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Abstract: Image enhancement is mostly driven by intent and its future largely relies on our ability to map the space of
intentions with the space of possible enhancements. Taking into account the semantic content of an image is an
important step in this direction where contextual and aesthetic dimensions are also likely to have an important
role. In this article we detail the state-of-the-art and some recent efforts in for semantic or content-dependent
enhancement. Through a concrete example we also show how image understanding and image enhancement
tools can be brought together. We show how the mapping between semantic space and enhancements can
be learnt from user evaluations when the purpose is subjective quality measured by user preference. This is
done by introducing a discretization of both spaces and notions of coherence, agreement and relevance to the
user response. Another example illustrates the feasibility of solving the situation where the binary option of
whether or not to enhance is considered.

1 INTRODUCTION

Considering both digital cameras and camera phones,
it is estimated that almost 400 billion images will be
captured in 2007 only (Hoffenberg, 2006). Regard-
less of the final medium where the images will be
managed, shared and visualized, the quality expec-
tations of consumers are likely to grow steadily. It
is currently very easy for users to integrate their own
content into workflows such as online photofinishing
or content-sharing communities. The variability of
content type, mainly due to the democratization of the
production and distribution tools, together with the
increased quality expectations, results in a demand
for automated or semi-automated image enhancement
tools that can help reducing user interaction.

New features such as automatic color balance or
red-eye correction are now standard components in
mainstream image editing applications. New compa-
nies offer products focused exclusively on automatic
image enhancement to software vendors, camera and
phone manufacturers, printing providers or directly
to end-users. Most of the current offering follows a
classical approach to image enhancement where some
kind of degradation, which has to be compensated, is
assumed.

Acquisition conditions, user expertise, compres-
sion algorithms or sensor quality, can seriously de-
grade the final image quality and image enhancement
attempts to compensate for this degradation by al-
tering image features for subsequent analysis, dis-
tribution or display. Examples include contrast and
edge enhancement, noise filtering for a wide vari-
ety of noise sources, sharpening, exposure correc-
tion, colour balance adjustment, automatic cropping
or correction of shaky images. Some of these features,
such as noise, can be objectively defined and others,
such as contrast, can be inspired by human percep-
tion. Still, in most cases, the final judgment over the
performance of an enhancement algorithm is subjec-
tive. For example, while some people might prefer to
see the shadowed details made visible by some local
contrast approach, others will appreciate the sensation
of depth caused by the original shadows.

Enhancement is mostly driven by intent. The in-
tention of a photographer to depict a scene will value
those photographs or those enhancement operations
that lead to a more faithful representation of the cap-
tured scene. The intention of a designer or an ad-
vertiser could be to enhance an image in a way op-
timal for transmitting a message, e.g. an emotion.
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The intention of a person including a photo of a baby
in a family album can be to simply highlight a fa-
cial expression, at the cost of leaving degradations
untouched or even highlighting them. The intent of
a photofinishing operation is to automate image en-
hancement in order to please the largest possible audi-
ence. Their intent driven enhancement issues (e.g en-
hancing shadow details) could be solved by user eval-
uations, indicating which approach is preferred by the
majority of users.

In general, the future of image enhancement re-
lies on our ability to map the space of intents with
the space of possible enhancements. While we can
assume the space of enhancements to be reasonably
well defined, the challenge will be for long to model
intentions. For this purpose, the present model based
on image degradations is insufficient and we need to
extend its scope to multiple semantic, aesthetic and
contextual dimensions. Recently, we have witnessed
the first efforts in this direction. These efforts have
mostly focused on the semantic dimension and in
many cases were pushed by the advances in object
and scene recognition towards understanding image
content. The assumption here is that semantic con-
tent drives intention. Also, the fact users are starting
to share content and express their preferences online
can be understood as instances from which this map-
ping can be learnt and some recent approaches focus
on this fact. These are probably the first approaches
to take into account the aesthetic dimension. Work-
ing on large amounts of available user preference data
is a very promising direction for understanding intent
space.

