
ACTIVE OBJECT DETECTION

G. de Croon
MICC-IKAT, Universiteit Maastricht, P.O. Box 616, 6200 MD, Maastricht,The Netherlands

Keywords: Object Detection, Active Vision, Active Scanning, Evolutionary Algorithms.

Abstract: We investigate an object-detection method that employs active image scanning. The method extracts a local
sample at the current scanning position and maps it to a shifting vector indicating the next scanning position.
The method’s goal is to move the scanning position to an object location, skipping regions in the image that
are unlikely to contain an object. We apply the active object-detection method (AOD-method) to a face-
detection task and compare it with window-sliding object-detection methods, which employ passive scanning.
We conclude that the AOD-method performs at par with these methods, while being computationally less
expensive. In a conservative estimate the AOD-method extracts 45 times fewer local samples, leading to a
50% reduction of computational effort. This reduction is obtained at the expense of application generality.

1 INTRODUCTION

Object detection is the automatic determination of im-
age locations at which instances of a predefined ob-
ject class are present. Numerous methods for object
detection exist (e.g., (Viola and Jones, 2001; Fergus
et al., 2006)), most of which scan a part of the image
at some stage of the object-detection process. Until
now, this scanning is performed in a passive manner:
local image samples extracted during scanning are not
used to guide the scanning process. We mention two
main object-detection approaches that employ passive
scanning here. The window-sliding approach to ob-
ject detection (e.g., (Viola and Jones, 2001)) employs
passive scanning to check for object presence at all
locations of an evenly spaced grid. This approach ex-
tracts a local sample at each grid point and classifies it
either as an object or as a part of the background. The
part-based approach to object detection (e.g., (Fer-
gus et al., 2006)) employs passive scanning to de-
termine interest points in an image. This approach
calculates an interest-value for local samples (such
as entropy of gray-values at multiple scales (Kadir
and Brady, 2001)) at all points of an evenly spaced
grid. At the interest points, the approach extracts new
local samples that are evaluated as belonging to the
object or the background. Although some methods
try to limit the region of the image in which passive
scanning is applied (e.g., (Murphy et al., 2005)), it

remains a computationally expensive and inefficient
scanning method: at each sampling point computa-
tionally costly feature extraction is performed, while
the probability of detecting an object or suitable inter-
est point can be low.

In this article, we investigate an object detec-
tion method that employs active scanning (based on
(de Croon and Postma, 2006)). In active scanning lo-
cal samples are used to guide the scanning process:
at the current scanning position a local image sam-
ple is extracted and mapped to a shifting vector indi-
cating the next scanning position. The method takes
successive samples towards the expected object loca-
tion, while skipping regions unlikely to contain the
object. The goal of active scanning is to save compu-
tational effort, while retaining a good detection per-
formance. In a companion article, we address the
importance of our approach for Embodied Cognitive
Science (de Croon and Postma, 2007). In this article
we focus on the practical applicability in computer
vision. In particular, we verify whether the method
reaches its goal for a face-detection task studied be-
fore in (Kruppa et al., 2003; Cristinacce and Cootes,
2003). We compare the method’s performance and
computational complexity with that of the object de-
tectors (belonging to the window-sliding approach)
employed in the previous studies.

The rest of the paper is organised as follows. In
Section 2, we introduce the object-detection method.

97

de Croon G. (2007).
ACTIVE OBJECT DETECTION.
In Proceedings of the Second International Conference on Computer Vision Theory and Applications - IU/MTSV, pages 97-103
Copyright c© SciTePress



Then, in Section 3, we explain our experimental
setup. In Section 4 we analyse the results of the ex-
periments. We draw our conclusions in Section 5.

2 ACTIVE OBJECT-DETECTION
METHOD

The active object-detection method (AOD-method)
scans the image for multiple discrete time steps in or-
der to find an object. In our implementation of the
AOD-method this process consists of three phases: (i)
scanning for likely object locations on a coarse scale,
(ii) refining the scanning position on a fine scale, and
(iii) verifying object presence at the last scanning po-
sition with a standard object detector. Both the first
and the second phase are executed by an ‘agent’ that
extracts features from local samples, and maps these
features to scanning shifts in the image. We refer to
the agent of the first phase as the ‘remote’ agent and
to the agent of the second phase as the ‘near’ agent.

x

Feature Extract ion

Controller

o

Agent

Figure 1: One time step in the scanning process.

