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Head pose estimation is an integral component of face recognition systems and human computer interfaces.

To determine the head pose, face images with varying pose angles can be considered to lie on a smooth
low-dimensional manifold in high-dimensional feature space. In this paper, we propose a novel supervised
approach to manifold-based non-linear dimensionality reduction for head pose estimation. The Biased Man-
ifold Embedding method is pivoted on the ideology of using the pose angle information of the face images
to compute a biased geodesic distance matrix, before determining the low-dimensional embedding. A Gener-
alized Regression Neural Network (GRNN) is used to learn the non-linear mapping, and linear multi-variate
regression is finally applied on the low-dimensional space to obtain the pose angle. We tested this approach
on face images of 24 individuals with pose angles varying from -90° to +90° with a granularity of 2°. The re-
sults showed significant reduction in the error of pose angle estimation, and robustness to variations in feature
spaces, dimensionality of embedding and other parameters.

1 INTRODUCTION

As human-centered computing applications grow
each day, human face analysis has grown in its impor-
tance as a problem studied by several research com-
munities. The estimation of head pose angle from
face images is a significant sub-problem in this re-
spect in several applications like 3D face modeling,
gaze direction detection, driver monitoring safety sys-
tems, etc. Further, realistic solutions to the problem
of face recognition have to be able to handle signifi-
cant head pose variations, thereby leading to the gain
in importance of the automatic estimation of the ori-
entation of the head relative to the camera-centered
co-ordinate system. While coarse head pose estima-
tion has been successful to a large extent (Brown and
Tian, 2002), accurate person-independent pose esti-
mation, which is very crucial for applications like 3D
face modeling, is still in the works.

Current literature (Fu and Huang, 2006)
(Raytchev et al., 2004) (Wenzel and Schiffmann,
2005) separates the existing methods for head pose
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estimation into distinct categories:

To

Shape-based geometric analysis, where head pose
is discerned from geometric information like the
configuration of facial landmarks.

Model-based methods, where non-linear paramet-
ric models are derived before using a classifier
like a neural network (Eg. Active Appearance
Models (AAMs)).

Appearance-based methods, where the pose esti-
mation problem is viewed as a pattern classifica-
tion problem on image feature spaces.

Template matching approaches, which are largely
based on nearest neighbor classification against
texture templates/signatures.

Dimensionality reduction based approaches,
where linear/non-linear embedding of the face
images is used for pose estimation.

overcome data redundancy and obtain compact

representations of face images, earlier work (Chen
et al., 2003) (Raytchev et al., 2004) (Fu and Huang,
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Algorithm 1 Isomap algorithm.

Step 1: Construct neighborhood graph

Determine the neighbors of a point on the manifold
M. The neighbors are identified as the data points
within a e-radius of a given point, or one among the
k nearest neighbors in terms of Euclidean distance
from the given point. The neighborhood of each point
is represented as a weighted graph G over the data
points, with each edge characterized by the distance
dy(i, j) between the pair of neighboring points.

Step 2: Compute shortest paths

Estimate the geodesic distances dy(i, j) between all
pairs of points on the manifold M by computing their
shortest path distance in the graph G. This is done us-
ing the Floyd’s or Djkstraa’s algorithm. For example:

dM(xi,xj) = mindM(xi,xj),dM(xi,xk) —i—dM(xk,xj)

Step 3: Derive low-dimensional embedding

Apply classical MDS to the geodesic distances matrix
Dy = dy(i, j), deriving an embedding of the data in
a low-dimensional Euclidean space Y that best pre-
serves the estimated intrinsic geometry of the mani-
fold.

of grayscale pixel intensities. As evident from this
figure, the embedding of the face images reflects an
intrinsic ordering on the corresponding pose angles.
While this indicates the sensitivity of this approach to
face images with varying pose angles, the clutter of
images on the trajectory suggests that fine estimation
of pose angle still remains a challenging problem.