This article details first some recent efforts on
image enhancement to then focus on the particular
problem of semantically dependent enhancement. In
this case, the concept space is defined by the set of
semantic categories and, eventually, the relationship
among these categories. To illustrate our approach
with experiments, instead of considering the complete
space of possible image enhancements, we restrict
our approach to the variations that might be gener-
ated from a particular image enhancement approach.
Having defined our semantic categories and enhance-
ment space, the mapping is learnt from user prefer-
ence evaluations.

The remainder of this paper is organized as fol-
lows: section 2 describes the prior art in semantic con-
tent dependent image enhancement including a state-
of-the-art of image enhancement (section 2.1) and se-
mantic image understanding (section 2.2). In sec-
tion 3 we present a semantic content dependent image
enhancement (SCDIE) system and conclude the paper
in section 4.

2 PRIOR ART

There have always been enhancements designed for
specific types of images such as remote sensing im-
agery, medical imaging or document images. In this
last field, recent approaches propose different en-
hancements depending on whether the document is
classified as text, block diagrams, road maps, com-
puter generated images or user photos (Allen et al.,
2004; Ichikawa and Miyasaka, 2005). There are also
enhancements which are specific to the output device
(Furuki and Yamada, 2006) especially those related to
mobile phones (Quelard, 2004).

In the field of photography probably the first en-
hancements clearly linked with semantic content were
human skin and sky: skin dependent exposure cor-
rection (Battiato et al., 2003), skin defect detection
and correction (Hillebrand et al., 2003) sky detec-
tion based image orientation correction (Luo, 2003)
or sky-based color enhancements (Luo and Etz, 2002;
Zafarifar and de With, 2006). Skin and sky detection
typically require low-level image understanding since
detection strongly relies on color analysis techniques.

At a higher-level there has been strong research
on face enhancement such as face makeup simula-
tion (Utsugi, 2003), skin smoothing, eye and teeth
whitening filters (Simon and Matraszek, 2006), facial
skin color-based color saturation, white balance and
overall density correction (Mutza, 2006) or adjust-
ing lightness, contrast, and/or the color levels of the
image based on the detected faces (Lin et al., 2002).
Many red-eye detection and correction make use of
face detection as a preprocessing stage for reducing
the number of candidate regions (Gaubatz and Ulich-
ney, 2002; Gasparini and Schettini, 2005).

The attention received by approaches focused on
face enhancement is not surprising. Faces, spe-
cially known faces, are common fixation points when
observing a scene (Buswell, 1935; Henderson and
Hollingworth, 1999). Enhancing faces makes a lot
of sense: they are likely to receive much attention.
For closely related reasons, photographs with people
are more frequent than without. To estimate this im-
portance we applied a face detector to approximately
130000 images randomly selected from a photofinish-
ing workflow. Roughly two out of every three images
contained at least one face. On the other side face
detection and recognition have for long represented
a challenge for the vision community and available
solutions and algorithms are readily available (Zhao
et al., 2003; Yang et al., 2002).

General object and scene detection and recogni-
tion approaches have also been proposed and, in the
general case, current performance is considerably be-
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low the case of faces. Recent competitions (Evering-
ham et al., 2005; Everingham et al., 2006) show that
the problem is difficult though important advances
were made recently (see section 2.2). Although they
mainly focus on object class recognition and detec-
tion, some of them are able to succesfully handle
scene categories too like: Indoor, Outdoor, Beach,
Mountain, City, Suburb, Road, Underwater, Sunset,
etc (Li and Wang, 2003; Barnard et al., 2003; Car-
bonetto et al., 2004; Quelhas et al., 2005; Perronnin
et al., 2006; Bosch et al., 2006).

There were some recent attempts to combine such
categories with enhancement. For example (Cham-
bah et al., 2004) propose a typical enhancement of
underwater images. On the other hand (Gallagher and
Bruehs, 2006) proposes a system where an improve-
ment parameter of sharpening or noise reduction is
generated from the belief map indicating the likeli-
hood that respective pixels are representative of faces,
flash, sky, or vegetation. Similarly, (Gasparini and
Schettini, 2004; Fredembach et al., 2003) identify re-
gions as probable skin, sky, sea or vegetation in order
to avoid color cast removal which is intrinsic to those
categories, e.g. the blue of the sky.

