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Abstract: In this paper we develop a new skin detection algorithm for learning in color images. Our contribution is based
on the Optimal Spanning Tree distributions that are widely used in many optimization areas. Thus, by making
some assumptions we propose the mixture of the Optimal Spanning Trees to approximate the true Skin (or
Non-Skin) class probability in a supervised algorithm.
The theoretical proof of the Optimal Spanning Trees’ mixture is drawn. Furthermore, the performance of our
method is assessed on the Compaq database by measuring the Receiver Operating Characteristic curve and its
under area. These measures have proved better results of the proposed model compared with the results of a
random Optimal Spanning Tree model and the baseline one.

1 INTRODUCTION

Tree distributions are well-known machine learning
solutions to deal with probability estimation problem.
(Chow and Liu, 1968) supplied an heuristic to find
maximum likelihood Markov Trees called Optimal
Dependency Trees or Optimal Spanning Trees. The
heuristic problem aimed to provide an efficient al-
gorithm to find a maximum-weight spanning tree
(MWST) proved to be the optimal one in the sense
of Maximum Likelihood criterion. Since then, many
methods based on that work have been extended: the
polytrees (Pearl, 1988); the mixtures of trees with ob-
served structure variable (Geiger, 1992); the mixture
of Tree-Union (Torsello and Hancock, 2006).
In addition, the authors of (Meila and Jordan, 2000)
proposed a mixture of trees with hidden structure vari-
able. When the variable is a class label, the mixture
model is the bayesian network. Otherwise, the class
variable is considered as the training data in an unsu-
pervised algorithm used to learn the mixed trees.

The MWST has applications in many optimiza-
tion areas. However, this tree is not usually unique.
Indeed, considering a graph with identically weighted
edges, all spanning trees are MWSTs. Consequently,

different tree probability distributions can approxi-
mate on the best way the true probability distribution.
In many domains what is required is not necessarily
the best spanning tree, but rather a ’perfect’ one with
some other properties that may be difficult to quan-
tify. So, what could be the ’perfect’ spanning tree in
the skin detection application?

Research has been performed on the detection of
human skin pixels in color images by the use of var-
ious statistical color models (Jedynak et al., 2005),
such Gaussian mixture and histograms (Jones and
Rehg, 1999). The comparison results of these lat-
ters, estimated with EM algorithm, found that the
histogram model is slightly superior in terms of skin
classification for the standard 24-bit RGB color space.
Moreover, in addition to the semi-supervised ap-
proach for learning the structure of Bayesian network
classifiers based on an Optimal Spanning Tree (Sebe
et al., 2004), the Best-Tree distribution algorithm ap-
proximating the skin and non skin probability distrib-
utions has been also proposed (ElFkihi et al., 2006).

Since quantifying other ’perfect’ Skin (or Non-
Skin) tree properties is unobvious, our aim is to pro-
vide a learning algorithm for skin/non-skin classi-
fication, seeking a spanning tree which emphasizes
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the data dependencies’ degrees, and approximates the
probability distribution; without adding information.

The next section points out the mathematical for-
mulation of the studied problem. Section 3 details our
approach while section 4 is devoted to experiments
and results. Conclusions are postponed to section 5.

2 PROBLEM FORMULATION

In the RGB color space, we notexs the color of a
pixel s. ys = 1 is a skin pixel label andys = 0 a
non-skin pixel label. Letr be an integer value, we
define the following neighborhood system:

Vr
s = {(i, j)/|i− is|< r, | j − js|< r} \ {(is, js)} (1)

We consider(x1,x2, . . . ,xh2) an observation vector
standing for an image patch (h×h,h = 2r −1). This
vector is decomposed until a low-level elements; and
the resultant vector isx= (x1, . . . ,xn), wheren = 3h2.

In practice, the joint probability distribution
P(x,ys) is unknown, instead we have a seg-
mented Database which is a collection of samples
{(x(1),y(1)), . . . ,(x(N),y(N))} that we suppose inde-
pendent;x( j) is a color image, andy( j) is its binary
skinness image. Our objective is to construct proba-
bilistic classifiers that represent the posterior proba-
bilities P(ys = i|x) (i = 0,1) ats, given its neighbors.

We consider the observation vectorx andG(V,E)
its corresponding undirect graph representation.V is
the vertex set representing observations andE is the
edge set enclosing dependencies between the obser-
vations. In caseG is a tree, notedT, the formulation
probability represented by such structure and approxi-
mating the true probabilityP is given in (Pearl, 1988):

P(x) ⋍ ∏
(u∼v)∈T

Puv(xu,xv)
Pu(xu)Pv(xv)

∏
u∈V

Pu(xu) (2)

wherePu(xu) and Puv(xu,xv) are marginals ofP(x),
andu∼ v means two neighboring verticesu andv.

