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Abstract: In this paper we address the problem of self-calibrating a differentiable generic camera from two rotational
flows defined on an open set of the image. Such a camera model can be used for any central smooth imaging
system, and thus any given method for the generic model can be applied to many different vision systems.
We give a theoretical closed-form solution to the problem, proving that the ambiguity in the obtained solution
is metric (up to an orthogonal linear transformation). Based in the theoretical results, we contribute with an
algorithm to achieve metric self-calibration of any central generic camera using two optical flows observed in
(part of) the image, which correspond to two infinitesimal rotations of the camera.

1 INTRODUCTION

The first proposed generic camera model consisted of
a finite set of pixels and imaging rays in a one-to-
one correspondence; its calibration-from-pattern was
already solved in a quite pleasant way (Sturm and
Ramalingam, 2004; Grossberg and Nayar, 2001), al-
though some questions remain open. This model can
be used for any vision system with little assumption,
in contrast with the classical approaches that impose
a parametric restriction to estimate a model (Hartley
and Zisserman, 2000).

In (Ramalingan et al., 2005) a first metric
self-calibration (calibration without scene o motion
knowledge) algorithm was presented from at least two
rotations and one translation of a generic central cam-
era, i.e. with a single effective viewpoint. The authors
explicitly admitted that the model should be changed
to a continuous one with infinitely many rays.

We consider the continuous (resp. differentiable)
generic central camera model to be described by a
continuous (resp. differentiable) bijective mapϕ be-
tween an sphere and the image plane. An image is
obtained by composing the central projection on the
sphere (the ideal central camera) with thiswarping
mapfrom the sphere onto the image plane. Note that
ϕ gives us a one-to-one correspondence between im-

age points and projection rays, and thus our definition
is consistent with the discrete generic camera model.

The differentiable model was introduced in
(Nistér et al., 2005), where a closed-form formula
was given for the projective self-calibration (i.e. re-
coveringϕ up to projective ambiguity) from at least
three observed optical flows corresponding to three
infinitesimal rotations. In (Grossmann et al., 2006), a
first method for metric self-calibration from only two
rotational flows was given. The method gave a ex-
perimentally unique solution, which was shown to be
extremely sensitive to noise and even to fail with cer-
tain exact simulated flows.

We give a theoretical closed-form solution to the
problem of self-calibrating a differentiable generic
camera from two rotational flows defined on an open
set of the image. We also proof that the solution is
unique up to an orthogonal linear transformation. Our
main contribution is an algorithm to achieve metric
self-calibration of any central smooth imaging sys-
tem using two optical flows observed in (part of) the
image, which correspond to two linearly independent
rotations. We use simulated data to show that the
proposed method performs well with both exact and
noisy optical flows.
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2 PROBLEM FORMULATION

2.1 Differentiable Generic Camera

We will describe thecalibration of a general central
camera by a regular 2-differentiable mapf between
the image plane and the unit sphere:

f : R2 → S2

(u,v) 7→ f (u,v). (1)

We take as ideal central camera the standard spherical
projection

π : R3 → S2

p 7→ p/‖p‖. (2)

According to (Nist́er et al., 2005) we model any
central camera as the composition ofπ with ϕ =
f−1, which warps the spherical image onto the im-
age plane. Note that the calibration mapf gives us
a locally one-to-one correspondence between image
points and projection rays, agreeing with the calibra-
tion concept introduced by (Sturm and Ramalingam,
2004) for the (discrete) generic camera model.

2.2 Self-Calibration Problem

We assume that we know on the image two 2-
differentiable optical flows

vi : R2 → R2

(u,v) 7→ vi(u,v) ,
(3)

both defined on a common open subset. We also
suppose that the observed flowsvi correspond to in-
finitesimal rotations of the camera with respective
(unknown) linearly independent angular velocitiesωi .

Our problem consists in determining the possible
angular velocitiesωi and calibration mapf that are
compatible with the image flowsvi .