2.2 Related Work

Over the last few years since the arrival of manifold
learning techniques, a reasonable amount of work
has been done using manifold-based dimensionality
reduction techniques for head pose estimation. Chen
et al (Chen et al., 2003) considered multi-view face
images as lying on a manifold in high-dimensional
feature space. However, they compared the effec-
tiveness of Kernel Discriminant Analysis against
Support Vector Machines in learning the manifold
gradient direction in the high-dimensional feature
space, and did not adopt manifold learning for
non-linear dimensionality reduction. Raytchev et al
(Raytchev et al., 2004) studied the effectiveness of
Isomap for head pose estimation against other view
representation approaches like the Linear Subspace
model and Locality Preserving Projections (LPP).
While their work established the possible gain in
accuracy through use of manifold learning tech-
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Two-dimensional Isomap embedding (10 neighbors)
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(a) Isomap embedding with 10 neighbors

Two-dimensional Isomap embedding (50 neighbors)
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(b) Isomap embedding with 50 neighbors

Figure 1: Embedding of face images with varying poses
onto 2 dimensions using Isomap with different neighbor pa-
rameters.

niques, the face images used by them were sampled
at pose angle increments of 15°, and relied on the
robustness of the captured mapping and interpolation
to obtain the precise pose angle estimate. Hu et al
(Hu et al., 2005) developed a unified embedding
approach for multiple individuals, where the embed-
ding obtained from Isomap for a single individual
was parametrically modeled as an ellipse. The
ellipses for different individuals were subsequently
normalized through scale, translation and rotation
based transformations to obtain a unified embedding.
In more recent work, Fu and Huang (Fu and Huang,
2006) presented an appearance-based strategy for
head pose estimation using a supervised form of
Graph Embedding, which internally used the idea of
Locally Linear Embedding (LLE). This work mainly
focussed on obtaining a linearization of manifold
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maxy ,P(m,n) — P(i, j)
This function could be replaced by an inverse expo-
nential or quadratic function of the pose distance. In
order to ensure that the biased geodesic distance val-
ues are well-separated for different pose distances, we
multiply this quantity by a function of the pose dis-
tance:

o(P(i, J))

D(i.j) = maxp,,P(m,n) — P(i, j)

*D(i, j)

where the function a is directly proportional to the
pose distance, P(i, j), and is defined in our work as:

(P (i, j)) = B[P0, j)]

where P is a constant of proportionality, and allows
parametric variation for performance tuning. In our
work, we have used the pose distance as the one-
dimensional distance i.e. P(i,j) = |Pi— Pj|, where
Py is the pose angle of x;. In summary, the biased
geodesic distance between a pair of points can be

given by:
(P(i.}) . .
B, j) = 4 mampmar—pay *P0) P D) #0,
0 P(i,j)=0.
ey

Classical MDS is applied on this biased geodesic
distance matrix to obtain the embedding. The pro-
posed modification impacts only the computation of
the geodesic distance matrix, and hence, can easily
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(b) Biased Isomap embedding with 20 neighbors
Figure 2: Biased Isomap Embedding of face images with
varying poses onto 2 dimensions. Note in 2(b) that all the

face images with the same pose angle have merged onto the
same 2D point.
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4 EXPERIMENTAL SETUP AND
METHODOLOGY

The proposed Biased Isomap Embedding approach
was compared against the traditional Isomap method
for non-linear dimensionality reduction in the head
pose angle estimation process. We used the FacePix
face database (Little et al., 2005) (see Figure 3) built
at the Center for Cognitive Ubiquitous Computing
(CUDbIC), which has face images with precisely mea-
sured pose variation. In this work, we consider a
set of 2184 face images, consisting of 24 individuals
with pose angles varying from -90° to +90° in incre-
ments of 2°. The images were subsampled to 32 x
32 resolution, and different feature spaces of the im-
ages were considered for the experiments. The results
presented here include the grayscale pixel intensity
feature space and the Laplacian of Gaussian (LoG)
transformed image feature space (see Figure 4). The
LoG transform was used since pose variation in face
images is a result of geometric transformation, and
texture information may not be really useful for the
pose estimation problem. This was also reflected in
preliminary experiments conducted with Gabor filters
and Fourier-Mellin transformed images. The images
were subsequently rasterized and normalized.

