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Abstract: We propose a two-level method for 3D non-rigid registration and apply the method to the problem of building
statistical atlases of 3D anatomical structures. 3D registration is an important problem in computer vision and
a challenge topic in medical image field due to the geometrical complexity of anatomical shapes and size of
medical image data. In this work we adopt a two-level strategy to deal with these problems. Compared with
a general multi-resolution framework, we use an interpolation to propagate the matching instead of repeating
registration scheme in each resolution. Our algorithm is divided into two main parts: a low-resolution solution
to the correspondences and mapping of surface models using Chui and Rangarajan’s robust point matching
algorithm, followed by an interpolation to achieve high-resolution correspondences. Experimental results
demonstrate our approach for solving the non-rigid registration and correspondences within complicated 3D
data sets. In this paper we present an example of this method in the construction of a statistical atlas of the
femur.

1 INTRODUCTION shape variance of the anatomical structures for ex-
ample swelling, prostate poking, bone fractures, tu-
mor growth changes, intestinal movements etc. Be-
sides, inter-subject(different patient) registrations are
usually non-rigid because of the local anatomical dif-
ferences between patients. Therefore, non-rigid (also
known as deformable) registration has been an active
topic in recent years. In general, a non-rigid transfor-
mation is represented by a global rigid or affine trans-
formation plus a local non-linear deformation, which
can be described by radial basis functions (RBF) (Yu,
2005), octree-spline (Szeliski and Lavallee, 1996),

Registration has been studied for years in computer
vision, which is still a critical problem in medi-
cal image field due to the geometrical complexity
of anatomical shapes, and computational complexity
caused by the enormous size of volume data. It has
numerous clinical applications such as statistical atlas
construction for group study and statistical parame-
ters analysis (Hill et al., 2001), mapping anatomical
atlases to individual patient images for disease anal-

ysis (Fleute et al., 2002) and segmentation (Rohlfing thin-plate spline (TPS) (Chui and Rangarajan, 2003),
etal, 200‘_1)' i geometric splines (Farin, 1993), finite elements (Park
~ According to the type of the transformation be- gt g1, 1996), or free form B-spline (Rueckert et al.,
ing applied, registration can be rigid or non-rigid. 2003) etc. In order to evaluate the registration, dif-
In other words, as long as the shape has no changggrent similarity measurements have been utilized ac-
between two images, the registration should be cording to different features and imaging modalities.
rigid, such as the intra-subject(same patient)-inter- g, example, sum of squared distances (SSD) is used
modality(different imaging system) registration by for geometric features (Besl and McKay, 1992). For
capturing images at the same time. However, V\(he” the intensity features, correlation coefficients (CC)
we take into account the time, i.e., when two im- (Kim and Fessler, 2004), Ratio Image Uniformity

ages are captured at different time, most of intra- (RjU) (Woods et al., 1994), or mutual information
subject registration will be non-rigid due to the
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(MI) (Wells et al., 1996) are usually considered. Reg- 2.2 Low-Res Non-Rigid Registration
istration problem can be simplified given some known
correspondences, for example using markers (MaurerPoint-to-Point Registration: We apply Chui and
et al.,, 1997). Nevertheless, markers are not allowed Rangarajan’s non-rigid registration method on simpli-
to use or available in many scenarios. Alternate es- fied meshes. Fuzzy correspondences and a determin-
timation of correspondences and transformations areistic annealing technique are adopted for a smoother
therefore widely used for both rigid case (Besl and optimization process and efficiency. A dual update
McKay, 1992) and non-rigid case (Chui and Rangara- strategy is utilized to estimate the correspondences
jan, 2003; Chui et al., 2004; Glaunes et al., 2004). and transformation iteratively. The non-rigid transfor-
Moreover, with the increase of data size and geomet- mation is parameterized using thin-plate splines for a
rical complexity, multi-resolution strategy has been smooth spatial mapping.
adopted into the registration framework (Ellingsen Initial Alignment: Before applying Chui and Ran-
and Prince, 2006; Jaume et al., 2002; Shen, 2002).garajan’s method, we need an extra alignment due to
Sparse matrices are also used to handle the computathe particularity of our data. Our data comes from
tional complexity (Papademetris et al., 2003). CT scanned surfaces of human femur. Since we are
In this paper we propose a two-level non-rigid more interested in condyles, As Fig. 1 shows, only
registration approach for 3D surface mesh to deal distal femur is scanned to build meshes. According
with the computational and geometrical complexity, to different patients, some meshes include more fe-
inspired by Chui and Rangarajan’s non-rigid regis- mur shaft such as mesh Y, others include less shaft
tration algorithm and the previous multi-resolution for example mesh X. Experiments shows that the reg-
works. Since Chui and Rangarajan’s algorithm is istration might be very slow and may not converge
not able to handle more than 2000 3D points (Pa- for some cases, if we only move mesh X to the center
pademetris et al., 2003), in order to deal with more of mesh Y at the very beginning. The reason is that
points, we break down the registration into a two- some part of mesh Y (as showed in a blue rectangle)
level process. We first apply their algorithm to the has no counterpartin mesh X, and we should not take
simplified low-resolution meshes (We use Garland’s into account this part in the registration. To tackle
mesh simplification technique (Garland and Heck- this problem, we estimate the pseudo center of mesh
bert, 1997) to compute low-resolution meshes). And Y and a rigid transformation between two meshes.
then, instead of successively matching in each reso-  As Fig. 1 illustrates, we use the height of mesh
lution from coarse to fine, we directly propagate the X to estimate the pseudo center of mesh Y. Assume
correspondences from low resolution to the high res- axis z is the scan direction from the knee to hip, we
olution by an interpolation. estimate the pseudo centgr as:

Cy = NYi > py (@D
! (zy —minzy ) <(maxzx —minzx)
where Ny, covers pointgy: in mesh Y that satisfy
. L (zv —minzy) < (maxzx — minzx) (black points in 1.
2.1 Mesh Simplification We apply principal component analysis (PCA) to es-
timate the pose of each mesh. Assume
We use Garland’s quadric error metrics (QEM) based 1
mesh simplification (Garland and Heckbert, 1997) Cx = ,\TXZPX )
technique to obtain low-resolution meshes. QEM is
based on the iterative contraction of vertex pairs. The IS the center of mesh X. Then we can compute the
cost of contraction is noted by a quadric error and the covariance matrix fofpx } and{py/}:
\évrrrl(()):.e process is an iteratively minimizing the quadric qJX:le_l[p)l(_CX7 . ,p>'\<'x—c><] - [pkcx, - ,p>'\<'x—cx]’

A critical parameter in the simplification is the WY'Zﬁ[p\l(/—CYu“' ,pwl—c\('] : [p\jE/_CY’f" 7p$5(,—€v']/
number of vertices in the low-resolution meshes. The (3)
less vertices, the faster low-resolution registration but We compute the principle axes by decomposing the
less accurate the high-resolution registration. We covariance matrix using moment analysis:
make a trade off between accuracy and speed by do- _ / _ /
ing a series of experiments (See Sec. 4). ¥x = U, By = Uy Ay Uy )

2 TWO-LEVEL REGISTRATION

Each column ofUx represents an principle axis of
points set{px}, and Uy, for {py/}. We use three
axes to describe the pose of points set (Fig. 1): red
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Figure 2: lllustration of local non-rigid registration between
point and surfacex; is a point in the deformed mesk,
whose correspondence in meghs y;. The projection of

Rotate Mesh X to be the same pose as Mesh Y

Figure 1: lllustration of the rigid transformation from mesh
o Back peme ey e ot s o 20 e gl shany, s dented by 1 e
pseudo center. The second compare the translated and ro- yi- =529
tated mesh X with Y. Red axes represent the principle com- ] ) )
ponents of point set in mesh X, blue axes for Y. 2.4 Low-Resolution to High-Resolution
, Interpolation

for {px} and green for{py.}. We can estimate a P
rotation from axes ofX to Y’, which is given by . o \
Uy/-Ux’. Therefore, we can apply a rigid transfor- After the registration in low-resolution meshes, we
mation [Uys-Ux/|(cy—cx)] to points set{px}. Fig. directly apply a surface interpolation to those coarse
1 shows the transformed mesh X. Experiment shows Mmeshes, in order to migrate the registration to high-
the rate of convergence has been improved from 78%resolution meshes. The problem is to build the cor-

t0 95.2%. respondences between mesh X and Y, given corre-
spondence between a subset of X and a subset of
2.3 Local Non-Rigid Registration Y. Radial basis functions(RBF), finite element, mul-

tivariate spline such as thin-plate spline(2D bivariate
) . ) . spline) and triharmonic thin-plate spline, are popular
Point-to-Surface Registration: In the previous sec-  tgchniques used in surface interpolation. Carr et al
tion the non-rigid registration is applied to deform (cayr et al., 1997) include multivariate splines method
only points and SSD is used as a criteria. Here We jnto ragdial basis functions by using splines as kernel
will step further to minimize the SSD by using some  fynctions. In this work we use Gaussian kernel based
points on the surface instead of original vertices. This RBF as an illustration due to it's simple mathematical
idea is straightforward. As Fig. 2 shows,is a point  yepresentation and less restrictions on nodes. Specif-
in the deformed mesiX, whose correspondence in icgly, we use a linear affine function plus a series of

meshY isyj. SSD § [xi —yi[?) has been minimized  ragial basis functions (RBFs) to construct the interpo-
in the previous section. However, it is possible to de- |ation function:

crease SSD more if we use some points on the surface

instea_d ofy;. Le_t's check thg neighboring triangles of yiL:Cl' [¢(||xiL,x&||),~ . 7¢(||XiLaXh ||)]’+Cz+03-XiL (5)