Most of the efforts exposed link the semantic con-
tent with the enhancement under the assumption that
semantic content can guide the processing. Never-
theless, other aspects of the image can lead the en-
hancement process, such as image aesthetic or orig-
inality which in contrast with classical image qual-
ity are highly subjective measures. Recently, (Datta
et al., 2006) attempted to infer them with some visual
features using machine learning with a user prefer-
ences gathered from a peer-rated online photo set.

Image understanding and enhancement may be
also combined with meta-data information. In (Ober-
hardt et al., 2003), red eye correction and detection
counts on the knowledge the flash was triggered at
time of capture. Also for correcting eyes (Sadovsky
et al., 2004) uses the information stored in the Ex-
changeable Image File Format (EXIF). This kind of
information is also suggested to improve image cate-
gorization (Lin and Tretter, 2005; Boutell and Luo,
2007). Unfortunately, the presence of meta-data is
not always ensured, mainly due to the variability en-
countered in those imaging scenarios where end users
can directly integrate into workflows. This is likely
to change, as standards are agreed and cameras are
able to include valuable meta-data such as geographic
location or web-retrieved information (O’Hare et al.,
2005).

The challenge of intent-based enhancement is to
estimate the function that maps an image and an inten-
tion to an enhancement. If we take into account only

semantic information and a single label is considered
per image, e.g. indoors, then the space of intents can
be modelled with a single discrete dimension which
corresponds to the categories. Dimensionality in-
creases as we consider multiple categories, locality
constraints, additional information such as meta-data,
etc. On the enhancement side, the types of processing
that can be applied to an image are restricted. In the
following sections we complete this prior art with a
list of typical enhancement techniques (section 2.1)
and with state-of-the-art image understanding tech-
niques that can be used for modelling the semantic
information on an image (section 2.2).

2.1 Image Enhancement

Image enhancement techniques are applied to obtain a
resulting image which is more suitable than the origi-
nal for a specific objective. Visual quality is a sample
objective but, depending on the application, quality
might not be the main purpose of enhancement, e.g.
medical imaging.

Enhancement algorithms can be global, where the
parameters controlling the enhancement approach are
the same over the whole image; or local, where the
parameters can vary spatially and are generally based
on the local characteristics of an image. Many en-
hancements require user interaction for setting or con-
trolling some of its parameters. In this case, the
enhancement is called manual. When all parame-
ters can be set without interaction, based on general
considerations or on image content, the enhancement
is called automatic. Automatic enhancements fre-
quently come with a preprocessing stage which esti-
mates the parameters of the actual enhancement using
image statistics. For instance, an unsharp mask where
the filter values are different on regions specified by
the user can be considered a local manual enhance-
ment. A common technique for enhancing images is
through Tone Reproduction Curves (TRCs) which are
global mappings of luminance or chrominance chan-
nels. The case where the mapping depends on the
image region is referred to as Tone Reproduction Op-
erator (TRO).

The most common enhancement techniques are
sharpening, exposure correction, color balance and
saturation adjustment, contrast and edge enhance-
ment, blocking artifact reduction and noise reduction.
There are many more enhancements focused on spe-
cific problems such as redeye correction, automatic
cropping, or glass glare removal.

Sharpness refers to the presence of crisp edges
and fine details in an image. Basic sharpening filter
on images (Rosenfeld and Kak, 1982; Gonzalez and
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Woods, 1992) can work in many cases but, since they
are usually high-pass filters they can also enhance
noise. To overcome this problem specific sharpening
algorithms robust to noise have been proposed, based
on weighted median filters (Fischer et al., 2002), non-
linear reaction-diffusion (Saito et al., 2003) or locally
adaptive filters (Polesel et al., 2000).

Exposure refers to the average of the global dis-
tribution of intensity along the dynamic range of the
image. Making the image darker or lighter can bring
details from the shadows or give depth to the colors
of the photograph. The automatic setting of expo-
sure, a feature present in most digital cameras, can
yield unrealistic results and exposure correction at-
tempts to overcome this problem. The most common
approach to correcting exposure is to apply gamma
correction to the image intensity. For instance, (Es-
chbach and Fuss, 1999) propose a method to deter-
mine the gamma parameter automatically from the
histogram of the input image.

