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Abstract: Temporal segmentation of facial gestures from video sequences is an important unsolved problem for auto-
matic facial analysis. Recovering temporal gesture structure from a set of 2D facial features tracked points is a
challenging problem because of the difficulty of factorizing rigid and non-rigid motion and the large variability
in the temporal scale of the facial gestures. In this paper, we propose a two step approach for temporal seg-
mentation of facial gestures. The first step consist on clustering shape and appearance features into a number
of clusters and the second step involves temporally grouping these clusters.
Results on clustering largely depend on the registration process. To improve the clustering/registration, we
propose a Parameterized Cluster Analysis (PaCA) method that jointly performs registration and clustering.
Besides the joint clustering/registration, PaCA solves the rounding off problem of existing spectral graph
methods for clustering. After the clustering is performed, we group sets of clusters into facial gestures. Several
toy and real examples show the benefits of our approach for temporal facial gesture segmentation.

1 INTRODUCTION

Temporal segmentation of facial gestures from video
sequences is an important unsolved problem towards
automatic facial interpretation. Recovering tempo-
ral gesture structure from a set of 2D facial features
tracked points is a challenging problem because of
the difficulty of factorizing rigid and non-rigid mo-
tion and the variability of temporal scales for differ-
ent facial gestures. This problem is particulary hard if
the sequence contains subtle expression changes and
strong pose changes (most real interesting video se-
quences). In this paper, we propose a two step ap-
proach to temporal segmentation of facial gestures.
The first step groups the shape and appearance fea-
tures of facial features into a given number of clusters.
The second step finds the temporal grouping of these
clusters (see fig. 1).

A key for the success of the clustering relies on the
registration step. If the tracker do not explicitly track
with a 3D model is usually hard to decouple rigid and
non-rigid motion. In this paper, we propose Para-
meterized Cluster Analysis (PaCA), that jointly per-
forms registration and clustering. Once the clustering
is done, we propose a simple but effective way of dis-

Figure 1: Temporal segmentation of facial gestures.

covering temporal structure in the set of clusters. Ad-
ditionally, a new matrix formulation for clustering is
introduced that enlightens connections between clus-
tering methods.
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1Bold capital letters denote a matrix D, bold lower-case
letters a column vector d. d j represents the j column of the
matrix D. di j denotes the scalar in the row i and column
j of the matrix D and the scalar i-th element of a column
vector d j. All non-bold letters will represent variables of
scalar nature. diag is an operator that transforms a vector to
a diagonal matrix or takes the diagonal of the matrix into a
vector. ◦ denotes the Hadamard or point-wise product. 1k ∈
ℜk×1 is a vector of ones. Ik ∈ ℜk×k is the identity matrix.
tr(A) = ∑i aii is the trace of the matrix A and |A| denotes
the determinant. ||A||F = tr(AT A) = tr(AAT ) designates
the Frobenious norm of a matrix.
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2σ . Where Ai is an affinity matrix of 4
(if translation is removed), 6 or 8 parameters. Di ∈
R(d/2)×n is a data matrix, such that the first row con-
tains the x-coordinates and the second row contains
the y-coordinates.

4.2 Motion Models

In this paper, we will assume that in the video the face
of the subject is relatively far away from the camera
and that locally the eye region or mouth is a planar
surface. It is well known (Adiv, 1985) that the 2D
projected motion field of a 3D planar surface can be
recovered under orthographic projection (x = X and
y = Y ) by an affine model f(x,a), parameterized by
a = [a1 a2 ... a6]T :

f(x,a) =
[

a1
a4

]
+

[
a2 a3
a5 a6

][
x− xc
y− yc

]
(7)

where xc = (xc,yc)T is the center position of the ob-
ject.

4.3 Solving the Optimization Problem

Assuming the matrix A is known, optimizing eq. 6
reduces to:

E5(G) ∝ tr((GT G)−1GT KG) (8)
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∂V (9)
∂G(Vn)

∂V = (Ic−G(GT G)−1GT )KG(GT G)−1 ◦V

The major problem with the update of eq. 9 is
to determine the optimal η1. In our case, η1 is deter-
mined with a line search strategy. To impose G1c = 1n
in each iteration, the V is normalized to satisfy the
constraint. Because eq. 9 is prone to local minima,
we start from several random initial points and select
the solution with minimum error.

Assuming G is known optimizing w.r.t. A has
to minimize: E3(A) = tr

(
K(A)F

)
where, F = (I−

G(GT G)−1GT ). To optimize w.r.t. A we use a linear
time algorithm that uses gradient descent. In the case
of exponential kernel,

An+1 = An−η2
∂E2
∂A (10)

∂E
∂Ai

=−∑n
j=1

f ji
σ e−

||AiDi−A jD j ||F
2σ (AiDi−A jD j)DT

j

As before, η2 is determined with a line search
strategy (Fletcher, 1987).

