Forman, 1998). He has proven similar results to
those proven within the smooth Morse theory. For-
man theory handles the data discretely in a new way
differently from all the other methods known simu-
lating the differentiable case. Forman succeeded to
prove all the main theorems of smooth Morse the-
ory for discrete functions. Forman theory is finding
several applications in computer graphics (see, for in-
stance, (Lewiner et al., 2002b) and (Lewiner et al.,
2002a)).
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In (DeFloriani et al., 2002b), we have intro-
duced a Smale-like decomposition a of triangulatedn-
dimensional domainM associated with a scalar field
f . We deduced a discrete gradient vector fieldGrad f,
which we have been used in (DeFloriani et al., 2002a)
to extract, and classify critical points and to extract
a discrete Morse decomposition that represents the
topology structure of the field. We have shown in
(Danovaro et al., 2003) that our discrete gradient vec-
tor field simulates well the behavior of the differen-
tiable gradient field case.

Here, we construct an extended form of our dis-
crete gradient vector field that corresponds to the gra-
dient field of a Forman functionF whose restriction
over vertices ofM coincides with the initial scalar
field f . We give the explicit formulation of Forman
functionF that satisfies the above property. As a con-
sequence, we have that:

• All Forman results (specifically, simplification
and compression process) can be applied to our
discrete scalar field.

• For a triangulated embedded domain, not all the
values over the cells of a Forman function are
necessary to study the morphology of the domain.
Only values at the vertices are required.

• Differentiability simulation of the induced gra-
dient vector field allows us to understand the
behavior of the corresponding Morse function
well, and hence its decomposition into stable and
unstable components.

• The compatibility of our extended gradient field
with both smooth Morse and discrete Forman gra-
dient fields provides a powerful tool to handle
continuous and discrete properties at the same
time.

The remainder of this paper is organized as fol-
lows. In the next Section we summarize some results
relative to smooth functions, and we recall some com-
binatorial notions. In Section2, we present the main
properties of smooth Morse theory. In Section 4, we
report some results from Forman theory that we need
for our construction. In Section 5, we review briefly
our Smale-like decomposition and we discuss some of
its properties. In Section 6, we present the construc-
tion of the process that extends our discrete gradient
vector field to a Forman one. This proves the compat-
ibility of our Smale-like decomposition with Forman
theory. In the last section, we describe our on-going
work.

2 BACKGROUND

In this Section we recall some fundamental notions
on functions and some combinatorial notions that we
need in the remainder of the paper.

Let f be a differentiable real-valued function de-
fined on a manifoldM of dimensionn. The gradient
of f at a pointP∈ M is a vectorGradP f tangent toM
at P that is defined by the first derivatives off at P.
We haveGradP f = ( ∂ f

∂x1
, . . . ,

∂ f
∂xn

), where(x1, . . . ,xn)

are local coordinates aroundP. The set of all gradi-
ent vectors inM is called thegradient vector fieldof
f and denoted byGrad f. We say thatP is a crit-
ical point of f if the gradient vector vanishes atP.
It is well known that the gradient vector field indi-
cates the steepest direction in which the function is in-
creasing. Curves integrating the gradient vector field
(i.e., everywhere tangent to the gradient vector field)
are calledintegral curves. Integral curves follow the
(gradient) direction in whichf has the maximal in-
creasing growth. Hence, integral curves cannot be
closed, nor infinite (in a compact manifold), and they
do not self-intersect. They are emanating from critical
points, or from boundary components of the domain
and converge to other critical points, or to boundary
components.
Let now recall some combinatorial notions, for de-
tails we refer to (Agoston, 1976). Letk be an integer,
a k-simplexor a k- dimensional simplexis the con-
vex hull of (k+1) affinely independent points, called
vertices. A face σ of a k-simplex γ, σ ⊆ γ, is a j-
simplex (0≤ j ≤ k) generated by( j +1) vertices ofγ.
A simplicial complex Kis a collection of simplexes,
called also cells, such that ifγ is a simplex inK, then
each faceσ ⊆ γ is in K, and, the intersection of two
simplexes is either empty or a common face of them.
We call atopsimplex inK a simplex which is not the
proper face of any simplex inK.

Thecarrier | K | of a simplicial complexK is the
space of all points in simplexes ofK. In this case,K
is called atriangulationof | K |.

