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Abstract: Video surveillance becomes more and more extended in industry and often involves automatic calibration
system to remain efficient. In this paper, a video-surveillance system is presented that uses stationary-dynamic
camera devices. The static camera is used to monitor a global scene. When it detects a moving object,
the dynamic camera is controlled to be centered on this object. We describe a method of camera-to-camera
calibration in order to command the dynamic camera. This method allows to take into account the intrinsic
camera parameters, the 3D scene geometry and the fact that the mechanism of inexpensive dynamic camera
does not fit the classical geometrical model. Finally, some experimental results attest the accuracy of the
proposed solution.

1 INTRODUCTION

Video surveillance is everywhere : banks, airports,
stores, parking lots. Recently, surveillance compa-
nies want simultaneously to monitor a wide area with
a limited camera network and to record identifiable
imagery of all the people passing through that area.
The camera choice is different if the goal is to super-
vise a large scene or to acquire high resolution images
of people. Indeed, in the second case, it is necessary
to use a camera with a highly zoom. But, a camera
with zoom allows only to monitor a small area. If
they want to supervise the same area that a wide an-
gle camera network, surveillance companies need a
large number of zoomed camera : it is too expensive.

In a recent past, to solve this problem, people pro-
posed to combine static cameras with dynamic cam-
eras. Indeed, it is possible to control the angle of ro-
tation of the dynamic camera (pan and tilt angles) and
the zoom. In practice, the system proceeds as follows.
A scene event as a moving subject is detected and lo-
cated using the static camera. The dynamic camera
must be controlled with the informations extracted
from the static camera in order to adjust its pan, tilt
and zoom such as the object of interest remains in
the field-of-view. Then, high resolution image can be

recorded in order to apply face or gesture recognition
algorithm, for example.

The main problem to solve with such a device is
how to control the dynamic camera parameters from
the information of the object position extracted in
the static camera. These last years, two approaches
emerged. Either, each camera is calibrated in order to
obtain the intrinsic and extrinsic camera parameters
before to find a general relation between 2D coordi-
nates in the static camera and the pan and tilt angles,
like (Horaud et al., 2006) and (Jain et al., 2006). Or
cameras are not calibrated like (Zhou et al., 2003) and
(Senior et al., 2005). (Zhou et al., 2003) and (Senior
et al., 2005) learned a look-up-table (LUT) linking
several positions in the static camera with the corre-
sponding pan-tilt angles. Then, for another point, they
estimate the corresponding pan-tilt angles from inter-
polation using the closest learned values.

In order to position the presented paper, we briefly
explain the existing works. In the first case, (Horaud
et al., 2006) use previous works to calibrate both cam-
eras of their stereo-vision system. (Jain et al., 2006)
preferred to calibrate separately their cameras. Most
existing methods for calibrating a pan-tilt camera sup-
pose simplistic geometry model of motion in which
axes of rotation are orthogonal and aligned with the

498

Badri J., Tilmant C., Lavest J., Pham Q. and Sayd P. (2007).
HYBRID DYNAMIC SENSORS CALIBRATION FROM CAMERA-TO-CAMERA MAPPING : AN AUTOMATIC APPROACH.
In Proceedings of the Second International Conference on Computer Vision Theory and Applications - IU/MTSV, pages 498-504
Copyright c© SciTePress



Figure 1: Our system of collocated cameras : the static cam-
era is on the left and the dynamic camera is on the right.

To steering the dynamic camera, they need to know a
sequence of transformations to allow to link a position
with the pan-tilt angles. These transformations are
adapted to pedestrian tracking. An homography links
the foot position of the pedestrian in the static cam-
era with the foot position in the dynamic camera. A
transformation links the foot position in the dynamic
camera with the head position in the dynamic camera.
Finally, another transformation, a LUT as (Zhou et al.,
2003), links the head position in the dynamic cam-
era with pan-tilt angles. These transformations are
learned automatically from unlabelled training data.
The main method default relies on the training data.
If this method is used for a turnkey solution for a no-
expert public and unfortunately the scene changes, it
is impossible that a no-expert public could constitute
a good and complete training data in order to update
the system.