4.4 Initialization and Clustering
Features

Optimizing eq. 6 w.r.t A and G is a non-convex prob-
lem prone to local minima, that without a good initial-
ization is likely to get stuck into a bad minimum. To
give an initial estimate of the matrix K we compute
all possible pairwise affine distances between the set
of shape points and with this estimate optimize over
G. Observe that at this point K is symmetric but not
necessarily definite positive.

We assume that several facial features of the face
have been tracked using Active Appearance Models
(AAM) (Matthews and Baker, 2004) (see fig. 6).
Once the facial feature points have been tracked, we
use PaCA to jointly cluster and register the shape.
However, using only the shape as the only feature
is not very reliable for capturing subtle facial ges-
tures. For instance, we can have two completely dif-
ferent gestures with the same shape (see fig. 2 bot-
tom). To compensate for this effect, we also incor-
porate appearance features. The appearance features
are extracted by a geometric invariant histogram re-
cently introduced (Domke and Aloimonos, 2006). We
can decouple the effects of registration in the appear-
ance representation since the histogram proposed in

(Domke and Aloimonos, 2006) is invariant to per-
spective transformations (see fig. 2). During the
clustering process we over-sample the shape feaures
to achieve robustness against noise(see fig. 2).

Figure 2: Features used in temporal segmentation.

5 DISCOVERING TEMPORAL
CLUSTERS

Once the the facial features have been clustered into
coherent shape/appearance clusters, the goal is to
group the clusters into facial gestures. In this section,
we propose a simple but effective method to search
for temporal coherent clusters.

5.1 Removing Temporal Redundancy

In a first step, we automatically detect all neutral ex-
pressions (i.e. action unit 0-AU0) (Cohn et al., 2006)
since is usually the most common facial ”cluster” and
useful in many recognition tasks. The algorithm to
detect the AU0 works as follows. First, we compute
a normalized error between the shape/appearance at
time t and time t − 1. A two-state Hidden Markov
Model (HMM) is used to temporally segment the time
instants that contain appearance/shape changes. The
transition probabilities in the HMM are computed us-
ing a logistic regression function (i.e. 1

1+e−βx and
1

1+e−β(x+τ) ), where β,τ are parameters computed from
the error histogram. To find a maximum a posteri-
ori solution, the standard Viterbi algorithm (dynamic
programming) is executed. In the state represent-
ing still configurations of the face there are exam-
ples of AU0 and examples of other AU that are sta-
tic for few frames. In the next step, we separate
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Figure 3: Process to automatically detect AU0.

The second important step towards discovering
temporal clusters is to achieve temporal invariance to
the speed of the facial gesture. Towards this end, we
first remove all the consecutive clusters that are the
same and just the changes among consecutive clus-
ters will remain. After this process is done, the video
is reduced to about 10−20% its original length.

5.2 Temporal Correlation to Discover
Facial Gestures

Once we have simplified the temporal representation
of the video sequence, we are ready to find tempo-
ral patterns of different lengths in the video sequence.
Since we have substantially reduced the amount of
temporal data available, we use an exhaustive ap-
proach to search over all possible cluster sequences of
different lengths and in the sequence to find the same
temporal pattern.

The algorithm starts selecting long patterns (usu-
ally 8−9 clusters), and it searches over the whole se-
quence for peaks of the normalized correlation. All
the peaks that have normalized correlation 1 (i.e. is
the same pattern) are removed from the sequence,
later the rest of the patterns with smaller length are
iteratively discovered with the same approach.

Fig. 4 shows how the algorithm works in syn-
thetic data. We have made a sequence with three tem-
poral clusters of length 4 (fig. 4.a and 4.b). The al-
gorithm automatically discovers that there are 3 tem-
poral clusters and correctly identifies them.

Figure 4: a) 3 synthetic clusters b) synthetic sequence c)
Temporal clusters found with our algorithm.

6 EXPERIMENTS

In this section we report preliminary experiments with
synthetic and real data.

6.1 Synthetic Data

We have synthetically created three different shape
prototypes (fig. 5.b) and perturbed them with 50 ran-
dom affine transformations (fig. 5.a). After running
PaCA we can see the mean of the shape for each clus-
ter in the second row of fig. 5 is correctly recovered.
PaCA has correctly clustered the original shapes.

Figure 5: First row: superimposed perturbed shapes for
each cluster. Second row: superimposed aligned shapes.
Also original prototypes.

6.2 Expression Segmentation

In this experiment, we have recorded a video se-
quence where the face of the subject is naturally mak-
ing five different facial gestures (sad, taking out the
tongue, speaking, smiling, and neutral). We use AAM
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Figure 6: AAM tracking across several frames.

Figure 7: a) Original sequence of clusters. b) Sequence
of clusters with just the transitions. c) Discovered facial
gestures.
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