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Abstract: Statistical modeling methods have become critical for many image processing problems, such as 
segmentation, compression and classification. In this paper we are proposing and experimenting a 
computationally efficient simplification of 3-Dimensional Hidden Markov Models. Our proposed model 
relaxes the dependencies between neighboring state nodes to a random uni-directional dependency by 
introducing a three dimensional dependency tree (3D-DT HMM). To demonstrate the potential of the model 
we apply it to the problem of tracking objects in a video sequence.  We explore various issues about the 
effect of the random tree and smoothing techniques. Experiments demonstrate the potential of the model as 
a tool for tracking video objects with an efficient computational cost. 

1 INTRODUCTION 

A number of researches have introduced systems 
that employ statistical modeling techniques to 
segment, classify, and index images (Lefevre 2003, 
Kato 2004, Joshi 2006). Recent years have seen 
substantial interest and activity devoted to the 
exploration of various hidden Markov models for 
image and video applications, which have earlier 
become a key technology for many applications such 
as speech recognition (Rabiner 1983) and language 
modeling.  

The success of HMMs is largely due to the 
discovery of an efficient training algorithm, the 
Baum-Welch algorithm (Baum 1966), which allows 
estimating the numerical values of the model 
parameters from training data. Given the impressive 
success of HMMs for solving 1-Dimensional 
problems, it appears natural to extend them to multi-
dimensional problems, such as image and video 
modeling. However, the challenge is that the 
complexity of the algorithms grows tremendously in 
higher dimensions, so that, even in two dimensions, 
the usage of full HMM often becomes prohibitive in 
practice (Levin 1992), at least for realistic problems. 
Many simplification approaches have been proposed 
to overcome this complexity of 2D-HMMs (Joshi 
2006, Mohamed 2000, Perronnin 2003, Brand 1997, 
Fine 1998). The main disadvantage of these 
approaches is that they only provide approximate 
computations, so that the probabilistic model is no 

longer theoretically sound or greatly reduce the 
vertical dependencies between states, as it is only 
achieved through a single super-state. For three 
dimensional problems, HMMs have been very rarely 
used, and only on simplistic artificial problems 
(Joshi 2006). 

In this paper we propose an efficient type of 
multi-dimensional Hidden Markov Model; the 
Dependency-Tree Hidden Markov Model 
(DT HMM) (Merialdo 2005) which is theoretically 
sound while preserving a modest computational 
feasibility in multiple dimensions (Jiten 2006). In 
section two, we recall our proposed model for two 
dimensions, then we show how it is easily extended 
to three dimensions. Then, in section three, we 
experiment this model on the problem of tracking 
objects in a video. We explain the initialization and 
the training of the model, and illustrate the tracking 
with examples of a real video. 

2 DEPENDENCY-TREE HMM 

In this section, we briefly recall the basics of 
2D-HMMs and describe our proposed DT HMM 
(Merialdo 2005). 
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2.1 2D-HMM 

The reader is expected to be familiar with 
1-D HMM. We denote by O={oij, i=1,…m, 
j=1,…,n} the observation, for example each oij may 
be the feature vector of a block (i,j) in the image. We 
denote by S = {sij, i=1,…m, j=1,…,n} the state 
assignment of the HMM, where the HMM is 
assumed to be in state sij at position (i,j) and produce 
the observation vector oij. If we denote by λ the 
parameters of the HMM, then, under the Markov 
assumptions, the joint likelihood of O and S given λ 
can be computed as: 
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If the set of states of the HMM is {s1, … sN}, 
then the parameters λ are: 
• the output  probability distributions p(o | si) 
• the transition probability distributions p(si  | sj,sk). 

Depending on the type of output (discrete or 
continuous) the output probability distribution are 
discrete or continuous (typically a mixture of 
Gaussian distribution).  

2.2 2D-DT HMM 

The problem with 2-D HMM is the double 
dependency of si,j on its two neighbors, si-1,j and si,j-1, 
which does not allow the factorization of 
computation as in 1-D, and makes the computations 
practically intractable.  

