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Abstract: In this paper we present an algorithm to calculate the camera motion in a video sequence. Our method can 
search and track feature points along the video sequence, calibrate pinhole cameras and estimate the camera 
motion. In the first step, a 2D feature tracker finds and tracks points in the video. Using this information, 
outliers are detected using epipolar geometry robust estimation techniques. Finally, the geometry is refined 
using non linear optimization methods obtaining the camera’s intrinsic and extrinsic parameters. Our 
approach does not need to use markers and there are no geometrical constraints in the scene either. Thanks 
to the calculated camera pose it is possible to add virtual objects in the video in a realistic manner. 

1 INTRODUCTION 

The aim of Augmented Reality is to add computer 
generated data to real images. This data goes from 
explanatory text to three-dimensional objects that 
merge with the scene realistically. 

Depending on the amount of virtual objects 
added to the real scene, Milgram et al. (Milgram, et 
al., 1994) proposed the taxonomy shown in Figure 1. 

 

Figure 1: Milgram taxonomy. 

Mixed reality has proven to be very interesting in 
areas like industrial processes, environmental 
studies, surgery or entertainment. 

In order to insert synthetic data in a real scene, it 
is necessary to line up a virtual camera with the 
observer viewpoint. Different options have been 
tried, like magnetic, inertial trackers or other tracker 
sensors. However, image based systems are 
becoming the most interesting solutions due to their 
lower cost and less invasive way of setup. 

This paper presents a complete method for 
authoring mixed reality videos using only image 

information. Our implementation can calibrate a 
pinhole camera, find a 3D reconstruction and 
estimate the camera’s motion using only 2D features 
in the images. The only constraint imposed is that 
the camera must have constant intrinsic parameters. 

2 STATE OF THE ART 

Within the image based tracking solutions, there are 
various possible choices, one or multiple camera 
systems, but single camera solutions have become 
more popular in last years. 

For single camera configurations several pose 
calculation algorithms has been proposed, such as 
model, marker and feature based techniques. 

The model based methods calculates the camera 
transformation from the 2D projections of a known 
3D model. A typical algorithm is POSIT 
(DeMenthon & Davis, 1995). This algorithm has the 
disadvantage that the known object must be always 
in the image to be tracked. 

Marker based systems consist in introducing into 
the scene markers that the system can recognize. 
These methods are fast and accurate but very 
invasive too. One example is the ArToolkit library 
developed in HITLab (Kato & Billinghurst, 1999). 

Feature based algorithms have become more 
important in recent years. They do not need any 
markers in the scene or the presence of known 
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objects but they are less accurate than other methods 
and computationally more expensive. An example of 
previous work in this area is (Cornelis, 2004). 

3 PROPOSED ALGORITHM 

The method proposed includes a 2D feature tracker, 
that finds and tracks features along the video, and a 
3D tracker, that calculates the camera pose in every 
frame. The algorithm can be seen in Figure 2. 

Figure 2: Algorithm overview. 

Initially, the feature tracker finds and tracks 
corners in the video. Using the matched features, the 
epipolar geometry can be found, allowing to 
calculate the camera’s focal length and a 3D 
reconstruction of the scene. Finally, the 3D motion 
can be recovered from 3D-2D matches. 

3.1 Feature Tracker 

The algorithm used to find the features is based on 
the GoodFeaturesToTrack proposed in (Shi & 
Tomasi, 1994). It calculates the minimal eigenvalue 
of the derivative covariation matrix for every pixel. 
The threshold used to decide if a pixel corresponds 
to a feature is chosen according to the number of 
features detected in the image. The smaller this 
number, the lower the threshold is set. 

The corner detection only runs in the first frame 
but it also should be carried out again if the number 
of locked features decreases due to occlusions. 

Once feature points are detected, the tracking 
algorithm creates a history with their positions in the 
next frames. Later, this information is used by the 
3D tracker to estimate the geometry of the scene. 
The method used is an iterative version of the Lucas-
Kanade optical flow proposed by Jean-Yves 
Bouguet (Bouguet, 2000). This algorithm calculates 
the displacement of a feature between two frames. 
In order to obtain accuracy and robustness the 
algorithm is executed iteratively in pyramidal 
reductions of the original image as shown in  

Figure 3. Low level pyramids (L2) provide 
robustness when handling large motions, and high 
level pyramids provides local tracking accuracy (L0). 
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Figure 3: Pyramidal reduction. 

However, this method is very sensitive to noise. 
In order to avoid this problem, a Kalman filter is 
attached to each feature (Kalman, 1960), so 
unexpected displacements can be detected. This 
allows detecting outliers that could degrade the 
reconstruction of the scene. 

3.2 3D Tracker 

This module solves the camera geometry and gets a 
3D scene reconstruction using the tracked features. 
All the processes involved in this module are based 
on the epipolar geometry concept (Hartley & 
Zisserman, 2000), thus the first step is to calculate 
the fundamental matrix for every frame. Using this 
initial approach, outliers are removed. Remaining 
inliers are used to refine the fundamental matrix. 

After this, the camera’s intrinsic parameters can 
be found and an initial 3D frame can be set. Finally, 
the camera pose can be calculated. 

For the geometry estimation, Philip Torr’s 
Matlab toolkit has been used (Torr, 2002). 