The human visual system ensures the perceived
color of objects remains relatively constant under
varying illumination and reflectance conditions, e.g.
color constancy. When imaging devices are tailored
to common illuminants, e.g. D65, they can introduce
strong color casts when the scene has another light
source. The problem of adjusting the colors to re-
semble perceptual response is called color balance or
white balance and generally consists in a global en-
hancement. The two most common approaches for
color balance are based on two very simple assump-
tions to estimate the color cast. The Gray World
approach assumes the average chrominance on any
given image is approximately gray (Evans, 1951).
The Perfect Reflector algorithm assumes we can find
a specular surface on the image reflecting the actual
color of the light source. Closely related, are white
point (Eschbach and Fuss, 1999) and black point
(Adams et al., 2003) approaches. Much research on
this field has derived from the effort of developing
automatic color constancy algorithms (Barnard et al.,
2002) for machine vision purposes.

Saturation refers to the vividness of colored ob-
jects in an image. A color with more gray is con-
sidered less saturated, while a bright color, one with
very little gray in it, is considered highly saturated.
The saturation of a color can affect the emotional
reaction to an image. Colors that have low satura-
tions are often seen as dull and boring, but can also
be thought of as restful and peaceful. Highly satu-
rated colors, on the other hand, are more vibrant and
emotionally aggressive. Therefore, color saturation
is an important element in an intent based enhance-
ment system. In a classical automatic enhancement

approach, where neither the image content nor the
users intent is known, the system detects and modi-
fies these extremes bringing the image saturation to a
generally acceptable level. An alternative to the direct
modification of the saturation value in HSV space, is
to interpolate or extrapolate between the original im-
age and a black-and-white version of the image (Hae-
berli and Voorhies, 1994). Even if there exist auto-
matic saturation enhancement techniques (Eschbach
and Fuss, 1999), they must be rather conservative as
saturation preferences vary a lot between individuals
and depends often on the semantic content of the im-
age.

Contrast refers to the efficient use of the dynamic
range. Improved contrast should make image details
more evident to a human observer. Contrast enhance-
ment can be achieved via global approaches (Tumblin
and Rushmeier, 1993; Eschbach et al., 1995). Spa-
tially uniform contrast enhancement approaches how-
ever fail to model perceptual attributes where local-
ity is an important characteristic. Depending on the
aggressiveness of the approach the images can ap-
pear washed-out or artificial. Limitations due to the
global nature of this technique are observed in those
images where luminance is uniformly distributed over
the whole range.

Local approaches through TROs have also been
proposed (Zuiderveld, 1994; Devlin et al., 2002; Di-
Carlo and Wandell, 2001; Fattal et al., 2002). A com-
plete evaluation of TRO performance focused on high
dynamic range display appears in (Ledda et al., 2005).
More complex approaches rely on generative models
to recover the reflectance typically using edge pre-
serving filters to avoid halo effects (Chiu et al., 1993;
Tumblin and Turk, 1999; Durand and Dorsey, 2002).

Blocking artifacts are the result of coding, resiz-
ing or compressing the image. A traditional approach
to reducing blocking artifacts is to low-pass filter the
pixels directly adjacent to the block boundaries. Us-
ing a Gaussian spatial domain filter (Reeve and Lim,
1984) is very fast; however, it cannot reduce artifacts
that are not confined to pixels next to block bound-
aries. To overcome this problem linear block bound-
ary filters (Avril and Nguyen-Trong, 1992) or separa-
ble anisotropic Gaussian filters perpendicular to the
block boundary (Tzou, 1988) were proposed. The
drawback of these techniques is that they do not adapt
to local characteristics of the signal and change a high
frequency artifact for a low frequency one. There-
fore, (Ramamurthi and Gersho, 1986; Meier et al.,
1999), propose edge preserving space-variant region-
based filters and (Xiong et al., 1997; Kim et al., 1998)
wavelet transform to smooth blocking effects while
preserving edges. In an automatic approach it is im-
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portant also to be able to estimate the blockiness of an
image (Minami and Zakhor, 1995; Tan and Ghanbari,
2000; Fan and de Queiroz, 2003) to adjust the level of
correction and avoid unnecessary degradation.