     

  (i-1,j)   

 (i,j-1) (i,j)   

Figure 1: 2-D Neighbors. 

Our idea is to assume that si,j depends on one 
neighbor at a time only. But this neighbor may be 
the horizontal or the vertical one, depending on a 
random variable t(i,j). More precisely, t(i,j) is a 
random variable with two possible values :  
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For the position on the first row or the first 
column, t(i,j) has only one value, the one which 
leads to a valid position inside the domain. t(0,0) is 
not defined.  So, our model assumes the following 
simplification: 
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If we further define a “direction” function: 
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then we have the simpler formulation: 
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Note that the vector t of the values t(i,j) for all 
(i,j) defines a tree structure over all positions, with 
(0,0) as the root. Figure 2 shows an example of 
random Dependency Tree. 

 
Figure 2: Example of a Random Dependency Tree. 

The DT HMM replaces the N3 transition 
probabilities of the complete 2-D HMM by 2N2 
transition probabilities. Therefore it is efficient in 
terms of storage and computation. Position (0, 0) has 
no ancestor. We assume for simplicity that the 
model starts with a predefined initial state sI in 
position (0, 0). It is straightforward to extend the 
algorithms to the case where the model starts with an 
initial probability distribution over all states. 

2.3 3-D DT HMM 

The DT HMM formalism is open to a great variety 
of extensions and tracks; for example other ancestor 
functions or multiple dimensions. Here we consider 
the extension of the framework to three dimensions. 
We consider the case of video data, where the two 
dimensions are spatial, while the third dimension is 
temporal. However, the model could be applied to 
other interpretations of the dimensions as well. 

In three dimensions, the state si,j,k of the model 
will depend on its three neighbors si-1,j,k, si,j-1,k, si,j,k-1. 
This triple dependency increases the number of 
transition probabilities in the model, and the 
computational complexity of the algorithms such as 
Viterbi or Baum-Welch. However the use of a 3-D 
Dependency Tree allows us to estimate the model 
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parameters along a 3-D path (see Figure 3) which 
maintains a linear computational complexity.  

Figure 3: Random 3-D Dependency Tree. 

The “direction” function for the 3-D tree becomes: 
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In 3-D modeling, let us denote the observation 
vector oijk as the observation of a block (i,j,k) in a 
sequence of 2-D images. In an analogous way the 
HMM state variables sijk represents the state at 
position (i,j,k) that produce the observation vector 
oijk. Thus now we can extend (5) to three 
dimensions: 
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In this paper we use Viterbi training to fit our 
model, thus we need to iterate the search for the 
optimal combination of states and then re-estimate 
the model parameters. 

2.3.1 3-D Viterbi Algorithm  

The Viterbi algorithm finds the most probable 
sequence of states which generates a given 
observation O: 
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Let us define T(i,j,k) as the sub-tree with root (i,j,k), 
and define βi,j,k(s) as the maximum probability that 
the part of the observation covered by T(i,j,k) is 
generated starting from state s in position (i,j). We 
can compute the values of βi,j,k(s) recursively by 
enumerating the positions in the opposite of the 
raster order, in a backward manner: 
• if (i,j,k) is a leaf in T(i,j,k): 

)()( ,,,, sops kjikji =β  (9)

• if (i,j,k) has only an horizontal successor, by 
adopting equation (7) we get: 
 )'()'(max)()( ,1,',,,, ssspsops kjiHskjikji += ββ  (10) 

• if (i,j,k) has only a vertical successor:  
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• if (i,j,k) has only a z-axis successor:  
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• if (i,j,k) has both an horizontal and a vertical 
successors (and respectively for the other two 
possible combinations):  
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• if (i,j,k) has both an horizontal, a vertical and z-
axis successors:  
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Then the probability of the best state sequence 
for the whole image is β0,0,0(sI). Note that this value 
may also serve as an approximation for the 
probability that the observation was produced by the 
model. 