Vi, which are triangles sharing the same vestgxor

exampleS;,S; andS; in Fig. 2. We examine the dis- 90x)

tance fromx; to each neighboring triangle, such as

di1, d2 andds in Fig. 2. If any of them is smaller than wherexiL is a vertex in the low-resolution mestt,

do = |xi —yi|, we can use the corresponding projected yvhose_z correspondencg in the Iow-resolutlon_mé'sh

point to replacey; such that we can have achieve a IS Y, i =1,2,---,N (N is the number of vertices in

smaller SSD. meshX"). x- andy} are both 3 1 vectors with three
Since the point-surface registration is a local pro- o0rdinates.c, is a 3xN coefficient matrix of ra-

cess, we have to take into account the case that differ-dial Pasis functions. ¢(|[x,x;]|) are radially sym-

ent points in mesh X which come up with the same metric basis functions. We have chosen a Gaussian

: o .~ kerneld(u;,uj) = exp(—||ui — u; || /0.5), as suggested
corresponding surface pointin mesh Y. We use a sim- by (Pighinl etj al., 1998)c, Iandtj:g are coefficients for

ple rule to handle such interference: the pointin mesh ne affine componentc;, is a 3x 1 vector ands is a
X with smaller SSD will be updated with the surface 3x 3 matrix. GivenN correspondences, we hake

pointin mesh Y. equations for each axis( 9 andz):
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wherec:¥, c,¥ andczk denote thekh row of ¢y, ¢,
andcg, respectively.y-* denotes the!" row of yt,
k can be 1,2 or 3, corresponding to thie vy, andz
axes. Therefore we havé&Zquations in all:

P=[PY,P? P¥ c=[c', ¢, ¢ y=yh 2 y® ()
Pis a A x(N+4) matrix. In order to ensure a smooth
interpolation function, we add the additional orthogo-
nality constraintsy; x-' c;; = 0 (Carr et al., 2001) to
Eq. 6, wherecy ; denotes thé" column ofcy:

P y

XN Oaxa } C= [04><1:| (8)
w

L L
X1 X3

Q

The least-squares solution for this linear system,
Qc=w, isgiven byc= (QTQ)1Q"w.

Finally, the correspondence of a verbé}k in the
high-resolution mesiX" can be computed by using
Eq. 5y =g(xf!), for j=1,--- M (M is the number
of vertices in mesix"). We also apply the local non-
rigid registration fory'fI as described in Sec. 2.3.

3 APPLICATION: FEMUR ATLAS
CONSTRUCTION

Statistical anatomical atlases are one of powerful
analysis tool for 2D and 3D medical images (Cootes
et al.,, 1995; Cootes and Taylor, 2001). Due to the

Vi = c+Un; 9)
wheren; is a K x 1 coefficient vector obtained by
projectv; onto each principal axis. New models, not
included in the data set, can be generated by manipu-
lating the elements afj.

4 EXPERIMENTAL RESULTS

87 CT-scanned 87 patients with healthy femur: 53
males and 34 females; 43 left femurs and 44 right.
The patients age from 39 to 78 and their femur height
ranges from 400mm to 540mm. The CT volumes are
segmented to provide triangulated surface models us-
ing Marching Cube algorithm. All surface models are
smoothed by the method in (Desbrun et al., 1999).
Each femur data includes two mesh surfaces: femoral
head and distal femur.

Fig. 3 shows two high-resolution mexh (21130
vertices, 42256 triangles, 65.84mm in z-axis) &Mt
(26652 vertices, 53300 triangles, 105.89mm in z-axis)
for distal femur (Patient X is a 79 years old female,
with 472.55mm height femur; Patient Y is a 53 years
old female, with 477.59mm height femur). We com-
pute point-to-surface distance frokt' to YH (Aspert
et al., 2002):

d(p,Y™) = min [|p—p'll2,pe X" (10)
p/EYH

where || - ||z is Euclidean norm.  The HSV
color of each vertex in mestKH" denotes the
distanced(p,Y"). We also compute the mean
error dm(X",Y") and root mean square error
drus(XH, YH) between mesk™ andyH.