Let K be a simplicial complex andγ be a cell inK.
Thestarof γ is the setSt(γ) of all cells inK which are
incident atγ. Thus,St(γ) = {σ ∈ K : γ ⊆ σ}. The star
of γ describes the neighborhood ofγ in the complex
(see Figure 1(a)). The closure of a set of cellsΓ is the
smallest subcomplexΓ of K containingΓ. Clearly,Γ
consists of all cells ofΓ plus their faces.

The link of cell γ is the subcomplexLk(γ) of K
defined asLk(γ) = St(γ)−St(γ), whereγ is the closure
of γ. The link describes the boundary ofSt(γ) (see
Figure 1(a)).

A conefrom a vertexw to a simplexγ is the con-
vex combination of all vertices ofγ with w. We denote
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it by (γ,w). If w is affinely independent of the vertices
of γ, then the cone fromw to γ is a simplex of dimen-
siondim(γ)+1, wheredim(γ) denotes the dimension
of γ.

v

w

(c)

Figure 1: The shaded region is the star ofv. The graph in
bold is the link of the vertexw.

3 SMOOTH MORSE THEORY

A Morse function on a manifold M is a C2-
differentiable real-valued functionf defined onM
such that itscritical points are non-degenerate (Mil-
nor, 1963). This means that the Hessian matrix
HessP f of the second derivatives off at any pointP∈
Rd on which the gradient off vanishes (GradP f = 0)
is non-degenerate (Det(HessP f 6= 0). Morse (Milnor,
1963) has proven that there exists a local coordinate
system(y1, ...,yn) in a neighborhoodU of any critical
pointP, with y j(P) = 0, for all j = 1, . . . ,n, such that
the identity

f = f (P)− (y1)2− ...− (yı)2 +(yı+1)2 + ...+(yn)2

holds onU , whereı is the number of negative eigen-
values ofHessP f , and it is called theindexof f at P.
The above formula implies that the critical points of a
Morse function are isolated. This allows us to study
the behavior off around them, and to classify their
nature according to the signs of the eigenvalues of the
Hessian matrix off . If the eigenvalues are all pos-
itives, then the pointP is a strict local minimum(a
pit). If the eigenvalues are all negatives, thenP is a
strict local maximum(a peak). If the indexı of f at
point P is different from 0 andn, then the pointP is
neither a minimum nor a maximum, and, thus, it is
called anı-saddlepoint (a pass).

The decomposition of the manifold domain asso-
ciated with f , introduced by Thom (Thom, 1949) and
followed by Smale (Smale, 1960), is based on the
study of the growth off along its integral curves. In-
tegral curves originating from a critical point of index
ı form aı-cellCs, called astable manifold. In the same
way, integral curves converging to a critical point of
indexı form a dual(n− ı)-cellCu, called anunstable
manifold. Stable manifolds are pair-wise disjoint and

decompose the field domainM into open cells, (see
Figure 2). The cells form a complex, as the boundary
of every stable manifold is the union of lower dimen-
sional cells. Similarly, the unstable manifolds decom-
poseM into a complex dual to the complex of stable
manifolds.
Figure 2 gives an example of a stable decomposition
of a two-dimensional scalar field, which is assumed to
be a Morse function. It has three minima (shown by
•), two maxima (shown by

J
), and five saddle points

(shown by ⊲⊳). Integral curves originate from each
minimum in all directions and from the right side of
the boundary. Each integral curve converges either to
a saddle, to a maximum, or to a boundary component.
Two integral curves originate from each saddle point.
Integral curves originating from a minimum (or from
the right side boundary) sweep a 2D cell, while inte-
gral curves emanating from a saddle point form a seg-
ment containing the saddle point in its interior. Inte-
gral curves connecting saddles to other critical points
are calledseparatrices.

Maximum

Minimum

Saddle

Figure 2: Decomposition of a domain into four stable 2-
manifolds.

4 FORMAN THEORY

In this Section, we discuss discrete Morse functions,
introduced by Forman, and their main properties as-
proved in (Forman, 1998). LetK be simplicial com-
plex, we denote withσ(p) a simplex of dimensionp.
By σ < τ we indicate thatσ is a face of the simplexτ.