Imperfect instruments, problems with the data ac-
quisition, transmission and compression can all be
sources of noise on the image. Random image noise
corresponds generally to visible grain or particles
present in the image which are generally caused by
the electronic noise in the input device sensor and cir-
cuitry (e.g. scanner, digital camera). Intensity spikes,
speckle or salt and pepper noise will only affect a
small number of image pixels. They are caused by
flecks of dust on the lens or inside the camera, dust
or scratches on scanned photography or film, faulty
CCD elements, “hot pixels” occurring with long ex-
posures with digital camera, etc. Banding noise can
be introduced when the data is read from the digital
sensor (e.g. scanner streaks) and scratches on the film
will appear as additional artifacts on the images. One
method to remove noise is by convolving the original
image with a mask (e.g. Gaussian). Its drawback is
the blurring of edges. In contrary, a properly designed
median filter is very good at removing salt and pep-
per noise preserving image detail. Promising denois-
ing results can be achieved using a wavelets (Portilla
et al., 2003), anisotropic diffusion (Perona and Malik,
1990), and bilateral filtering (Tomasi and Manduchi,
1998). A recent survey of different techniques can be
found in (Motwani et al., 2004).

Image blur is a form of bandwidth reduction typ-
ically caused by relative motion between the camera
and the original scene or by an optical system that
is out of focus. It can affect the totality or part of
an image and many cameras today have built in so-
lutions to stabilize image capture. There are differ-
ent techniques available for solving the restoration
problem from blind de-convolution methods (Zhang
et al., 2000; Stern et al., 2002) to approaches that
combine power-laws with wavelet domain constraints
(Jalobeanu et al., 2002; Neelamani et al., 2004). A
method to remove the specific blur due to camera
shake was proposed in (Fergus et al., 2006). The au-
tomatic implementation of these techniques requires
the estimation of the level of blur or motion blur for
the different image regions, prior to correction.

An example of a completely automatic system in-
cluding most of the mentioned enhancements is Xe-
rox’s Automatic Image Enhancement (XAIE) (Xerox,
2006). This approach is composed of two stages: a
decision mechanism stage and an apply stage. Given
an image, the (low-cost) decision mechanism stage
determines whether a particular enhancement will or
will not be applied on an image and this is typically

done anticipating image improvement or degradation.
For this purpose, the decision mechanism uses statis-
tics such as noise measures or luminance and chromi-
nance distributions on a low resolution version of the
image. Details for particular components of the XAIE
decision mechanism can be found in (Eschbach and
Fuss, 1999; Bressan et al., 2007). The settings for the
decision mechanism are largely based on user prefer-
ence evaluations. The output of all decision mecha-
nisms are combined and fed to the apply stage. This
architecture also presents advantages in terms of com-
putational costs since only those enhancements that
can benefit the image are actually applied.

2.2 Image Understanding

Image understanding refers to a set of operations that
transforms pictorial inputs into commonly understood
descriptions. Even if we are far from a complete au-
tomatic understanding/description of the image, huge
advances were made in the last few years to success-
fully assign keywords to an image based on its high-
level content. These techniques can analyze the whole
scene or focus on objects within the image. Systems
are consideredgeneric when their technology is in-
dependent of the classes or object types. The main
difficulty of such generic systems is that they have to
handle not only the variations in view, imaging, light-
ing and occlusion, typical of the real world, but also
intra-class variations typical of the semantic classes,
e.g. types of chairs.

The most common tasks are recognition, classifi-
cation or detection. Recognition concerns the iden-
tification of particular object instances. Object and
scene classification are the tasks of assigning one or
more general tags to an image. Detection is the prob-
lem of determining if one or more instances of an ob-
ject occur in an image and, typically, estimate loca-
tions and scales of the detected instances. From the
perspective of image enhancement, classification and
detection are considered more relevant than recogni-
tion. By far, the “object” that received most of the
attention for detection and recognition has been faces
(Yang et al., 2002).

