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Abstract: Every junction detector has a set of thresholds to make decisions about the junctionness of image points.
Low-contrast junctions may pass such thresholds and may not be detected. Lowering the thresholds to find
such junctions will lead to spurious junction detections at other image points. In this paper, we implement a
junction-regularity measure to improve localization of junctions, and we develop a method to create semantic
interpretations of arbitrary junction configurations at improved junction positions. We propose to utilize such
a semantic interpretation as a feedback mechanism to filter false-positive junctions. We show results of our
proposals on natural images using Harris and SUSAN operators as well as a continuous concept of intrinsic
dimensionality.

1 INTRODUCTION

Junctions are utilized in computer vision and image
processing for tasks that especially require finding
correspondences between different views of the same
scene, mainly due to their distinctiveness, seldomness
and stability.

Correct localization of junctions1 is crucial be-
cause even small errors in localization lead to wrong
interpretations of the scene (Rohr, 1992). Neverthe-
less, it is shown in (Deriche and Giraudon, 1993;
Rohr, 1992) that energy-based junction detection
methods smooth out junctions and face the problem
of wrong localization.

Junctions also have the property of being inter-
pretable: i.e., you can construct a meaningful inter-
pretation about how the junction is formed, as pro-
posed in (Parida et al., 1998; Rohr, 1992). Such a se-
mantic interpretation (SI) can be utilized in rigid body
motion estimation, depth estimation, feature match-
ing etc. and should be more robust than a single junc-

1In this paper, corners are considered to be a special case
of junctions, and the term ’corner’ is avoided.

tionness measure in identification of junctions and in
correspondence finding.

Junction detectors, no matter what the underlying
methods are, have to make a decision about the junc-
tionness of image points. The decision is made by a
set of automatically or manually set thresholds (on a
set of measures) that determine the sensitivity of the
algorithm to contrast (in most of the cases, a high
threshold means low sensitivity and vice versa). On
the other hand, a method that utilizes a junction de-
tector requires the detector to be complete: i.e., the
detector should be able to detect all the junctions that
represent the image.

The relation between sensitivity and completeness
presumably looks like as plotted in figure 1(a). In-
creasing the sensitivity increases not only the com-
pleteness of a detector2 but also increases the amount
of false-positives, or ’spuriousness’, of the detector as
illustrated in figure 1(b). These observations suggest
that spuriousness and completeness are two compet-

2Exact shape of this relation might be different in real
world; however, the authors claim that completeness should
be still an increasing function of sensitivity in any case.
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Figure 1: The relations between sensitivity, completeness
and spuriousness.

ing objectives that make the problem of junction de-
tection a multi-objective optimization problem, and it
is known that a multi-objective optimization problem
with competing objectives does not have a global op-
timum, but a set of optimal solutions which are called
Pareto-optimal (see, figure 1(b) and e.g., (Coello,
1999)).

Junction detection algorithms face this ’problem’3

because detecting junctions in real images is an ill-
posed problem at the level of feature-processing due
to the fact that identifying accurate and complete
boundaries and junctions of the objects requires an
object-recognition step which is supposed to happen
at a higher level in a vision system.

In this paper, we show that junction detec-
tors can be followed by a ’semantic interpretation’
step as a feedback mechanism to achieve a better
completeness-to-spuriousness ratio. We achieve this
by (1) increasing the sensitivity of the junction detec-
tors (by decreasing their thresholds), (2) improving
the positioning of the detection step using a regular-
ity or intersection consistency step and then (3) ex-
tracting the semantic interpretation of the junctions to
filter spurious junctions.

The intersection-consistency, or regularity mea-
sure that is implemented in this paper is based on the
observation that the position of a junction is defined
by the intersection of its edges (Parida et al., 1998).
Our measure is similar to the R () function in equa-
tion 5 of (Parida et al., 1998) and the regularity func-
tion S() in equation 4 of (Förstner, 1994). Both of
these functions are based on the local image gradient
whereas our method utilizes another edgeness mea-
sure called intrinsic dimensionality (see section 2.1
and (Krüger and Felsberg, 2003) for details).