Definition 1 Let f be a real valued function defined
on K. We say that f is adiscrete Morse function, or a
Forman functionif and only if, for every simplexσ(P),

#{τ(p+1)
> σ(p) : f (τ) ≤ f (σ)} ≤ 1 (1)

#{v(p−1)
< σ(p) : f (v) ≥ f (σ)} ≤ 1 (2)

We observe immediately that, iff is a discrete Morse
function onK, then− f is not necessarily a discrete
Morse function onK. This fact is not true in the dif-
ferentiable case.

Definition 2 We say that a cellσ(p) is a critical cell
of f if and only if
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#{τ(p+1) > σ(p) : f (τ) ≤ f (σ)} = 0
#{v(p−1)

< σ(p) : f (v) ≥ f (σ)} = 0
(3)

A simple example of a Forman function is given in in
Figure 3(a).

1

4

−1

3

3

1

−2
(b)(a)

3
5

−2
4

45

4

−1

3

Figure 3: The function defined on the complex in(a) is a
Forman function, while the function defined on the complex
in (b) is not a Forman function (vertex of image 5 and edge
of image -2 violate conditions 2) .

The above definitions extend to a finite CW-
complex K. Forman has shown that inequalities
(1 & 2) cannot be equalities in the same time. This
means that, for discrete Morse functions, we cannot
find simultaneously a facev(p−1) and a co-faceτ(p+1)

of a cellσp such thatf (τ) ≤ f (σ) ≤ f (v). From the
above definitions ifK is regular then the absolute min-
imum of f should occur at a vertex and if the car-
rier of K has no boundary components then the ab-
solute maximum off should occur at a maximal di-
mensional cell, see Figure 3(a).
In the literature the negative gradient vector field is
usually used instead of the gradient field. We will
stick to this convention and we will call the negative
gradient vector field simply the gradient vector field.
The (negative) gradient field indicates the steepest di-
rections in which the function decreases so that the
gradient flow is uniform. This idea has been used by
Forman to define adiscrete gradient vector fieldfor
discrete Morse functions. Forman has shown that crit-
ical cells and non critical cells are uniquely character-
ized by the discrete gradient vector field.
Let σ(p) be a cell in a regular complexK. If there
exists a cellτ(p+1) such thatσ < τ and f (τ) ≤ f (σ),
then we draw a vector fromσ to τ and we repeat thia
for all cells ofK. The set of such vectors is thedis-
crete gradient vector fieldcorresponding to Forman
function f . Obviously, the corresponding functional
definition is that, such a cellτp+1 is the image ofσp

by a functionφ. Relations(1,2) imply that a cell can
be the tail or the end of at most one vector. From re-
lation (3), critical cells are not the tail nor the end of
a vector, see Figure 4 below. This property allows us
to recognize critical cells in a regular complex.
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Figure 4: Illustration of a gradient vector field. Critical cells
are those which are not the tail nor the end of a vector.

5 SMALE-LIKE
DECOMPOSITION PROCESS

In (DeFloriani et al., 2002b), we have introduced an
algorithm that decomposes ad-dimensional triangu-
lated domainK associated wit

a scalar fieldf into a collection of pair-wise dis-
joint components. This decomposition is similar
to Thom-Smale’s decomposition in the differentiable
case. We have defined a discrete gradient vector field
that behaves onM like a differentiable gradient field.
Here, we recall the basic idea of this decomposition
and how to construct the corresponding discrete gra-
dient vector field. Without loss of generality, we as-
sume thatf (u) 6= f (v) for all verticesu 6= v. This can
be obtained through a local perturbation of the scalar
field f . This condition ensures the uniqueness of the
decomposition. We maintain a current complexK′

which is initialized to be equal toK. We consider
a vertexv in K′ corresponding to the global maxi-
mum of f . The values off at the vertices ofSt(v)
are thus less thanf (v). In this step, we define the
componentC(v)corresponding tov to beSt(v). We set
∂C(v) := Lk(v). Then, for each top simplexγ in ∂C(v)
that is incident in another simplex(γ,w) in K′−C(v),
we compare the values off at vertices ofγ with f (w).
If f (w) is less than all of them, then we extendC(v) to
beC(v)∪ (γ,w)and we replaceγ in ∂C(v) by all faces
of cone(γ,w) that containw.
We thus iteratively extendC(v) at each step to bound a
region on whichf decreases. The process stops when
the region cannot be further extended while maintain-
ing the above property. At this point, we delete such
region fromK′, and we repeat the process.
The result of the above algorithm is, thus, a decompo-
sition D of M into unstablecomponentsCi = C(vi),
each of which corresponds to a local maximum off .
To reduce the number of components we add a merg-
ing step that merges two adjacent componentsC(vi)
andC(v j) if and only if vi or v j belongs to the bound-
ary of the component associated with it. An example
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of this decomposition is shown in Figure 5 (a) for a
synthetic function and in Figure (b) for a real data set.