The first multi-class categorization approaches
were based on image segmentation. Their aim was la-
belling relatively homogeneous image segments with
keywords such as sky, grass, tiger, water, rocks. To
do this they used statistical models to learn a sort
of dictionary between individual image blobs (seg-
ments) and a set of predefined keywords (Barnard
et al., 2003; Carbonetto et al., 2004; Chen and Wang,
2004; Li et al., 2004).

Motivated by an analogy to bag-of-words based
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learning methods for text categorization, a large set of
bag of visual word (BOV) based approaches emerged
recently. Similarly to text, an image is character-
ized by a histogram of visual word counts. In con-
trast to text categorization where a dictionary is avail-
able, one of the challenges for images is that the vi-
sual vocabulary has to be built automatically from the
training set. To do this, first some image descrip-
tors are extracted from the image. Those descriptors
are generally based on texture, color, shape, structure
or their combination and are extracted locally on re-
gions of interest (ROI). The ROI can be obtained by
image segmentation as above, by applying specific
interest point detectors (Csurka et al., 2004; Quel-
has et al., 2005), by considering a regular grid (Car-
bonetto et al., 2004; Fei-Fei and Perona, 2005) or sim-
ply random sampling of image patches (Marée et al.,
2005; Novak et al., 2006). All features extracted are
then mapped to the feature space and clustered to ob-
tain the visual vocabulary. Often a simple K-means
is used, however Gaussian Mixture Models (Farquhar
et al., 2005) or Self Organization Maps (Lefebvre
et al., 2006) can also be used to obtain a soft cluster-
ing, inline with the continuous nature of visual words.

Given a test sample, each feature vector is as-
signed to its closest visual word in the previously
trained vocabulary or to all visual words in a prob-
abilistic manner in the case of a stochastic model.
The histogram is computed by accumulating the oc-
currences of each visual word. Finally, the histogram
is fed to a classifier, for example K nearest neigh-
bor (Bosch et al., 2006), probabilistic latent seman-
tic classifier (Quelhas et al., 2005) or support vector
machines (Csurka et al., 2004).

Though most of the mentioned approaches use a
single visual vocabulary generally built on the whole
training set, this is not always the best option: Very
good performance is achieved when category labels
are used during the estimation of the visual vocab-
ulary. While (Farquhar et al., 2005) agglomerate
category-specific vocabularies into a single vocabu-
lary, (Perronnin et al., 2006) propose to adapt the vi-
sual vocabulary (universal) trained on the whole train-
ing set to each class using class-specific images. An
image is then characterized by a set of bipartite his-
tograms - one per class - where each histogram de-
scribes whether the image content is best modeled by
the universal vocabulary, or the corresponding class
vocabulary.

One of the drawbacks of the BOV approach is that
it considers the image as a “bag” of independent vi-
sual word instances. (Sivic et al., 2005) tried to over-
come this by building a visual vocabulary of features
describing the co-occurrences of visual words. (Fer-

gus et al., 2003; Leibe et al., 2004; Crandall and Hut-
tenlocher, 2006) proposed building generative mod-
els that take into account relatively strong geomet-
ric constraints between image patches. However, this
requires the alignment and segregation of different
views of objects in the dataset. (Csurka et al., 2005)
propose to incorporate geometric information based
on scale, orientation and closeness of the keypatches
in a boosting framework. The selected weak classi-
fiers are combined with the original BOV classifier. In
(Carbonetto et al., 2004) geometry has been included
through generative MRF models of neighboring re-
lations between segmented regions. (Sudderth et al.,
2006; Fidler et al., 2006) proposes hierarchical learn-
ing of generic parts and feature combinations. The
above approaches aim to handle mainly object classes
and showed performance improvements for classes
such as cars, planes, faces. In contrary, (Boutell
et al., 2006) propose generative models for outdoor
scene configurations, consisting of regions’ identities
(beach, field, mountain, street, suburban, open-water)
and their spatial relations (above, far above, below,
far below, beside, enclosed, and enclosing). However,
the improvement achieved by theses systems over the
BOV approaches is relatively modest compared to the
increased computational cost.