For semantic interpretation of junctions, we pro-
pose representing junctions in terms of their con-
stituents (i.e., the edges that form the junctions) and

3In the rest of the paper, CS-problem will denote the
completeness-spuriousness problem.

how they form the junctions (i.e., the directions of
the constituent edges). There have already been stud-
ies related to the representation of the junctions (see,
e.g., (Simoncelli and Farid, 1996; Hahn and Krüger,
2000; Parida et al., 1998; Baker et al., 1998; Rohr,
1992)): In (Simoncelli and Farid, 1996), steerable
wedge filters are developed for analyzing the orien-
tation maps of edges and junctions, without creating
an explicit representation of these features; in (Parida
et al., 1998), by assuming that the number of junc-
tions is known, a junction model is fitted to the data
by minimizing an energy function; in (Baker et al.,
1998), parameters of junctions with just two edges
(i.e., corners) are extracted by using dimensionality
reduction techniques. In (Rohr, 1992), assuming the
number of edges is known, a junction is extracted as
a composition of L-junctions by fitting a parametric
model to the image data. In (Hahn and Krüger, 2000),
corners are detected, and their representations are cre-
ated using Hough lines, and these corners are merged
to create junction representations. In current paper,
we employ a simple method that extracts the repre-
sentation of a junction by analyzing the clusters in its
orientation histogram. While doing so, our method
does not make any assumption about the junction and
is able to create representations of any junction con-
figuration.

The contributions of this paper are (1) proposal
of a new method for creating representations of junc-
tions and (2) pinpointing a common problem in
all junction detectors (namely, CS-problem) and (3)
proposing a way to improve junction detectors with
respect to this problem. We test our improvements on
natural images, using three different junction detec-
tors: SUSAN, Harris operators and the intrinsic di-
mensionality. The aim of this paper is not to compare
the performance of these methods but propose a feed-
back mechanism to improve them. For a comparison
of a set of interest point and junction detectors, the
interested reader is directed to (Schmid et al., 2000).

Biological vision systems are claimed to be
equipped with feedback mechanisms for disambigua-
tion at several steps, especially in early cognitive vi-
sion (see, e.g., (Bayerl and Neumann, 2004)). Current
work is considered to be such a feedback mechanism
for better detection of junctions.

This paper is organized as follows: In section 2,
the main junction detection approaches and the con-
tinuous definition of intrinsic dimensionality are in-
troduced. In sections 3 and 4, the new methods for
improving the positioning and the semantic interpre-
tation of junctions are proposed, respectively. In sec-
tion 5, we present and discuss our results, concluding
the paper in section 6.

IMPROVING JUNCTION DETECTION BY SEMANTIC INTERPRETATION

265



2 JUNCTION DETECTION
ALGORITHMS

In this section, we briefly describe the main ap-
proaches for junction detection without any claim of
being complete (see, e.g., (Schmid et al., 2000; De-
riche and Giraudon, 1993; Smith, 1997) for more de-
tailed reviews) and give a short presentation of intrin-
sic dimensionality (see (Harris and Stephens, 1988)
and (Smith and Brady, 1997) for information about
Harris and SUSAN operators, respectively).

Since the first attempts around late 1970s, there
have been quite a number of works on the detection
of junctions. The methods can be roughly divided into
three main categories:

• Contour-based: These methods involve extract-
ing an edge representation and then processing the
maxima curvature or the linking of the edges to
find the junctions (see, e.g., (Asada and Brady,
1986; Deriche and Giraudon, 1990; Horaud and
Veillon, 1990)).

• Signal-based: These methods involve finding the
junctions by directly using the image intensities.
The second order derivatives of intensities, or the
Hessian matrix (Beaudet, 1978; Dreschler and
Nagel, 1982), autocorrelation function of the im-
age patch (Moravec, 1980; Harris and Stephens,
1988; Förstner, 1994) are the main tools used by
such approaches.

• Template-based: These methods detect junctions
that match certain templates (Rohr, 1992; Parida
et al., 1998).