(b) Laplacian of
age Gaussian  (LoG)
tranformed image

(a) Grayscale im-

Figure 4: Image feature spaces used for the experiments.

Non-linear dimensionality reduction techniques
like manifold learning do not provide a projection
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Feature Space | Error using | Error using
traditional Biased

Isomap Isomap

Grayscale 11.39 1.98

Laplacian of Gaussian 8.80 2.31

Table 2: Results using the 8-fold cross-validation model.

Feature Space | Error using | Error using
traditional Biased

Isomap Isomap

Grayscale 10.55 3.68

Laplacian of Gaussian 9.10 3.38

sions of embedding, and choice of the number of
neighbors used for embedding. Table 3 captures the
results for different embedding dimensions with the
number of neighbors fixed at 50. Table 4 captures
the results for varying number of neighbors for the
embedding with the embedding dimension fixed at 8.
Grayscale pixel intensities of the face images were
used for these independent experiments.

Table 3: Analysis of performance with varying dimensions

of embedding.
Dimension of | Error using | Error using
Embedding | traditional Biased
Isomap Isomap
100 10.41 5.02
50 10.86 5.04
20 11.35 5.04
8 12.96 5.07
5 12.57 5.05
3 16.21 5.66

As evident from the results, the significant reduc-
tion in the error of estimation of pose angle substan-
tiates the effectivness of the proposed approach. In
addition, as the results in Tables 2, 3 and 4 illustrate,
the Biased Manifold Embedding method is robust to
variations in feature spaces, dimensions of embedding
and choice of number of neighbors. While the tradi-
tional Isomap embedding has fluctuating results for
these parameters, the range of error values obtained
for the Biased Manifold Embedding method across
these parameter changes suggests the high stability of
the method, thanks to the biasing of the embedding.
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Number of | Error using | Error using
Neighbors traditional Biased
Isomap Isomap

30 11.56 5.10

50 12.96 5.06

100 13.83 5.03

200 12.59 5.06

500 14.36 5.07

6 CONCLUSION

We have proposed the Biased Manifold Embedding
method, a novel supervised approach to manifold
learning techniques for regression problems. The
proposed method was validated for accurate person-
independent head pose estimation. The use of pose
information in the manifold embedding process im-
proved the performance of the pose estimation pro-
cess significantly. The pose angle estimates obtained
using this method are accurate, and can be relied upon
with an error margin of 3-4°. Our experiments also
demonstrated that the method is robust to variations in
feature spaces, dimensionality of embedding and the
choice of the number of neighbors for the embedding.
The proposed method can easily be extended from the
current Isomap implementation to cover the envelop
of other manifold learning techniques, and can be de-
veloped as a framework for biased manifold learning
to cater to all regression problems at large.

6.1 Limitations and Future Work

As mentioned earlier, a significant drawback of man-
ifold learning techniques is the lack of a projection
matrix to treat new data points. While we used the
GRNN to learn the non-linear mapping in this work,
there have been other approaches adopted by various
researchers. Bengio et al (Bengio et al., 2004) pro-
posed a mathematical formulation focussed to over-
come this problem. We plan to use these approaches
to support the validity of our approach. Besides, we
intend to extend the Biased Manifold Embedding im-
plementation to LLE and Laplacian Eigenmaps to es-
tablish it as a framework for non-linear dimensional-
ity reduction in regression applications. On a lesser
significant note, another limitation of the current ap-
proach is that the number of neighbors chosen to ob-
tain the embeddding has to be more than the num-
ber of individuals in the face images. This is because
different individuals with the same pose angle are as-
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signed a zero distance value in the biased geodesic
distance matrix. We plan to modify our algorithm to
overcome this limitation. In addition, the function of
pose distance used to bias the geodesic distance ma-
trix can be varied to study the applicability of different
reciprocal functions for pose estimation.
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