3 SCDIE

Semantic Content Dependent Image Enhancement
(SCDIE) is the result taking into account semantic
content for image enhancement. Classical enhance-
ment is mainly based on dimensions that model low-
level quality measures. SCDIE also considers seman-
tic dimensions and this extension allows for more pre-
cise models, e.g. an overexposed sunny landscape.
SCDIE maps this sample to a particular enhancement
which is then used to improve image quality. We call
the domain of this mapping ”Intent Space” (ΩI) and
the target ”Enhancement Space” (ΩE ). Figure 1 il-
lustrates this approach for the case of SCDIE. Notice
that other dimensions can be naturally incorporated
into this model.

Such a system can be built with the following
components.

1. an image quality measure component which ana-
lyzes low-level features related with quality in the
image.

2. an image understanding component which assigns
one or more semantic labels to an image. Notice
that we assume quality and understanding are in-
dependent: image labels do not depend on quality.

TOWARDS INTENT DEPENDENT IMAGE ENHANCEMENT - State-of-the-art and Recent Attempts

213



Figure 1: The clssical AIE, extended to SCDIE and pos-
sible extentions to other dimensions of intent based image
enhancement (IBIE).

This useful assumption holds most of the time but
not always since it depends on the labels we con-
sider.

3. a function that maps the space spanned by image
quality and understanding output into the space of
possible enhancements.

4. an image enhancement component in charge of
applying the resulting enhancement.

We now specify the components in the design of
a particular instance of the system. For the image
quality component we take into account the statis-
tics which are computed in the decision mechanism
stage of XAIE (see section 2.1), e.g. luminance and
chrominance distributions and statistics, noise, edge
levels, blocking artifacts, etc. The understanding
component uses a BOV-based multi-label categorizer
trained on 8 categories: Urban, Portrait, Flowers, In-
teriors, Landscape, Snow and Sky. These categories
were chosen to be representative of images found in
typical imaging scenarios.

For the space of possible enhancementsΩE we
choose to use the topology provided by XAIE. We
consider 7 different enhancements dimensions in-
cluded in XAIE: contrast, exposure, shadow details,
saturation, color balance, noise reduction and sharp-
ness and discretize them into three intensity levels or
modes: low, default and high. Depending on the en-
hancement, the three bins can have a different inter-
pretation, e.g. dark, default and light for exposure
correction. With this approach, the discretization of
ΩE yields 37 = 2187 bins.

XAIE already estimates the mapping function in
the decision stage of the algorithm (see section 2.1).
The decision stage uses only the image quality com-
ponents inΩI to determine the best enhancement in
ΩE . The decision mechanism does not take into ac-
count the semantic content. Since we assumed inde-
pendence between quality and understanding, we can
extend the mapping provided by the decision mech-
anism by linking semantic categories with enhance-
ment modes (semantic decision) provided the deci-

Figure 2: Pairs of (class,enhancement) plotted in the agree-
ment/coherence map. Green means it was preferred while
red means it was considered to have a bad effect. The size
of the circle was proportional with the relevance. Attention
should be paid to large circles with dominant color (red or
green) in the rightmost and uppermost hemispheres.

sion mechanism decides to apply the enhancement
(quality decision). The mapping between categories
and enhancements is learnt through user evaluations.

Given a category, choosing the preferred enhance-
ment is untractable even in the caseΩE is discretized.
So we first restrict the space of enhancements by as-
suming independence between enhancements and by
screening out improbable mappings. The indepen-
dence assumption reduces the image comparisons to
3∗ 7 = 21 and the screening leaves out around two
thirds of these possibilities. Examples of enhance-
ments left out by the screening process were high sat-
uration on portraits or sharpness to sky images. No
category had more than six candidate enhancements
after the screening.

A representative set of images was printed from
each category and, for each image, all possible en-
hancements were printed on a single A3 size page.
Participants had to choose for each image the worst
and best enhancement. To analyze a given enhance-
ment on a given category, we considered the follow-
ing criteria:

• Agreement: measures either positive or negative
agreement among different user test participants
on a given image:

1
NI

NI

∑
i=1

(

g

(

Ni
b +Ni

n/2

NU

)

+g

(

Ni
w +Ni

n/2
NU

))

whereg(x) = xlog2(x), NU is the number of users,
NI is the number of different image considered.
Ni

b, Ni
w andNi

n is the number of users that chose
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Figure 3: Some examples of special effect images.

the enhancement as being the best, the worst or
none of them for a given imagei. Agreement mea-
sures the entropy of the distribution of preference
for all user for a single image.