A solution in the continuity of (Zhou et al., 2003)
and (Senior et al., 2005) works is proposed. Indeed,
(Jain et al., 2006) need the depth information of the
object in the scene. So they need to use stereo triangu-
lation. But, like in figure 1, this system is composed
of two almost collocated cameras.

Moreover, for an automatic and autonomous sys-
tem, solutions proposed by (Jain et al., 2006) and (Se-
nior et al., 2005) are not usable. In fact, they need
an expert knowing precisely how to use a calibration
target (Jain et al., 2006) or how to extract the good
informations to make the training data (Senior et al.,
2005).

In this paper, an automatic and autonomous solu-
tion is presented for an uncalibrated pair of cameras.
The solution adapts automatically to its environment.
In fact, if the pair of cameras are in a changing envi-
ronment, this solution can be restarted regularly.

HYBRID DYNAMIC SENSORS CALIBRATION FROM CAMERA-TO-CAMERA MAPPING: AN AUTOMATIC
APPROACH

499



Figure 2: Scheme of the static-dynamic cameras devices.

2.1 Camera-to-Camera Calibration :
3D Scene Constraints Integration in
LUT Computation

Let us define the notations used in the following.

• Is : image of the static camera;

• Ni
s : node i of the regular grid in Is;

• N : list of nodes Ni
s;

• (α,β) : current pan-tilt angles of the dynamic
camera;

• Id(α,β) : image of the dynamic camera depending
of (α,β);

• Ni
d : node i of the regular grid in Id(α,β);

• Cd : center of Id ;

The field-of-view of Id depends on the pan-tilt angles
and the zoom. In this case, the system works for a
constant zoom. The field-of-view of Is is 2.5 times
magnification of Id .

Let us denote the ns coordinates of N ={
N0

s ,N1
s , ...,Nns−1

s
}

in Is. The link between the ns

Figure 3: Grid applied to the image of the static camera.

nodes Ni
s and the pan-tilt parameters must be known

such as Ni
s is map to Cd . For each node Ni

s, a visual
servoing loop in the dynamic camera is used to learn
automatically the LUT.

Principal steps of our method :

1. Grid definition;

2. Initialisation on a node Ni
s;

3. For each node Ni
s in the static camera :

(a) Selection of images Is and Id(α,β) to be com-
pared

(b) Extraction and robust matching of interest
points between Is and Id(α,β)

(c) Computation of an homography H between in-
terest points of Is and Id(α,β)

(d) Computation of the Ni
s coordinates in Id(α,β) :

Ni
d = H×Ni

s

(e) Command of the dynamic camera in order to
insure that Ni

d catch up with Cd

(f) Process Ni
s until you reach the condition

|Ni
d −Cd |< ε

otherwise stop the loop after m loops

4. Go to the step (3) to process the node Ni+1
s ;

At step (1), a regular grid is applied to the image
of the static camera (figure 3). The choice of the grid
is made such as there is a common part of the field-
of-view of Id(α,β) between two neighbour nodes.

At the step (2), a start node N0
s must be selected.

To find this initial point, angles are randomly selected
to steer the dynamic camera. We stop when the field-
of-view of the dynamic camera falls in the neighbour-
hood of a node.
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Figure 5: Result of the TPS interpolation method. Plus
correspond to the learned correspondences of the LUT and
used as training data for TPS interpolation. Points corre-
spond to the result of TPS interpolation with a more com-
plete grid than the initial grid used to learn the LUT.

3 RESULTS AND EXPERIMENTS

Cameras of the AXIS company are used. The image
resolution used is 640× 480 pixels for Is and 704×
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Figure 4: Difference of field-of-view between the static (left figure) and the dynamic (right figure) camera. On the left figure
the extracted image of Is is marked with a white square.

576 pixels for Id . The field-of-view of Is is close to
90 ◦. In the case of minimal zoom, the field-of-view
of Id is 42 ◦.

In order to estimate the error committed during
the supervised calibration (see section 2), a reference
point Ps in Is is necessary. Its coordinates in Is and
in Id must be known. The main problem is the dif-
ference of resolution between images : a real point in
the image Id may be not visible in Is and conversely
a real point in Is may change into several pixels in Id .
So points extracted to the scene can not be used.