Figure 1 illustrates one time step in the scanning
process. At the first time step (t = 0) of a ‘run’, the
remote agent takes a local sample at an initial, ran-
dom location in the image (‘x’ in the figure). The lo-
cal sample consists of the gray-values in the scanning
window. First, the agent extracts features from this
local sample. Then, its controller transforms these
features to a scanning shift in the image (dashed ar-
row) that leads to a new scanning location (‘o’). We
do not allow the scanning window to leave the image.
On the next time step (t = 1), at the new scanning lo-
cation, the process of feature extraction and shifting
is repeated. The sequence of sampling and shifting
continues untilt = T, whereT is an experimental pa-
rameter. The goal of the remote agent is to center the
local sampling window on an object att = T. Be-
cause the remote agent does not always succeed in
its goal, we employ a near agent. It starts scanning
at the final scanning position of the remote agent and
makes scanning shifts untilt = 2T. At t = 2T we ver-
ify object presence at the final scanning position with
a standard object detector, such as the one in (Viola
and Jones, 2001).

3 EXPERIMENTAL SETUP

3.1 Agent Implementation

We first discuss the feature extraction and then the
controller. We adopt the integral features introduced
in (Viola and Jones, 2001). These features represent
contrasts in mean light intensity between different ar-
eas in an image. The main advantage of these features
is that they can be extracted with very little compu-
tational effort, independent of their scale. Figure 2
shows the types of features that we use in our exper-
iments. We illustrate an example of a feature in the
bottom of Figure 2. The feature is of type 1 and spans
a large part of the right half of the scanning window.
The value of this feature is equal to the mean gray-
value of all pixels in area A minus the mean gray-
value of all pixels in area B. The example feature will
respond to vertical contrasts in the image. Since all
gray-values are in the interval[0,1], the feature value
is in the interval[−1,1].

Figure 2: Feature types (top) and example feature (bottom).

We extractn features from the sampling window.
They form a vector that serves as input to the con-
troller, which is a completely connected multilayer
feedforward neural network. The network hash hid-
den neurons ando = 2 output neurons, all with a sig-
moid activation function: f (x) = tanh(x). The two
output neurons encode for the scanning shift(∆x,∆y)
in pixels as follows:∆x = ⌊o1 j⌋, ∆y = ⌊o2 j⌋. The
constantj represents the maximal displacement in the
image in pixels.

3.2 Evolutionary Algorithm

We employ a ‘µ,λ’ evolutionary algorithm (B̈ack,
1996) to select the features and optimise the neu-
ral network weights of both the remote and the near
agent, for the following two reasons. First, an evo-
lutionary algorithm can optimise both the controller
and the feature extraction simultaneously. Second, an
evolutionary algorithm optimises the controller over
the entire chain of samples and actions, fromt = 1 to
t = T, enabling the agent to employ non-greedy scan-
ning policies. We first evolve the remote agent for
uniformly distributed starting positions, and then the

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

98



near agent in the following manner. We measure the
average distance of the evolved remote agent to the
nearest object att = T in the images of the training
set. Then, we evolve the near agent for positions that
are normally distributed with as mean an object posi-
tion and as standard deviation the measured average
distance att = T.