Camera calibration is performed assuming a 
standard pinhole model. Some constraints are 
imposed in order to simplify the model, such 
principal point centred in the image and no skew or 
distortion. 

The method used is a simplification of the 
method proposed by Mendonca and Cipolla 
(Mendonca & Cipolla, 1999). It is based on the 
properties of the essential matrix. 

The essential matrix is the fundamental matrix 
for a calibrated camera. An important property of 
this matrix is that it has two non zero and equal 
eigenvalues. So, the proposed algorithm searches for 
a calibration matrix that complies this property using 
minimization techniques. 

From the essential matrix, the pair of camera 
matrices can be calculated using the method 
described in (Hartley & Zisserman, 2000). The 
reconstruction is performed by linear triangulation. 

For every pair of frames there exists a possible 
reconstruction, but only one is needed in order to 
calculate the camera displacement. Any pair of 
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frames can be chosen for this initial reconstruction 
taking only one thing into account. If the two 
selected frames are very near each other, the 
reconstruction obtained is very poor because the 
problem becomes ill conditioned (Cornelis, 2004). 

In Figure 4 an example of a 3D reconstruction is 
shown. The left image is the original and the right 
image shows the 3D points. 

Figure 4: 3D reconstruction of the scene. 

When the 3D structure is recovered, the camera 
motion can be estimated. This can be achieved 
performing a match between the reconstructed 3D 
points and their corresponding feature points. 

Using these matches, the DLT algorithm can be 
used to calculate the rotation and the translation 
relating the two frames. A minimum of six points 
are needed, however, it is very typical to have 
hundreds of matched 3D-2D features, so the best 
solution is to take all the matches into account and 
solve the problem using least squares. 

When all camera transformations are known, the 
only thing needed to render an object is a reference 
coordinate system. The origin can be set in any of 
the reconstructed features and then the user can 
move the object manually to its initial position. 
Figure 5 shows the final result of augmenting a 
scene with two towers using the proposed algorithm. 

Figure 5: Augmented scene. 

There are some problems that have not been 
considered yet, like occlusion or lighting. Real 
objects sometimes cover or throw shadows to virtual 
objects. This fact degrades the quality of the 
resulting video, and will be addressed in the future. 

4 EXPERIMENTAL RESULTS 

This section evaluates the performance and precision 
of the used algorithms. First, the feature tracker will 
be evaluated using synthetic images and secondly 
the camera tracker measuring the projection error. 

The PC used in all the benchmarks is a Pentium 
IV family 3.2GHz CPU with 1GB of RAM. 

4.1 Testing the Feature Tracker 

For testing the precision of the feature tracker we 
have created an application that generates synthetic 
images with known borders and additive noise. 

For this test very noisy images are generated. 
The next graphs show the evolution of the outlier 
detection along the video sequence. 
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Figure 6: Evolution of the outlier detection. 

As we can see in the results, the Kalman filter 
can detect practically all the outliers in four or five 
frames in very noisy situations. The optical flow is 
capable of detecting outliers as well but the results 
are very poor for this application. 

The optical flow calculation process also 
introduces errors in the feature position. This error 
has been measured in a moving scene: 
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Figure 7: Error in the tracking process. 

Like can be seen in the graphs, the error 
introduced by the optical flow is very small. This 
fact combined with the efficiency reached in outlier 
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detection, gives a reliable feature tracker for the 3D 
reconstruction and camera pose estimation process. 

The time for the whole feature tracking 
algorithm is insignificant compared with the camera 
solving process. For example, a video of 340 frames 
with a resolution of 704x576 needs approximately 5 
seconds to search and track 300 features. 

4.2 Testing the 3D Tracker 

The strategy used to test the accuracy of the camera 
pose estimation algorithm consists in comparing the 
position of the features in the image with the 
corresponding projections of the 3D points. 

The next graph shows the mean of the error 
measured along 100 frames. 
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Figure 8: Projection error. 

The time needed to perform the 3D tracking 
process is approximately one second per frame. This 
is very far from the maximum of 40ms needed to run 
the process in real time, but this is mainly because it 
is implemented in Matlab. 

5 CONCLUSIONS 

This work covers all the processes involved in an 
augmented video application. The method does not 
need any knowledge of the augmented scene or user 
interaction except in the registration step. 

The advantage of this type of system is that any 
video can be augmented imposing only a few 
restrictions on it. Additionally, any user without 
experience can augment videos in an easy way 
because all the process is automatic. 

In the first part of the work, a 2D feature tracker 
has been developed. This tracker has proven to be 
accurate enough for many applications, like 3D 
reconstruction or camera pose estimation and it can 
work in real time in a standard PC. This fact makes 
the tracker suitable for surveillance, human 

computer interaction or any application that needs 
real time response. 

Secondly, the designed 3D tracker can add 
virtual objects to real videos. It depends heavily on 
the accuracy of the feature tracker but the tests 
demonstrate that the result is satisfactory under 
normal conditions. On the other hand, actually the 
prototype works under Matlab so the time needed to 
run the tracker is very high. Thus, an immediate 
objective is to translate the code into another 
language, like C++. However, the proposed 
algorithm is not proper for running in real time 
because of the outlier search and the key frame 
reconstruction based algorithm. 
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