The decomposition algorithm described above al-

(a) (b)
Figure 5: In (a), Unstable decompositions of a synthetic
function f (x,y) = sinx+sinyrepresenting the eggs plateau
surface. In (b), 119 unstable components produced by our
decomposition algorithm applied to a triangulation of the
Mount Marcy consisting of 69718 triangles.

lows us to define a discrete form of the gradient vec-
tor field for a scalar fieldf . A discrete (negative)
gradient vector fieldis defined by the following two
functions. A multi-valued functionφ which associates
each local maximumv, corresponding to a compo-
nentC(v) of M, with the top cellsγ′ in St(v) , i.e.,
φ(v) = {γ′ : γ′ is a top cell inSt(v)}.

With each cellγ in C(v)−{∂C(v)∪St(v)}, which
has been used in the extension process, we associate
the added cones(γ,wi). Equivalently, the vertices(wi)
are sufficient to characterize this single-valued func-
tion which we denote byψ. We haveψ((γ,wi)) =
{wi}. Functionsφ andψ define the discrete (nega-
tive) gradient vector field off . As in the differen-
tiable case, it denotes the directions in which the func-
tion decreases, and characterizes the critical cells and
points. To obtain a geometric representation of func-
tionsφ andψ, we draw vectors from the initial vertex
v, to all top cells inSt(v), and a vector fromγ to the
cones(γ,wi) used in the decomposition process. We
obtain a collection of vectors that indicate the direc-
tions in which the scalar field is decreasing (cf., Fig-
ures 6).

Referring to the example in Figure 6(a), we con-
sider the vertices at which the scalar field reaches its
maximum, which is equal to 8. We show the process
of growing the component. The shaded regions in
Figure 6(a) is the component associated with value
8. In Figure 6(b), we show the final decomposition
of the complex in 6(a) with its gradient vector field.
Each shaded region correspond to an unstable Smale
component.
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Figure 6: In (a), the decomposition process ofK: compo-
nent corresponding to the vertex with the field value equal
to 8 with its discrete gradient vector field. In (b), the fi-
nal components decomposingK and their discrete gradient
vector field.

6 EXTENDED GRADIENT FIELD
AND COMPATIBILITY WITH
FORMAN THEORY

In this Section, we prove that the discrete gradient
field obtained from our Smale-like decomposition of
a manifoldM endowed with a scalar fieldf can be
extended so that a Forman functionF is defined over
M. From this point of view, the scalar fieldf becomes
the restriction ofF over the vertices ofM, its gradient
vector fieldGrad f becomes a subfield of the gradient
vector field ofF and the critical points off are a sub-
set of critical cells ofF .
In the construction process of the Smale-like decom-
position seen in Section 5, the expansion of compo-
nentsC(v) begins by attaching toSt(v), wherev is a
local maximum, other cones(γ,w) whereγ is a top
simplex inLk(v) and f (w) is less than all values of
f over vertices ofγ. Then functionψ associates, the
(n−1)-simplex,γ with vertexw. For each pair(γ,w),
functionψ can be extended, to a functionψ̃, over all
facesσi of γ, with i = 0 todim(γ)−1= n−2 by asso-
ciatingσi with vertexw. Geometric equivalent exten-
sion consists of emanating vectors from all faces ofγ
towards vertexw. This is compatible with our decom-
position process sincef (w) < f (w′) for all verticesw′

of γ, see Figure 7 below. Note that, according to this
construction, all faces ofγ are not critical since they
are tails of vectors. Since a simplex cannot be the
tail and the end of a vector at the same time, then if
a simplexγ′ = (σ(n−2),w) is used to expand∂C(v) in
the Smale-like decomposition process, the vector cor-
responding toψ̃(σn−2) has to be removed. This al-
ready characterizes a Forman function over all faces
of C(v)−St(v).
Thus, the extended functioñψ can be explicitly de-
fined by

• if γ is a (n− 1)-simplex expandingC(v) then
ψ̃(γ) := ψ(γ) = {w}, such that(γ,w) expands
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C(v).