We split evolution in two by evolving both the fea-
tures and the neural network weights in the first half,
and evolving only the neural network weights in the
second half. Evolution starts with a population ofλ
different agents. An agent is represented by a vector
of real values (doubles), referred to as the genome.
In this genome, each feature is represented by five
values, one for the type and four for the two coor-
dinates inside the scanning window. Each neural net-
work weight is represented by one value. We evalu-
ate the performance of each agent on the task by let-
ting it performR runs per training image, each ofT
time steps. The fitness function we use in the first half
of evolution is: f1(a) = (1−distance(a))+ recall(a),
where distance(a) ∈ [0,1] is the normalised distance
between the agent’s scanning position att = T and
its nearest object, averaged over all training images
and runs. The term recall(a) is the average propor-
tion of objects that is detected per image by an en-
semble ofR runs of the agenta. An object is detected
if the scanning position is on the object. When all
agents have been evaluated, we test the best agent
on the validation set. In addition, we select theµ
agents with highest fitness values to form a new gen-
eration. Each selected agent hasλ/µ offspring. To
produce offspring, there is apco probability that one-
point cross-over occurs with another selected agent.
Furthermore, the genes of the new agent are mutated
with probability pmut. The process of fitness eval-
uation and procreation continues forG generations.
As mentioned, we stop evolving the features atG/2.
In addition, we setpco to 0, since cross-over might
be disruptive for the optimisation of neural network
weights (Yao, 1999). Moreover, we gradually dimin-
ish pmut. Finally, we also change the fitness function
f1 to f2(a) = recall(a). At the end of evolution, we
select the agent that has the highest weighted sum of
its fitness on the training set and validation set (ac-
cording to the set sizes) to prevent overfitting.

The near agent is evolved in exactly the same man-
ner as the remote agent, except for the different start-
ing positions (close to the objects) and the fitness
function: g(a) = (1− distance(a)) + precision(a),
which does not change atG/2. precision(a) is the
proportion of runsR of the near agent that detect ob-
jects at the end of the run. The goal of the near agent is
to refine the scanning position reached by the remote

agent, by detecting the nearest object and approaching
its center as much as possible.

The third phase of the AOD-method, the object
detector that verifies object-presence at the last scan-
ning position, is not evolved, but trained according to
the training scheme in (Viola and Jones, 2001).

3.3 Face-detection Task

We apply the AOD-method to a face-detection task
that is publicly available. We use the FGNET video
sequence (http://www-prima.inrialpes.fr/FGnet/),
which contains video sequences of a meeting room,
recorded from two different cameras. For our
experiments we used the joint set of images from
both cameras (’Cam1’ and ’Cam2’) in the first
scene (’ScenA’). The set consists of 794 images of
720× 576 pixels, which we convert to gray-scale.
We use the labelling that is available online, in which
only the faces with two visible eyes are labelled.
For evolution, we divide the image set in two parts:
half of the images is used for testing and half of the
images for evolution. The images for evolution are
divided in a training set (80%), and a validation set
(20%). We perform a two-folded test to obtain our
results, and run one evolution per fold.

3.4 Experimental Settings

Here we provide the settings for our experiments. The
maximal scanning shiftj is equal to half the image
width for the remote agent, and equal to one third of
the image width for the near agent. The scanning win-
dow is a square with sides equal to one third of the
image width for the remote agent, and one fourth of
the image width for the near agent. The number of
time steps per agent isT = 5, and the number of runs
per imageR is 20. We usen= 10 features that are ex-
tracted from the sampling window. We set the num-
ber of hidden neuronsh of the controller ton/2 = 5,
while the number of output neuronso is 2. We set the
evolutionary parameters as follows:λ = 100,µ= 25,
G = 300,pmut = 0.04, andpco = 0.5.

4 RESULTS

4.1 Behaviour of the Evolved Agents

In this subsection, we give insight into the scanning
behaviour of the remote and near agents evolved on
the first fold (their behaviour on the second fold is
similar). Figure 3 shows ten independent runs of the

ACTIVE OBJECT DETECTION

99



remote agent. Att = 0, all runs are initialised at ran-
dom positions in the image. The method then succes-
sively takes samples and makes scanning shifts (ar-
rows). At the end of scanning (t = T) seven out of
ten runs have reached an object location. The final
locations of the runs are indicated with circles.

Figure 3: Ten independent runs of the remote agent.

The figure indicates that the evolutionary algo-
rithm found suitable features and neural network
weights for the remote agent. Figure 4 shows the ten
evolved features inside the scanning window (white
box) centered in the image (‘x’ indicating the scan-
ning location) and the types, sizes and locations of
the features. Although it is not straightforward to in-
terpret the features, we can see that it contains both
coarse contextual features (e.g., features 2 and 9) and
more detailed object-related features (e.g., features 3,
5, and 8).