(Chow and Liu, 1968) calculated the Kullback-
Leibler (KL) divergence of the true probability and
the one approximated by a tree. They proved that
minimizing this distance is equal to maximizing:

WT = ∑
(u∼v)∈T

KL(Puv(xu,xv),Pu(xu)Pv(xv)) (3)

which is the weight of the spanning tree T. An arbi-
trary solution is readily obtained in polynomial time
by simple greedy algorithms (Bach and Jordan, 2003),
and it is called an Optimal Spanning Tree (OST).

The OSTs of a graph emphasize the important depen-
dencies between its different components. Hence, we
propose the next mixture of the tree probabilities:

∑
T∈Θ

λ(T)P(x|T) (4)

with Θ is the set of all OSTs, andP(x|T) is the prob-
ability of a treeT while λ(T) is a mixture coefficient
verifying ∑T∈Θ λ(T) = 1 andλ(T)≥ 0.
Hence, the probability classifier we are looking for
is the mixture probability that we have to compute by
determiningλ(T) and solving the likelihood function:

Tmix = argmax
T ′

n

∑
i=1

∑
T∈Θ

log(λ(T)P(xi |T)) (5)

where a treeT ′ represents a mixture probability.

3 THE MIXTURE MODEL

First, we propose the next theorem:

Theorem 1 The true probability distribution (P(x))
is most efficiently approximated by the tree proba-
bility distribution (P(x|Tmix)) obtained by the mix-
ture of Optimal Spanning Trees (Tmix) than the one
(P(x|Top)) obtained by an Optimal Spanning Tree
(Top). Otherwise:

KL(P(x),P(x|Tmix))≤ KL(P(x),P(x|Top)) (6)

We conclude that our proposal is justified because
of its improvement compared with an OST model (our
theorem proof is postponed to the appendix).

In the next, we will discuss two main steps that are
the training and the inference.

3.1 Training Step

In order to select the OSTs we have to list all the graph
spanning trees, which is algorithmically difficult. To
deal with this, we suggest to selectK OSTs (K ∈ N∗)
using theK-Best-Spanning-Trees algorithm given in
(Katoh et al., 1981) with respect to this constraint:

WTi = argmax
T

WT , 1≤ i ≤ k (7)

whereWTi is the weight of the OST numberedi and
WT is the weight of the spanning treeT.

Let noted the set of the selected trees byΘk, and
P(x|ys = 1) by p(x), andP(x|ys = 0) by q(x).

The procedure to obtain the Skin mixture of the
OSTs distribution (Tmix) is:

Procedure 1 Distribution of the skin Optimal Span-
ning Trees’ mixture.
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• Input : Dataset
{(

x(1),y(1)
)

, · · · ,
(

x(n),y(n)
)}

.

1. Define the neighborhood system (equation(1)).
2. Construct the vector of observations x.
3. Build a complete non-oriented graph of x.
4. Let two different vertices u and v. Use the empiri-

cal estimators to compute pu(xu) and puv(xu,xv).
5. Compute the edge cost between u and v:

KL(puv(xu,xv), pu(xv)pv(xv)) (8)

6. Apply the K-Best-Spanning-Trees algorithm.
7. Estimate the mixture coefficients (section 3.2)

• Output: Tmix and the mixture coefficients.

3.2 Parameters’ Estimation

To estimate the mixture coefficients of Skin OSTs’
mixture, we propose a graphical model allowing to re-
store each tree of the optimal considered ones. First,
because of the fact that the different trees have the
same vertices, the vertex set of the graph is the same
as the one of these trees. Second, so as not to loose
any information brought by the different trees, we
suggest to keep all the edges of these ones. Further-
more, we propose this edge cost betweenu andv:

Wu∼v = KL(pmixuv(xu,xv), pmixu(xu)pmixv(xv))
(9)

where pmixu and pmixuv are marginals of the Skin
mixture probability defined like in equation (4),pmix.
Then, we suggest to use the EM algorithm to find the
Skin OST performing the mixture model, such: the E
step estimates theλ(T) and the M step re-estimates
the parameters of the model to solve the equation (5).