The best state labeling is obtained by assigning 
s0,0,0 = SI and selecting recursively the neighbor 
states which accomplish the maxima in the previous 
formulas. 

Note that the computational complexity of this 
algorithm remains low: we explore each block of the 
data only once, for each block we only have to 
consider all possible states of the model, and for 
each state, we have to consider at most three 
successors. Therefore, if the video data is of size (W, 
H, T), and the number of states in the model is S, the 
complexity of the Viterbi algorithm for 3D-DT 
HMMs is only O(WHTS). 

2.3.2 Relative Frequency Estimation 

The result of the Viterbi algorithm is a labeled 
observation, i.e. a sequence of images where each 
output block has been assigned a state of the model. 
Then, it is straightforward to estimate the transition 
probabilities by their relative frequency of 
occurrence in the labeled observation, for example: 
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where )',(, ssN tH is the number of times that 
state s’ appears as a right horizontal neighbor of 
state s in the dependency tree t, and )(sN the 
number of times that state s appears in the labeling . 
(This probability may be smoothed, for example 
using Lagrange smoothing). The output probabilities 
may be also estimated by relative frequency in the 
case of discrete output probabilities, or using 
standard Multi-Gaussian estimation in the case of 
continuous output probabilities.  

With these algorithms we can estimate the model 
parameters from a set of training data, by so called 
Viterbi training: starting with an initial labeling  of 
the observation (either manual, regular or random), 
or an initial model, we iteratively alternate the 
Viterbi algorithm to generate a new labeled 
observation and Relative Frequency estimation to 
generate a new model. Although there is no 
theoretical proof that this training will lead to an 
optimal model, this procedure is often used for 
HMMs and has proven to lead to reasonable results. 

Note that with 3D-DT HMMs, the Baum-Welch 
algorithm and the EM reestimation lead to a 
computational complexity that is similar to the 
Viterbi algorithm, so that a true Maximum 
Likelihood training is computationally feasible in 
this case. We have not yet implemented those 
algorithms, but started with the simple Viterbi and 
Relative Frequency for our initial experimentations 
on 3D video data. 

3 EXPERIMENTS 

Video can be regarded as images indexed with time. 
Considering the continuity of consecutive frames, it 
is often reasonable to assume local dependencies 
between pixels among frames. If a position is (i,j,t), 
it could depend on the neighbors (i-1,j,t), (i,j-1,t), 
(i,j,t-1) or more. Our motivation is to model these 
dependencies by a 3-D HMM. As described in 2.3, 
images are represented by feature vectors on an 
array of 2-D images. 

To investigate the impact of the time-dimension 
dependency we explore the ability of the model to 
track objects that cross each other or pass behind 
another static object. To this end we have chosen a 
video sequence with two skiers that pass behind 
each other and static markers that remain fixed on 
the scene. The video contains 24 frames. 

The method is mainly composed of two phases: 
the training phase and the segmentation phase. In the 

training phase, the process learns the unknown 
HMM parameters using the Viterbi training 
explained in section 2. In the segmentation phase, 
the process performs a spatio-temporal segmentation 
by performing a 3-D Viterbi state alignment. 

3.1 Model Training 

We consider a 3-D DT HMM with 9 states and 
continuous output probabilities. Our example video 
contains 24 frames which are divided into 44 x 30 
blocks; hence the state-volume has dimension 
44 x 30 x 24. For each block, we compute a feature 
vector as the average and variance of the CIE LUV 
color space coding {Lμ,Uμ,Vμ, Lσ,Uσ,Vσ} combined 
with six quantified DCT coefficients (Discrete 
Cosine Transform). This constitutes the observation 
vector oijk.  

The choice of the observation vector is motivated 
by the fact that we use GMMs, it was desirable to 
use features which are Gaussian distributed and are 
as much uncorrelated as possible. Further as it is 
well known that histogram output as features has 
highly skewed probability distributions, we decided 
to use means and variances for color descriptors. 
DCT coefficients were chosen for their 
discriminative ability of energies in the frequency 
domain. The LUV color coding is often preferred for 
its good perception correlation properties. 
 