2.1 Continuous Concept of Intrinsic
Dimensionality (iD)

In image processing, the iD was introduced by (Zet-
zsche and Barth, 1990) and was used to formalize a
discrete distinction between edge-like and junction-
like structures. This corresponds to a classical inter-
pretation of local image structures in computer vision.

Homogeneous, edge-like and junction-like struc-
tures are respectively classified by iD as intrinsically
zero dimensional (i0D), intrinsically one dimensional
(i1D) and intrinsically two dimensional (i2D).

When looking at the spectral representation of a
local image patch (see figure 2(a,b)), we see that the
energy of an i0D signal is concentrated in the origin
(figure 2(b)-top), the energy of an i1D signal is con-
centrated along a line (figure 2(b)-middle) while the
energy of an i2D signal varies in more than one di-
mension (figure 2(b)-bottom).
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Figure 2: Illustration of iD (Sub-figures (a,b,c) taken from
(Felsberg and Krüger, 2003)). (a) Three image patches for
three different intrinsic dimensions. (b) The 2D spatial fre-
quency spectra of the local patches in (a), from top to bot-
tom: i0D, i1D, i2D. (c) The topology of iD. Origin vari-
ance is variance from a point, i.e., the origin. Line variance
is variance from a line, measuring the junctionness of the
signal. ciND for N = 0,1,2 stands for confidence for being
i0D, i1D and i2D, respectively. Confidences for an arbitrary
point P is shown in the figure which reflect the areas of the
sub-triangles defined by P and the corners of the triangle.
(d) The decision areas for local image structures.

Recently, it has been shown (Krüger and Felsberg,
2003; Felsberg and Krüger, 2003) that the structure of
the iD can be understood as a triangle that is spanned
by two measures: origin variance and line variance.
Origin variance describes the deviation of the energy
from a concentration at the origin while line variance
describes the deviation from a line structure (see fig-
ure 2(b) and 2(c)); in other words, origin variance
measures non-homogeneity of the signal whereas the
line variance measures the junctionness. The corners
of the triangle then correspond to the ’ideal’ cases of
iD. The surface of the triangle corresponds to signals
that carry aspects of the three ’ideal’ cases, and the
distance from the corners of the triangle indicates the
similarity (or dissimilarity) to ideal i0D, i1D and i2D
signals.

As shown in (Krüger and Felsberg, 2003; Fels-
berg and Krüger, 2003), this triangular interpretation
allows for a continuous formulation of iD in terms of
3 confidences assigned to each discrete case. This is
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achieved by first computing two measurements of ori-
gin and line variance which define a point in the tri-
angle (see figure 2(c)). The bary-centric coordinates
(see, e.g., (Coxeter, 1969)) of this point in the trian-
gle directly lead to a definition of three confidences
that add up to one. These three confidences reflect the
volume of the areas of the three sub-triangles which
are defined by the point in the triangle and the corners
of the triangle (see figure 2(c)). For example, for an
arbitrary point P in the triangle, the area of the sub-
triangle i0D-P-i1D denotes the confidence for i2D as
shown in figure 2(c). That leads to the decision areas
for i0D, i1D and i2D as seen in figure 2(d).

For the example image in figure 2, computed iD is
shown in figure 3.

3 IMPROVING LOCALIZATION

Our approach is to detect junctions (using Harris, Su-
san or iD), and then to compute a junction regularity
measure, called intersection-consistency (IC), in the
neighborhood of the detected junctions. The new im-
proved position of a junction is determined by the lo-
cal maximum of IC in the 3x3-neighborhood.

IC is measured by checking whether the pixels in
the image patch point towards the center of the patch
or not. Pointing towards the center of the local image
patch is measured by the distance between the center
pc and the line going through the pixel. The line is de-
fined according to the position of the pixel p and the
computed orientation information θp. The weighted
average of these distances then defines the intersec-
tion consistency at pc:

ic(pc) =
Z

[ci1D(p)]2[1−d(lp,pc)/d(p,pc)]dp, (1)

where p is the index of the pixels in image patch P;
ci1D(p) is the confidence for i1D of pixel p; lp is the
line going through pixel p with a slope defined ac-
cording to the orientation θp; d(lp,pc) is the distance
between lp and pc; and, d(p,pc) is the distance be-
tween p and pc. Note that d(lp,pc) is normalized with
d(p,pc) because we would like to give equal weights
to votes of every pixel whether they are close to the
center or not.