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Feature 6 Feature 7 Feature 8 Feature 9 Feature 10

Figure 4: The ten evolved features of the remote agent.

The controller maps these features to scanning
shifts that approach the target objects. In the left part
of Figure 5, we illustrate the function of the remote
agent’s controller by taking local samples at a fixed
grid, and visualising both the direction and size of the
scanning shifts. The controller defines a gradient map
on the image that has attractors at persons and at heads
in particular. Few of the arrows go upwards. This
property of the behaviour is mainly due to two factors.
First, the prior distribution of object locations is such
that faces usually occur in the lower half of images.
Second, the fitness function of the remote agent pro-
motes recall. Since the agent is evaluated on the en-
semble ofR runs, it can ‘loose’ a few runs in the bot-
tom of the image as long as the other runs are success-
ful. This raises the issue whether the method exploits
more than the prior distribution of face-locations. The
AOD-method cannot exploit this prior distribution di-

rectly, since it only uses visual features. However, it
can exploit it indirectly for samples that contain little
information on the object position. Indeed, in the face
images, the remote agent seems to have a preference
for moving down instead of up. However, the method
can move up if the features contain enough informa-
tion (see the arrows under the face of the standing per-
son). In addition, in (de Croon and Postma, 2006), a
different version of the AOD-method performed well
on a task of license-plate detection in which there was
no strong prior distribution of object locations. In
the right part of Figure 5, we show the scanning be-
haviour of the near agent, close to an object. The near
agent considerably improves performance on the de-
tection task, as will be shown in the next subsection.

Figure 5: Remote agent’s actions at different locations (left)
and near agent’s actions close to a face (right).

4.2 Performance Comparison

For a possible computational efficiency of the AOD-
method to be relevant, the active object-detection
method must at least have a sufficient performance.
Figure 6 shows an FROC-plot of our experimental
results (square markers, thick lines), for the remote
agent alone (solid line), the remote and near agent in
sequence (dashed line), and the sequential agent fol-
lowed by the first stage of a Viola and Jones-detector
trained according to the training scheme in (Viola and
Jones, 2001) (dotted line, only based on the first test-
ing fold). We created these FROC-curves by varying
the number of runs:R= 1,3,5,10,20, and 30. In ad-
dition, the figure shows the results on the FGNET im-
age set from other studies, made by varying the classi-
fier’s threshold: from (Cristinacce and Cootes, 2003)
(thin lines), of a Fr̈oba-Küllbeck detector (Fr̈oba and
Küllbeck, 2002) (‘+’-markers) and a Viola and Jones
detector (Viola and Jones, 2001) (‘o’-markers). It
also shows the results of two Viola and Jones de-
tectors trained on a separate image set and tested on
the FGNET set (Kruppa et al., 2003) (thick lines).
The first of these detectors attempts to detect face re-
gions in the image, as the detectors in (Cristinacce
and Cootes, 2003) (‘o’-markers). The second of these
detectors attempts to detect a face by including a re-
gion around the face, including head and shoulders
(‘x’-markers).

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

100



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPs / image

R
ec

al
l

 

 

Kruppa et al. − context

Kruppa et al. − V&J

Cristinacce & Cootes − V&J

Cristinacce & Cootes − F−K

AOD: first agent

AOD: sequential

AOD: seq + V&J

Figure 6: FROC-plot of the object-detection methods.

Figure 6 shows that the AOD-method outperforms
the window-sliding approaches that did not include
a face’s context for detection rates higher than 65%.
Detecting faces without considering context is diffi-
cult in the FGNET video-sequence, because the ap-
pearance of a face can change considerably from im-
age to image (Cristinacce and Cootes, 2003). How-
ever, the context of a face (such as head and shoul-
ders) is rather fixed. This is why approaches that
exploit this context (such as (Kruppa et al., 2003))
have a more robust performance. The active object-
detection method exploits context even to a greater
extent than in (Kruppa et al., 2003) that only includes
a small area around the object.