Initial Model 
The first step of the training is to build the initial 
model. To build initial estimates of the output 
probabilities, we manually annotated regions in the 
first two frames of the video by segmenting the 
image into arbitrary shaped regions using the 
algorithm proposed in (Felzenszwalb 2006) and then 
manually associating each region with a class 
category. As it can be seen in the figure below, the 
segmentation is rather coarse, which means that 
parts of the background may be included in the 
object regions. 

 
Figure 4: Training image and initial state configuration 
using annotated regions. 

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

194



 

The image was labeled using four different 
categories: background, skier1, skier2 and marker 
(static object in the scene). Since semantic video 
regions do not usually have invariant visual 
properties, we assign a range of states to allow for a 
flexible representation for each category (or sub-
class). The sub-class background can for instance 
have the colors: white or light grey with different 
texture properties such as regular or grainy. The 
table below lists the sub-classes and their associated 
number of states. 

Table 1: Number of states for each sub-class. 

Sub Class No. states 
Background 3 

Skier 1 2 
Skier 2 2 
Marker 2 

4 sub-classes 9 states 

Each state has an output distribution which is 
represented by a GMM (Gaussian Mixture Model) 
with five components. To estimate these 
probabilities, we collect the observation vectors for 
each category, cluster them into the corresponding 
number of states, and perform a GMM estimation on 
each cluster.  

The transition probabilities are estimated by 
Relative Frequency on the first frame for the spatial 
dependencies, and by uniform distribution for the 
temporal dependency. 
 
3D Dependency Tree 
The observation volume has size 44 x 30 x 24, and 
each observation is supposed to be generated by a 
hidden state. We build a random 3D dependency tree 
(see Figure 3) by creating one node for each 
observation, and randomly selecting an ancestor for 
each node out of the three possible directions: 
horizontal, vertical and temporal. The border nodes 
have only two (if they lie on a face of the volume), 
one (if they lie on an edge) or zero (for the root 
node) possible ancestors. 

In our experiments, we generated a random 44 x 
30 x 24 dependency tree which contains:  

Table 2: Number of ancestors for each direction. 

Direction No. ancestors 
horizontal 10 604 

vertical 10 694 
temporal 10 382 

  
Total 31 680 

 

Training 
As previously explained, we perform Viterbi 
training by iteratively creating a new labeling over 
the observations, using Viterbi training, and 
generating a new model, using Relative Frequency 
estimation. The iterations stop when the increase in 
the observation probability p(O | S, t) is less than a 
threshold. 
 
Data Size vs. Model Complexity 
According to the Bayesian information criterion 
(BIC) the quality of the model is proportional to the 
logarithm of the number of training samples and the 
complexity of the model [M. Nishida]. Thus since 
our training data is sparse, we shall use a small 
mixture size. The necessary complexity of the GMM 
depends of the data class to model, which in this 
case is relatively uniform since the image is 
segmented into annotated object regions (each 
represented by a number of states as shown in 
Table 1).  

The EM-algorithm is used for training, which has 
a tendency to make very narrow Gaussians around 
sparse data points. To avoid this potential problem 
we construct the GMMs so that there are always a 
smallest number of samples in each component, and 
we constrain the variance to a minimum threshold. 

3.2 Object Tracking 

The original video contains two skiers passing 
yellow markers on a snowy background with 
shadows. Figure 5 depicts every second frame of the 
sequence.  

 
Figure 5: Original video sequence; first frame in upper left 
corner, followed by every second frame. 
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The first frame was manually annotated and used 
to estimate the initial model, while the following 
frames constitute the 3D observation on which the 
Viterbi training was performed. Then, we use the 
trained model to get a final labeling of the complete 
3D observation. In the final labeling, each 
observation block is assigned to a single state of the 
model. The final labeling provides a spatio-temporal 
segmentation of the 3D observation. As the states of 
the model correspond to semantic categories, it is 
possible to interpret the content of specific blocks in 
the video sequence. Figure 6 shows the segment 
classification for frame 1, 12 and 24.  