(X", YH) = 5k [ oo d(p, YH)dX"

anatomical variance between subjects, construction drus(X™,YH) = \/WlHprexH d(p,YH)2dxH

of statistical anatomical atlases usually requires non-

rigid registrations between individual models. As an
application, we apply our registration results to build
a statistical atlas for an anatomical structure. A rigid

11)
With respect to the bounding box diagonal of mesh
YH(158.48mm), the mean error is48% and root
mean square error is70%. Fig. 4 shows the low-

pose alignment has been applied to eliminate the ef-resolution mesiX®- (169 vertices, 334 triangles) and

fect of imaging pose (Goryn and Hein, 1995) before
atlas construction.

Suppose we hav& aligned meshes and each
mesh can be represented by I 81 vectorv;(i =
1,---,K), whereM is the number of points in each
mesh and 3 denotes three coordinatesy, and z.
We compute the mean vector= & 3 v and covari-
ance matrid¥ = gt[vi-c. - v¥—c]-[vl—¢- - VK]’
and then apply PCAY = UAU'.

YL (213 vertices, 422 triangles) after simplification.
With respect to the bounding box diagonal of mesh
YL(158.28mm), the mean error is53% and root
mean square error is.74%. Fig. 5 shows the de-
formed low-resolution mesk-(Y) and Yl after ap-
plying Chui and Rangarajan’s non-rigid registration.
With respect to the bounding box diagonal of mesh
YL(158.28mm), the mean error is6B% and root
mean square error is.23%. Surface distance has

Therefore, any mesh vector in the data set can bebeen significantly decreased after Chui and Rangara-

represented by a mean vector plus a linear combina-jan’s non-rigid registration.

tion of each principal components (each column of
U):

Fig. 6 shows the de-
formed low-resolution mesiX(? and Y. after ap-
plying a local deformation discussed in Sec. 2.3.



Low-Resolution '
Mesh Yt

F%L] ‘
-

High-Resolution 2665 Low-Resolution '
: Mesh Yt

1999

Mesh Xt
1666 ‘
153

Surface Distance from X-

toY!

Surface Distance from X

Surface Distance from XHto YH

1.000 1.000
0667 0666 f
0.33 0332
0,000 0,000 . i

Figure 5: After low-resolution registra-

F tion.

High-Resolution

| Mesh Yt
= 2 ‘ B

Surface Distance from X-@to Y-

Mesh YH

-

Surface Distance from X" to Y

Figure 6: After local deformation. Figure 7: After interpolation. Figure 8: After local deformation.

With respect to the bounding box diagonal of mesh with this reference, following the procedure showed
YL(158.28mm), the mean error is68% and root in Fig. 3-8. By tuning the numbeN;s;, we can
mean square error is42%, which shows local point- make a trade off between accuracy and efficiency
to-surface registration can decrease the surface dis{in order to maintain the same points density, we set
tance further. Fig. 7 shows the interpolated high- Noher = Nret X heightother /heightier).

resolution mesi"» andY* after applying an inter- Moreover, in the application of atlas construction,
polation. With respect to the bounding box diagonal we can choosé\es by comparing the reconstructed
of meshy"(158.48mm), the mean error iss6% and ~ mesh from atlas with the original mesh, such that we
root mean square error isl®%. The reason why the can also ensure the generality and accuracy of the
surface distance slightly increases after interpolation atlas. We conduct a series of leave-one-out experi-
is: only 080% of vertices in mesikH® have cor-  ments. We first select a reference mesh(which has
respondences obtained by non-rigid registration, oth- all correspondences in any other meshes in the data
ers obtain correspondences by interpolation. Fig. 8 set) and then changé..s. For eachN! ., we com-

f
shows the deformed high-resolution me¢h(@ and pute N, (other = 1,--- K, other # réef) for other

YA after applying a local deformation discussed in meshes and apply the two-level non-rigid registration.
Sec. 2.3. With respect to the bounding box diagonal after that, withK aligned meshes we apply leave-

root mean square error isZb%, which once again  gtherk — 1 to construct an atlas using PCA (Sec. 3).

demonstrates that local point-to-surface registration is | et US denote the firstS columns of the principal

helpful for decreasing the surface distance. component matrid;, which consists of 95% energy.
The critical parameter in our algorithm is the num- Thenv;(i = 1,--- ,K) can be reconstructed by this at-

ber of verticesN used in the low-resolution meshes, las:

which affects the computational complexity and ac- Vi =c+ UiSUiST (Vi — ) (12)

curacy. Due to the different length of femur shaft

within different meshes, we choose a mesh as a ref- We compare the surface distance between each pair of

erence such that we could compare any other meshmeshV; andV; and obtain the average mean error and
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