To solve this problem, a black ellipsis E which be
visible in the two cases is used (figure 6). To deter-
mine with accuracy the coordinates of the center of
E, the binarization method of (Otsu, 1979) is used.
Pixels of a region of interest can be separated in two
classes. Then, the coordinates of the center of gravity
of black pixels are estimated.

3.1 Accuracy of the Visual Servoing
Loop

Experimentally, the mean displacement in Id for the
minimal mechanical step of the dynamic camera is
1.5 pixels. So, for the test condition, the solution ac-
curacy is limited by this mechanical factor.

If the process succeed, a given point P in Is must
be projected in the center Cd of Id with the (α,β) pa-
rameters. The solution accuracy is defined as the error
in pixels between the real localization of P in Id and
Cd .

To evaluate the mean error, around thousand ex-
periments were carried out for two configurations.
The first one is an area surrounded by many interest
points. The second one is an area surrounded by less
interest points due to a poor scene texture. For a ran-

domly start position, the final position of P in Id is
recorded.

As it could suspect, percentage of failures is more
important in the case of an homogeneous scene, 8.7%
on average, than in good condition of convergence,
1.5% on average. The mean error obtained is from
1.5 to 3 pixels in each direction. So, the system accu-
racy reaches the mechanical limit errors induced by
the PTZ.

3.2 Real Condition Application

Now, the committed error is estimated when the dy-
namic camera is steered such as its field-of-view is
centered on a precise point in the scene. First, the
system tests in the 3D scene used to learn the LUT
(figure 6). Secondly, it tests with unknown object :
a static target then a people (figure 7 for the people
example).

In the first case, the system is tested without un-
know object. The table 1 shows that the error is in the
order of the system accuracy. But, in the case 1, the
vertical error is more important because the 3D infor-
mation used by the TPS have not the same geometry
: ground and the cupboard.

When an unknow object is introduced, the geom-
etry of the scene changes. So, naturally, the observed
error in the table 1 is more important. The difference
between the result with a static object and a person is
the motion of the person during the acquisition of the
data. The observed error in the case 4 is due to the
distance and the size of the object in comparison with
the static camera.
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LS only LS + object LS + person
x y x y x y

Case 1 1.9 8.8 1.7 11.6 1.9 14.8
Case 2 2.7 2.7 5.3 4.5 5.0 10.6
Case 3 3.6 3.6 2.2 5.5 7.6 10.3
Case 4 18.9 33.4 10.6 15.2

4 CONCLUSION AND
PERSPECTIVES

In this paper, an algorithm of a camera-to-camera cal-
ibration was presented in order to steer a dynamic
camera using informations of the static camera.

Method accuracy reaches the minimal mechanical
step allowed by the dynamic camera device. More-
over, the accuracy decreases when the dynamic cam-
era is centered on an unknow subject. But it is suffi-
cient to initialize a tracking phase with the dynamic
camera.

In the future, grid definition and zoom integration
must be changed.

Actually, a regular grid without relation with the
3D content of the scene is used. A grid based on the
results of the SIFT method is more interesting. For
instance the choice of the points as a gravity center of
an area with a good density of interest points in order
to make more robust our method can be used.

Secondly, if people high resolution images are
recorded during a tracking step, it is necessary to inte-
grate the zoom to this system. So, for each zoom, the
same procedure will be used to learn the correspond-
ing LUT and then to construct a 3D LUT giving the
relation between the coordinates of point in the static
camera with the pan-tilt-zoom parameters of the dy-
namic camera.
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Figure 6: Representation of the case : the 3D scene only. On the left figure, the white square represents the location of the
target in the static image Is. On the right figure, an extracted image of the dynamic camera Id with a size of 200×200 pixels
is represented. A white cross marks the center Cd of the dynamic image and a white square the center of the target.

Figure 7: Representation of the case : the 3D scene with a people. On the left figure, the white square represents the location
of the target in the static image Is. On the right figure, an extracted image of the dynamic camera Id with a size of 200×400
pixels is represented. A white cross marks the center Cd of the dynamic image and a white square the center of the target.
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