• For all i-simplexesσi ∈ γ, with i = 0, . . . ,n−3 we
set ψ̃(σi) := {w} if ψ̃(σi) has not been defined
before when another(n−1)-simplexγ incident is
σi was considered. Otherwise,σi is skipped since
it has already an attached value byψ̃

• For i = n−2 and such that(σn−2,w) does not par-
ticipate to the expansion process ofC(v), we have
ψ̃(σn−2) = {w}.

• Otherwise ψ̃(σn−2) = /0. In this case,
cone (σn−2,w) represents a new ex-
panding (n − 1)-simplex of C(v) and
ψ̃((σn−2,w)) = ψ((σn−2,w)). Then we re-
turn to the first point to definẽψ over faces of
(σn−2,w).

For simplicity, we present in Figure 7 the extended
gradient vector field for a 2-dimensional scalar field.
Simplexesγ are edges and their facesσi are vertices
(i.e., we have onlyi = 0). Vectors emanating from
vertices towards edges are added if the edges do not
participate in the expansion process of the compo-
nent construction. For example, segmentγ = [6;7]
expandsC(8) by adding triangle∆ labeled as 6,7 and
5. Functionψ associates segment[6;7] with vertex
{5}. An arrow from[6;7] towards{5} is drawn. End
points of segment[6;7] are the(n−2)-simplexes de-
scribed above. Cone (i.e., segment)(6,5) does not
participate in the expansion of the new component
C(v) := C(v)∪∆. Thus, functionψ̃(6) = {5} and a
vector emanating from{6} towards{5} is added to
edge[6;5]. The other vertex{7} of segment[6;7],
with vertex 5 forms an edge that expands the updated
C(v), thenψ̃(7) = /0 and no vector is emanating from
{7} towards{5} is drawn in triangle∆. Note that
the same vertex{7} is revisited again when trian-
gle (7;3;2) is considered. Functioñψ associates{7}
with {2} since edge[7;2] does not expandC(v). Ver-
tex {7} is revisited again a last time when triangle
(7;5;2) is considered. The process skips here ver-
tex {7} since it has already a non-empty value byψ̃.
We see clearly that each simplex in the triangulation
emanates or receives at most one vector. Hence, the
extended gradient vector field is a Forman gradient.
Critical cells are those which are not the tail nor the
end of vectors. We have here only one (global) min-
imum {0} and the entire starSt(8) as a singular cell
corresponding to the maximal value 8.

In the general case, functionF is not uniaue and can
be defined in many ways. In the following, we present
an explicit construction ofF . Let γ be a (n− 1)-
simplex expanding a componentC(v) to C(v)∪ {w}
and letσi be a face ofγ wherei ∈ {1, . . . ,n−1}. Sup-
pose thatγ and its faces are visited for the first time.

Figure 7: Illustration of the extended gradient vector field
for a 2-dimensional scalar field. The extension here acts
only on vertices. Arrows are added to edges that do not
participate to the expansion process of componentC(v) with
f (v) = 8.

1. We setF(γ) := max{ f (v′) : v′ is a vertex ofγ}+
(n−1)ε, whereε is positive number chosen so that
F(γ) < f (v). Then we defineF(γ,w) := F(γ).
For faces(σi)n−2

i=0 , we setF(σi) := max{ f (v′) :
v′ is a vertex ofσi}+ iε, for all i ∈ {1, . . . ,n−1}.
Note that fori = 0, simplexesσ0 are simply ver-
tices ofγ for which we haveF(σ0) = f (σ0).
Let σi be a face of another simplexσ j ⊂
γ (i.e., i < j), then vertices ofσi are in-
cluded in the set of vertices ofσ j . Hence
max{ f (v′) : v′ is a vertex ofσi} ≤ max{ f (v′) :
v′ is a vertex ofσ j} and consequentlyF(σi) <

F(σ j). This implies that faces ofγ are set to be
critical at this definition step exceptγ from which
an arrow in emanated towards cone(γ,w).

2. For cones(σi ,w), we defineF((σi ,w)) := F(σi),
for all i ∈ {0,1, . . . ,n− 2}. This means that
from each faceσi we emanate an arrow towards
cone(σi

,w) This definition ensures that Forman
relations (1) and (2) are satisfied.