The difference between the Viola and Jones-
classifier used in (Cristinacce and Cootes, 2003) and
(Kruppa et al., 2003) can be explained by at least three
factors: the different training set, different parame-
ter settings of the training method for the Viola and
Jones-classifier, and a different labeling. In (Kruppa
et al., 2003) profile faces are also labeled, while such
faces are not labeled in the labeling available online.
Small differences between the experiments aside, the
results show that the AOD-method performs at par
with other existing object detection methods on the
FGNET face-detection task.

4.3 Computational Efficiency

4.3.1 General Comparison

The computational costsC of a window-sliding ap-
proach (WS) and an active object-detection approach
(AOD) can be expressed as:

CWS = GHGV(FWS+Cl)+P (1)

CAOD = R(2T)(FAOD +Ct)+R(FWS+Cl)+P (2)

The variablesGH andGV are the number of horizon-
tal and vertical grid points, respectively. Furthermore,
FWS is the number of operations necessary for fea-
ture extraction in the window-sliding approach,Cl for
the classifier, andP for preprocessing. For the AOD-
approach,R is the number of independent runs and 2T
the number of time steps at which local samples are
used for scanning shifts.FAOD is the number of oper-
ations necessary for feature extraction, andCt for the
controller that maps the features to scanning shifts.
R(FWS+Cl) is for verifying object-presence at the fi-
nal scanning position.

The AOD-approach is computationally more ef-
ficient than the window-sliding approach. The main
reason for this is that the AOD-approach extracts
far fewer local samples, i.e.,(R(2T)+ R) ≪ GHGV ,
while its feature extraction and controller do not cost
much more than the feature extraction and classifier
of the window-sliding approach. For example, in the
FGNET task a window-sliding approach that verifies
object presence at every point of a grid with a step
size of two pixels will extract 335× 248= 83,080
local samples (based on the image size, the average
face size of 50× 80 pixels, and the largest step size
mentioned in (Viola and Jones, 2001)). In contrast,
the AOD-method extractsR(2T +1) = 20×11= 220
local samples (sequential agent in combination with
a classifier). Under these conditions, the window-
sliding approach extracts 377.6 times more local sam-
ples than the AOD-method1.

4.3.2 Estimate of Computational Effort

We estimate the computational effort of both methods
for the face-detection task, expressed in a number of
operations. We make a conservative estimate for the
window-sliding method, the Viola and Jones detec-
tor (Viola and Jones, 2001). Importantly, we make
the conservative assumption thatGH = GV = 100,
which implies step sizes of∆x≈ 7 and∆y≈ 5 in the
FGNET images. As a result, the AOD-method ex-
tracts 45 times fewer local samples. In our estimate
of the Viola and Jones detector, we base ourselves on
the research in (Cristinacce and Cootes, 2003; Kruppa
et al., 2003; Viola and Jones, 2001). We estimate the
remaining variables in equation 1 and 2 as follows:

• FWS = 64,FAOD = 80: In (Viola and Jones, 2001), the
computational cost of feature extractions was expressed
in array references. The features in Figure 2 require
from 4 to 12 references, with as average≈ 8 references.
The averagenumberof features extracted per scanning

1Note that taking into account different scales of ob-
ject detection would imply a new multiplication factor for
the computational costs, which is disadvantageous for the
window-sliding approach.

ACTIVE OBJECT DETECTION

101



location was mentioned to be 8 in (Viola and Jones,
2001), while it is 10 for the AOD-method.

• Cl = 9,Ct = 94: The classifier of the window-sliding
approach makes a linear combination of the features
and compares this to a threshold, and therefore we esti-
mate its cost at the average number of features extracted
plus one: 8+1 = 9. In the neural network of the AOD-
method, each hidden and output neuron computes a lin-
ear combination of its inputs and puts the result into
the activation function:Ct = h(n+1)+o(h+n+1)+
(h+o) = 94. The first two terms represent the compu-
tational costs for the linear combinations made in the
hidden and output neurons, respectively. The last term,
(h+o), represents the cost for the activation functions.

• P = 414,720: Both methods need to calculate an ‘inte-
gral image’ (see (Viola and Jones, 2001)) for their sub-
sequent feature extractions. The computational cost of
the calculation of the integral image is a pass through
all pixels of the image, being 414,720 pixels for the
720×576 images.