3.3 Inference

The state of the pixelys given the observation vector
x, is:

P(ys = i|x)≈ ∑
T∈Θk

λ(T)P(ys = i|x,T); i = 0,1 (10)

By applying the Bayes’ rule on eachT ∈ Θk, we
obtain:

P(ys = 0|x)≈

∑
T∈Θk

λ(T)q(ys = 0|T)q(x|T)
p(ys = 1|T)p(x|T)+q(ys = 0|T)q(x|T)

(11)

P(ys = 1|x)≈

∑
T∈Θk

λ(T)p(ys = 1|T)p(x|T)
p(ys = 1|T)p(x|T)+q(ys = 0|T)q(x|T)

(12)

All the elements of equations (11) and (12) are previ-
ously computed in the procedure 1.

Figure 1: Some inputs (color images) and outputs (grayscal-
ing images) of the three compared models.
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Figure 2: The ROC curves of the three compared models.

4 EXPERIMENTS AND RESULTS

All experiments are made on the Compaq Database
(Jones and Rehg, 1999) which is split into two almost
equal parts randomly (the training and the test parts).
We define the neighborhood system of a pixel in
which r = 2. In order to evaluate the performances of
the proposed model we compare it to two other mod-
els: the model based on a random OST (Chow and
Liu, 1968) and the baseline one in which pixels are
considered independent (Jones and Rehg, 1999).

In figure 1, the second column corresponds to the
outputs of the OST model. The outputs of our pro-
posed model are shown in the third column while the
ones of the baseline are given in the fourth column.

We present the Receiver Operating Characteris-
tic (ROC) curves of the considered models (figure 2);
where false positive rate is the proportion of non-skin
pixels classified as skin whereas detection rate is the
proportion of skin pixels classified as skin.
The ROC curves show an improvement of the perfor-
mance for all false positive rate of the mixture model
compared to an OST one. Especially, an increase skin
detection of the mixture model compared to the base-
line is detected from 0.04% to 0.48% false positive.
In addition, using[0;0.07], the area under the ROC
curve (AUC) is equals to 0.0296 for the Baseline,
0.0382 for the OST, and 0.0414 for our approach.
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Figure 3 shows some cases where our detector
failed due to over-exposure, or to skin-like color.

Figure 3: Some examples where our mixture model fails.

5 CONCLUSION

In this paper, we have presented a new algorithm de-
voted to the mixture of OSTs to deal with the prob-
lems of either classification or probability approxima-
tion of skin/non-skin. It emphasizes and takes account
of the useful information of each existing OST.
A theoretical proof of our mixture model of this spe-
cific kind of trees was drawn. Furthermore, the ROC
curve and the AUC measures on the Compaq data-
base proved that the performance of the OSTs’ mix-
ture model is better compared to other basic ones.

In further work, we propose to generalize our ap-
proach to take account of the error-tolerant notion in
order to manage the trees’ range to be chosen.
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APPENDIX

We use the notations given in theorem(1) to prove this
latter. We have:

KL(P(x),P(x|Tmix)) = ∑
x∈V

P(x) log
P(x)

P(x|Tmix)
(13)

= ∑
x∈V

P(x) log(P(x))− ∑
x∈V

P(x) log∏
u∈V

Pu(xu)

− ∑
x∈V

P(x) log ∑
T∈Θk

λ(T) ∏
(u∼v)∈T

Puv(xu,xv)
Pu(xu)Pv(xv)

(14)

By using the Jensen’s inequality reverse, we obtain:

KL(P(x),P(x|Tmix))≤
∑
x∈V

P(x) log(P(x))− ∑
x∈V

P(x) log∏
u∈V

Pu(xu)

− ∑
x∈V

P(x) ∑
T∈Θk

λ(T) log ∏
(u∼v)∈T

Puv(xu,xv)
Pu(xu)Pv(xv)

(15)
However

∑
x∈V

P(x) ∑
T∈Θk

λ(T) log

(
∏

(u∼v)∈T

Puv(xu,xv)
Pu(xu)Pv(xv)

)

= ∑
T∈Θk

λ(T) ∑
(u∼v)∈T

KL(Puv(xu,xv),Pu(xu)Pv(xv))

(16)
Moreover,∑T∈Θk λ(T) = 1 and for an Optimal Span-
ning TreeTop of Θk we have:

WTop
= WT , ∀T ∈ Θk (17)

Therefore

∑
T∈Θk

λ(T) ∑
(u∼v)∈T

KL(Puv(xu,xv),Pu(xu)Pv(xv)) =

∑
(u∼v)∈Top

KL(Puv(xu,xv),Pu(xu)Pv(xv)) (18)

It follows equation (6). Proof concluded.
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