• Coherence: measures uniformity of opinion
across all images of a single category for any
given participant

1
NU

NU

∑
u=1

(

g

(

Nu
b +Nu

n /2

NI

)

+g

(

Nu
w +Nu

n /2
NI

))

whereNu
b , Nu

w andNu
n is the number of image for

which the useru considered the enhancement as
being the best, the worst or non of them. Coher-
ence measures the entropy of the distribution of
the preference of a single user across all images.

• Relevance: Percentage of times the enhancement
was chosen as either the best or the worst.

Figure 2 shows the pairs of (class,enhancement) in
an agreement/coherence map, allowing the following
interpretation. High agreement and high coherence
is good, meaning that everyone agrees and opinion is
consistent for all category images. Low agreement
and high coherence is bad because it indicates that
the appreciation of the enhancement is highly subjec-
tive and dependant on user preference for categories.
High agreement and low coherence is neutral, proba-
bly indicating that the image set for that category was
poorly chosen. Obviously, low agreement and low co-
herence is bad.

From this evaluation, enhancement improvements
were suggested for three out of the eight selected cat-
egories: flowers, sky and urban.

3.1 Special Effects

In this section, we show a second example of SCDIE
subsystem, which tries to handle the problem of de-
tecting images with special effects in order to auto-
matically turn off the enhancement process for those

Figure 4: False Alarm Rates (FA) and False Rejection Rates
(FR) of the BOV as special effect occurence detector plotted
on a DET curve.

images. Such an automatic subsystem is interesting
in a printing workflow, where the growing number of
manipulated photos, images with unusual viewpoint,
lighting or artificial images of non-professional pho-
tographers (see examples in Figure 3) are most often
mixed with the rest of their album images. It is under-
stood that photographers generally prefer no further
changes in there artificially manipulated images.

In the context of SCDIE, this can be translated
as follows. The image understanding component la-
bels those images withSpecial Effects and the deci-
sion mechanismF maps this label toNo enhancement.
To test the feasibility of such a system, we trained
a BOV (Perronnin et al., 2006) on images with and
without special effects collected from two indepen-
dent sources. Images from the first source (1160 with
effect and 966 without) served as training data and im-
ages from the second source (536 with effect and 524
without) were used as test data. Figure 4 shows the
DET (Detection Error Tradeoff) Curve (Martin et al.,
1997) of the system acting as special effect occurence
detector. To the best of our knowledge, these are the
first results reported for such a task. Furthermore,
special effects generally belong to clearly defined cat-
egories: blur, painting/stylization, artificial lighting,
etc. We are currently experimenting if training our
system on these, better defined subcategories as well
as the subcategories of natural photos (indoors, out-
doors, portrait, city, landscape, etc.) can improve the
current performance (EER =13.7) of our system.

4 CONCLUSION

The future of image enhancement relies on our ability
to map the space of intents with the space of possi-

TOWARDS INTENT DEPENDENT IMAGE ENHANCEMENT - State-of-the-art and Recent Attempts

215



ble enhancements for a given image. The main chal-
lenges are given by modelling the space of intents and
estimating the actual mapping. When the objective is
quality for user preference, user evaluations can be a
way of estimating the mapping.

The fact users are sharing their content and post-
ing their opinions online provides a unique oppor-
tunity for understanding visual preference more in
depth. From the variable facets of this visual prefer-
ence: perceptual, semantic content, aesthetic or con-
textual, we mainly focused in this paper on the par-
ticular problem of semantically dependent image en-
hancement. To illustrate our approach with exper-
iments, instead of considering the complete space
of possible image enhancements, we restrict our ap-
proach to the variations that might be generated from
a particular image enhancement approach and learnt
a mapping between our semantic categories and en-
hancement space from user preference evaluations.

Finally, a simple example scenario is presented,
showing how an SCDIE system can handle the prob-
lem of detecting images with special effects in a print-
ing workflow in order to automatically turn off the en-
hancement process for those images.
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