 
Figure 6: Frame segmentation in the final labeling (a) 
frame 1, (b) frame 12, (c) frame 24. 

Object tracking is then performed easily, by 
selecting in each frame the blocks which are labeled 
with the corresponding semantic category. For 
example, we can easily create a video sequence 
containing only the skiers by switching off the states 
for the background- and marker-classes as shown in 
Figure 7. 

 
Figure 7: Object tracking of two skiers. 

We can see in the figure above that some blocks 
are incorrectly assigned to the skier categories. An 
explanation for this fact maybe that with a single 
dependency tree, many blocks inside the video 
correspond to leaves in the tree, and therefore are 
not constrained by any successor. This motivates the 
combination of several dependency trees so that no 
node is left without any constraints from its 
successors. 

Complementary Dual Trees 
We would like to consider dependencies in every 
direction for each node. Therefore, given a random 
dependency tree t, it is reasonable to consider its 
dual trees, which are trees where for each node, we 
select one direction among those not used in t 
(except when the node has a single possible 
ancestor). Note that in 2D, the dual tree is unique, 
while in 3D, there are a lot of different dual trees for 
a given t. However, we can select a pair of 
complimentary dual trees so that every possible 
dependency for every node appears at least once in 
one of the three trees. We use a majority vote to 
compute the best labeling for the triplet of trees. 
Figure 8 show the result of the segmentation on 
various frames. 

 
Figure 8: Frame segmentation using complementary dual 
trees, (a) frame 1, (b) frame 12, (c) frame 24. 

As previously, we can construct a video 
sequence showing only the tracked objects,. 
Unfortunately, this combination shows only minor 
improvement over the segmentation with a single 
tree.  

 
Figure 9: Perspective view of object tracking using 
complementary dual trees. 

Multiple tree labeling 
Although using a triplet of tree and complimentary 
dual trees takes every dependency from every node 
into account, this is only a local constraint between 
neighbors, which may not be sufficient to propagate 
the constraint to a larger distance. Notice that, for 
every pair of nodes (not necessarily neighbors), 
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there is always a dependency tree where one of the 
nodes will be the ancestor of the other. So, the idea 
now is to use a large number of trees (ideally all, but 
they are too numerous), so that we increase the 
chance of long-distance dependency between non-
neighbor nodes.  

For each dependency tree, we can compute the 
best state alignment, then use a majority vote to 
select the most probable state for each block. This is 
an approximation for the probability of being in this 
state for this block during the generation of the 
observation with an unknown random tree (a better 
estimate could be obtained using the extended 
Baum-Welch algorithm, but we have not 
implemented this algorithm yet, so we just use the 
Viterbi algorithm here). Figure 10 shows the video 
obtained with this multiple tree labeling, using a set 
of 50 randomly generated trees. As can be seen from 
these results, the objects are much clearly defined in 
this experiment, and most of the noise in the labeling 
has disappeared. 

Figure 10: Object tracking with smoothing over 50 
random trees. 

4 CONCLUSION 

In this paper, we have proposed a new 
approximation of multi-dimensional Hidden Markov 
Model based on the idea of Dependency Tree. We 
have focused on the definition and use of 3D 
HMMs, a domain which has been very weakly 
studied up to now, because of the exponential 
growth of the required computations. 

Our approximation leads to reasonable 
computation complexity (linear with every 
dimension). We have illustrated our approach on the 
problem of video segmentation and tracking. We 
have detailed the application of our model on a 
concrete example. We have also shown that some 

artifacts due to our simplifications can be greatly 
reduced by the use of a larger number of dependency 
trees.  

In the future, we plan to explore other 
possibilities of 3D HMMs, such as classification, 
modeling, etc… on various types of video. Because 
of the learning capabilities of HMMs, we believe 
that this type of model may find a great range of 
applications. 
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