The distances between the center of the local im-
age patch and the lines through the pixels is weighted
by (ci1D)2 because the computed orientation informa-
tion is defined only for edge-like structures, and IC by
definition involves intersection consistency of edge-
like structures.

ic(P) value will be high (1) if the image patch has
only one edge which goes through the center of the

patch or (2) if the image patch has a junction whose
intersection point is located at the center of the patch.

For comparison, R () function of (Parida et al.,
1998) and S() function of (Förstner, 1994) are given
in equations 2 and 3 respectively:

R =
Z ∞

0

Z 2π

0

(δI
δr

)
g∗(r)rdrdθ, (2)

where (r,θ) is the polar coordinate of points relative
to the center of the image patch, and g∗(r) is a modu-
lating function and can be set to rGσ(r) where Gσ is
the Gaussian.

S(p,σ) =
ZZ

d2(p,q) ‖ ∇g(q) ‖2 Gσ(p−q)dq. (3)

where p is the center of the image patch; q denotes
image points in the image patch; d(p,q) is the dis-
tance of center point p to the line defined by q; and,
∇g(q) is the intensity gradient (gx,gy).

4 SEMANTIC INTERPRETATION
OF JUNCTIONS

In this section, we describe how we estimate the se-
mantic interpretation (SI) of a junction. This estima-
tion process does not make any assumptions on the
configuration of the edges (interested reader is di-
rected to (Waltz, 1975) for different classes of junc-
tions and their properties). The SI of a junction that
does not fall into any meaningful junction category
can be used to find false-positives.

In our SI, a junction is represented by a set of rays
r1...rn corresponding to the set of n edges that inter-
sect at the junction. Each ray ri represents a specific
edge i, defined as a half-line expanding from the in-
tersection point in a certain direction θ̃i. We introduce
another parameter ci for the confidence of the edge
which can be used as a weight when the SI of a junc-
tion is utilized. With these parameters, we can define
the semantic interpretation SI(J ) of a junction J as
follows:

SI(J ) = {r1, ...,rn}=
{(

c1, θ̃1
)
, ...,

(
cn, θ̃n

)}
. (4)

θ̃ ∈ [0,2π) is the junction-relative orientation; the im-
age relative orientation θp ∈ [0,π) of a pixel p at
(xp,yp) is transformed to junction-relative orientation
for junction J at (x,y) as follows:

θ̃p =
{

θp, if tan−1[(x− xp)/(y− yp)] < π,
θp +π, if tan−1[(x− xp)/(y− yp)]≥ π.

(5)
In figure 4, the image-relative and junction-relative
orientations of two edges are shown for a junction.
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Figure 3: Computed iD for the image in figure 2, black means zero and white means one. From left to right: ci0D,ci1D,ci2D
and highest confidence marked in gray, white and black for i0D, i1D and i2D, respectively.
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Figure 4: Image- and junction-relative representations of
the directions of the edges of an example junction. (a)
Image-relative directions. (b) Junction-relative directions.

The junction-relative orientation θ̃i for each ray ri
is extracted by finding the dominant orientations in
the neighborhood N of the junction J . We can con-
struct the set of pixels in N that point towards the cen-
ter of the junction J as follows:

Θ̃c =
{

θ̃p | p ∈ N and d(lp,(x,y)) < T
}
, (6)

where lp is the line defined by the pixel p with orien-
tation θ̃p.

The number of rays and their orientations are
determined by the clusters in the histogram Hl(Θ̃c)
where l is the index of the bins. The set of clusters
{Cm} is the set of Hl (1) where the first derivative
δHl/δl changes sign, and (2) where the energy (i.e.,
the number of elements in the bin) is above a thresh-
old. Figure 5 shows the rays extracted from an exam-
ple junction.