These estimates lead toCWS = 1,144,720 and
CAOD = 450,980: the application of active scanning
roughly results in a reduction of 50% of the computa-
tional effort. Note that the calculation of the integral
image constitutes the main part of the computational
costs for the AOD-method. The low number of sam-
ples of the AOD-method opens up possibilities for the
real-time application of features that are in themselves
more costly per sample than integral features, but that
require no detailed preprocessing of the entire image.

4.4 Application Generality

The advantages of the AOD-method come at the ex-
pense of application generality. Namely, they rely on
the exploitation of the steady properties of an object’s
context. If these properties are present in the test im-
ages, the method is still able to detect objects. For ex-
ample, Figure 7 shows how the remote agent behaves
if it is applied to photos taken in our own office (10 in-
dependent runs of the remote agent per image). Each
scanning shift is represented by an arrow, while the
last scanning position has a circle. The run of the re-
mote agent is followed by the first stage of a Viola and
Jones classifier, where the runs shown in black belong
to runs for which the last scanning position was clas-
sified as an object position. In both images the in-
dependent runs cluster at the heads, since the office
walls are relatively uncluttered (with an occasional
poster) as in the FGNET video-sequence. However,
if the exploited contextual properties are not present
(as in many outdoor images) detection performance
degrades considerably. The question is how limiting
this loss of generality is. Findings on the human vi-
sual system (Henderson, 2003) suggest that this limi-
tation may be relieved by extending the AOD-method,

so that it applies different scanning policies to differ-
ent visual scenes.

Figure 7: Generalisation of the evolved method.

5 CONCLUSION

We conclude that the AOD-method meets its goal
on the FGNET face-detection task: it performs at
par with existing object-detection methods, while be-
ing computationally more efficient. In a conservative
estimate the active object-detection method extracts
45 times fewer local samples than a window-sliding
method, leading to a 50% reduction of the computa-
tional effort. The advantages of the AOD-method de-
rive from the exploitation of an object’s context and
come at the cost of application generality.

REFERENCES

Bäck, T. (1996). Evolutionary Algorithms in Theory and
Practice. Oxford University Press, New York, Oxford.

Cristinacce, D. and Cootes, T. (2003). A comparison of
two real-time face detection methods. In 4th IEEE In-
ternational Workshop on Performance Evaluation of
Tracking and Surveillance, pages 1–8.

de Croon, G. and Postma, E. O. (2006). Active object detec-
tion. In Belgian-Dutch AI Conference, BNAIC 2006,
Namur, Belgium.

de Croon, G. and Postma, E. O. (2007). Sensory-motor
coordination in object detection. InFirst IEEE Sym-
posium on Artificial Life.

Fergus, R., Perona, P., and Zisserman, A. (in press - 2006).
Weakly supervised scale-invariant learning of models
for visual recognition.International Journal of Com-
puter Vision.

Fröba, B. and K̈ullbeck, C. (2002). Robust face detection
at video frame rate based on edge orientation features.
In 5th international conference on automatic face and
gesture recognition 2002, pages 342–347.

Henderson, J. M. (2003). Human gaze control during real-
world scene perception.TRENDS in Cognitive Sci-
ences, 7(11).

Kadir, T. and Brady, M. (2001). Scale, saliency and im-
age description.International Journal of Computer
Vision, 45(2):83–105.

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

102



Kruppa, H., Castrillon-Santana, M., and Schiele, B. (2003).
Fast and robust face finding via local context. InJoint
IEEE International Workshop on Visual Surveillance
and Performance Evaluation of Tracking and Surveil-
lance (VS-PETS’03), Nice, France.

Murphy, K., Torralba, A., Eaton, D., and Freeman, W.
(2005). Object detection and localization using lo-
cal and global features. InSicily workshop on object
recognition. Lecture Notes in Computer Science.

Viola, P. and Jones, M. J. (2001). Robust real-time object
detection.Cambridge Research Laboratory, Technical
Report Series.

Yao, X. (1999). Evolving artificial neural networks.Pro-
ceedings of the IEEE, 87:1423 – 1447.

ACTIVE OBJECT DETECTION

103