3. Now, for the expansion process of the up-
dated componentC(v), (n−1)-simplexes of type
(σn−2,w) are considered. Let updateγ to be equal
to (σn−2,w). At this moment,γ and each of its
faces adjacent tow receive an arrow from a face
of σn−2. We update thenw to be the new added
point. Sinceγ is expanding componentC(v) to
a new cone(γ,w), then new arrows will be em-
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anated from faces ofγ towardsw. Hence, values
of faces ofγ by F should be re-initialized to make
them, first, critical inC(v). To do that, we up-
date, first, value ofε to be equalε− ε

10 and then
we return to step(1.). Value ofε is updated for
the following reason. Simplexγ is adjacent to two
n− simplexes, the old cone(γ,w) ⊂C(v) and the
new cone(γ,w) expandingC(v). Then, to pre-
serve Forman relations (1) and (2), value ofγ by
F should be less then the value of the old cone
(γ,w).
Step (1.) definesF over (γ,w), γ and all its
faces. Values of vertices (i.e., 0-simplexes) are
preserved. We return, then to step(2.) to define
F over all faces of type(σi ,w). New arrows are
hence drawn from facesσi to (σi ,w) and we go so
on. If a face is re-visited from another expanding
simplex then we assign to the simplex a value that
preserves Forman relations (1) and (2).

By a such construction Forman relations are satisfied
over all the simplexes of the complex.
The simplest way to extendf over St(v) is to con-
sider that all simplexes in the interior ofSt(v) are crit-
ical for F since they are the immediate neighbors of
v which is critical for f . We can defineF for an i-
dimensional faceαi of St(v) to be f (v)+ iε. Relations
(3) are, thus, satisfied over all simplexes ofSt(v).
In Figure 8, we give an example of construction of
a Forman function that extends the scalar fieldf de-
scribed in Figure 7 with valueε = 0.1. The extended
function preserves Forman relations (1) and (2) and
corresponds to the above formulas definingF . Thus,
the function obtained in the example is a Forman
function.
Functionφ̃ describing the gradient vector field over

St(v) can be associated with the restriction ofF over
St(v) and functionψ̃ describing the gradient vector
field overC(v)−St(v) can be associated with the re-
striction ofF overC(v)−St(v).
OutsideSt(v), the extended gradient vector field fol-
lows, naturally, the decreasing growth of the function
f over the triangulation simplexes.

To keep the differentiability simulation of the ex-

tended gradient vector field over the entire domain,
we keep the geometric representation (by vectors) of
function φ over stars{St(v)} of local maxima{v}.
In order to be consistent with the extensionψ̃ of ψ
over proper faces of simplexesγ, we extend func-
tion φ, to a functionφ̃ over all simplexes inSt(v) by
emanating vectors fromv towards all simplexes in-
cident tov. The extended functioñφ is defined by
φ̃(v) = {γ′ : γ′ is a simplex inSt(v)}.
In Figure 9, we show the representation of bothφ̃ and

Figure 8: Definition of a Forman function that extends the
scalar field over all simplexes and that corresponds to the
extended gradient vector field described in Figures 7 and 9
with valueε = 0.1.

ψ̃ for the same scalar field represented in Figure7.

Figure 9: General representation of the extended gradient
vector field for a 2-dimensional scalar field over all the tri-
angulated domain.

7 CONCLUDING REMARKS

Here, we have presented an extended form of a dis-
crete gradient vector field associated with a Smale-
like decomposition in order to define a Forman func-
tion compatible with the decomposition. A Smale-
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like decomposition simulates well the differentiable
case. Thus, we obtain a good representative of a dis-
crete gradient field that combines properties of both
smooth Morse and discrete Forman theories. In our
future work, we are planning to implement processes
for two- and three-dimensional scalar fields in order
to apply them on real image processing data bases.
We will apply the Forman simplification meshes and
its compression process to our extended gradient field
in order to define multi-resolution approach based on
both Morse and Forman theory.
Since the algorithm is dimension-independent, a fur-
ther development of this work consists of applying the
approach for clustering .
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Watson, L. T., Laffey, T. J., and Haralick, R. (1985). Topo-
graphic classification of digital image intensity sur-
faces using generalised splines and the discrete cosine
transformation.Computer Vision, Graphics and Im-
age Processing, 29:143–167.

GRAPP 2007 - International Conference on Computer Graphics Theory and Applications

144