A junction is marked as false-positive if n < 2 or
n = 2 and θ̃1 ' θ̃2.

5 RESULTS AND DISCUSSIONS

SUSAN implementation is taken from the author of
(Smith and Brady, 1997), and Harris implementation

0 pi 2pi 0 pi 2pi
Figure 5: Illustration of the SI of a junction. From left to
right: the junction marked with a circle; the distribution of
junction-relative orientation; detected ray orientations; esti-
mated SI.

Table 1: The parameters used in the experiments.

Algorithm Low sensitivity High sensitivity
SUSAN brightness > 20 brightness > 13
Harris E > 1000 E > 300
iD ci2D > ci1D & ci2D > 0.3

ci2D > ci0D

is taken from (Noble, 1989). The parameters of SU-
SAN, Harris and iD are provided in table 1.

In figure 6, the results of the three junction detec-
tion methods are presented for several image patches
extracted from real images. For each example and
each method, original detection results, improved po-
sitions and the SI are plotted.

The examples demonstrate that junction detection
methods face the problem of wrong localization as
pointed out in (Deriche and Giraudon, 1993; Rohr,
1992). Moreover, it is very likely that the methods
produce false positives especially visible in the case
of SUSAN and iD. However, we show in figure 6
that the effect of the positioning problem can be de-
creased, and false positives can be removed by using
the SI of the junctions.

As mentioned in section 1, junction detectors have
a level of sensitivity that cannot be made universal;
i.e., it is not possible to adjust the parameters of a
junction detector in order to detect every junction
without producing a big ratio of false positives.
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Figure 6: A set of example junctions and the results of junction detectors and the results of IC and SIon these results. For
each example, S, H and iD denote SUSAN, Harris and iD respectively. In each example, the first column shows the original
detections of the algorithms; the second column shows the effect of improved positioning via IC; and, the third column shows
the estimated SI and how it can be used to get rid of spurious junctions. Spurious junctions that are estimated with SI are
marked in small squares.

IMPROVING JUNCTION DETECTION BY SEMANTIC INTERPRETATION

269



Interpretation
Semantic

Positioning
Improved

Detection
Original

Interpretation
Semantic

Positioning
Improved

Detection
Original

H

S

iD

a) b)

c) d)

H

S

iD

Figure 7: The effect of high ’sensitivity’ on the performance of junction detectors. Junction detectors can now detect low
contrast junctions that they miss with low sensitivity. H and S denote Harris and SUSAN respectively. For each subfigure,
the first column shows original detection results, the second the results of improved positioning with IC and the third the SI.
Spurious junctions that are estimated with SI are marked in small squares.

In figure 7, we show a set of examples for SU-
SAN, Harris and iD with low thresholds (table 1). The
thresholds have been decreased so that the detectors
can detect the junctions that they have missed with
their default parameter values (e.g., the junction in the
center of figure 7(a)). From 7(a), we see that increas-
ing sensitivity of a detector can help in detecting low
contrast however important junctions. On the other
hand, figure 7 shows that all methods produce spuri-
ous results when the sensitivity is high, especially in
the case of SUSAN and iD. However, by making use
of IC and SI, it is possible to get rid of most of the spu-
rious junctions and detect a wider range of junctions
with more accuracy even for high sensitivity levels.

6 CONCLUSION

In this paper, we proposed two methods for improving
the detection and the representation of junctions: (1)
an operator called intersection consistency that mea-
sures how consistent a junction is with its neighbor-
hood, and (2) a way to create semantic interpretation
of junctions.

As shown in (Deriche and Giraudon, 1993; Rohr,
1992), energy-based junction detectors face the prob-
lem of wrong positioning. Using our intersection con-
sistency, it is possible to achieve better positioning.

We also addressed the issue of having thresholds
on the detection of junctions with respect to the ’com-
pleteness’ and ’spuriousness’ of the detection. By
making use of our semantic interpretation as a feed-
back mechanism, we show that using semantic inter-
pretation can improve detection performance of junc-
tion detectors.
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