Since each infinitesimal Euclidean rotation with
angular velocityωi induces on the unit sphere a tan-
gent vector field defined by

p∈ S2 7→ ωi ∧ p∈ TpS2 , (4)

following (Nistér et al., 2005) the problem can be for-
mulated as that of findingf andωi , i = 1,2, such that

D f (u,v) ·vi(u,v) = ωi ∧ f (u,v) , (5)

being Df = ( fu| fv) the 3×2 differential matrix off .
Observe that, although the rotation axes are re-

quired to be linearly independent, the induced flows
on the sphere will always be linearly dependent along
a circle (see Figure 1). Therefore, when this circle is

mapped byf−1 on an image curve, the optical flows
will be linearly dependent along that set of points.

Thus, we restrict ourselves to solve (5) for those
points (u,v) in an open connected subset of image
points where the optical flows are linearly indepen-
dent. Once we have determinedf on the open con-
nected subsets with independent flows, it can be ex-
tended by continuity to the whole image.
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Figure 1: Projection on the plane{z= 1} of two spherical
flows, with angular velocitiesω1 = (1,0,0) (going down)
andω2 = (0,0,1) (rotating anti-clockwise). The projected
flows are linearly dependent along the line{y = 0}, which
corresponds to a circle through the flow singular points.

2.3 Notations

We define the 2× 2 matrix V := (v1|v2), and take

Ṽ := V−1 =
(

ṽ11 ṽ21
ṽ12 ṽ22

)
, where it exists. Observe

that, with these notations, equation (5) says

D f =−[ f ]×(ω1|ω2)Ṽ . (6)

For any differentiable functionϕ : R2 → Rm we
denote by Dϕ = (ϕu|ϕv) its m×2 differential matrix.

3 A CLOSED-FORM SOLUTION

3.1 Theoretical Results

For a givenflow matrix V we want to determine the
possiblef andωi ’s satisfying the matrix equation (6).
First we show that we can reduce the problem to that
of determining the angular velocitiesωi .

Let ∆̃ = (∆̃1, ∆̃2) be the vector function defined by
(

∆̃1

∆̃2

)
:=

∂
∂v

(
ṽ11
ṽ12

)
− ∂

∂u

(
ṽ21
ṽ22

)
. (7)
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Theorem 1. Assume that we knowω1 andω2, the an-
gular velocities of the infinitesimal rotation motions.
We consider

g̃ := ∆̃1ω1 + ∆̃2ω2 +detṼω1∧ω2 6= 0 , (8)

Then, the calibration map f can be computed as

f =± g̃
‖g̃‖ .

Proof. If we know ω1 and ω2 we can compute the
following 3×2 functions:

a := (ω1|ω2)
(

ṽ11
ṽ12

)
, b := (ω1|ω2)

(
ṽ21
ṽ22

)
. (9)

By (6), we are looking forf such that
{

fu = [a]× f ,
fv = [b]× f .

(10)

Since f is 2-differentiable, it must hold

0 = fuv− fvu = ( fu)v− ( fv)u

(10)
= [av]× f +[a]× fv− [bu]× f − [b]× fu

(10)
= [av−bu]× f +([a]×[b]×− [b]×[a]×) f

= [av−bu +a∧b]× f
(8)
= [g̃]× f ,

from what it follows that f and g̃ must be propor-
tional. Observe that, since the vectorsω1, ω2 and
ω1∧ω2 form a basis ofR3, and det̃V 6= 0, the function
g̃ never vanishes. Finally, the result can be obtained
by imposing‖ f‖= 1.

Remark1. In order to improve the stability of the nu-
merical computation off , we will use the formula
f =±g/‖g‖, with g = (detVg̃) expressed as follows:

g = ∆1ω1 +∆2ω2 +ω1∧ω2 , (11)

where∆ = (∆1,∆2) is given by

(
∆1
∆2

)
:=




∂v21

∂u
+

∂v22

∂v
− detVu

detV
v21−

detVv

detV
v22

−∂v11

∂u
− ∂v12

∂v
+

detVu

detV
v11+

detVv

detV
v12


 .

(12)
Next we give a closed-form formula to findωi , the

rotation flow angular velocities, using only the image
flowsvi . We also determine the ambiguity in the given
solution.

Theorem 2. The matrix Gω := (ω1|ω2)t(ω1|ω2) can
be determined from V using the formula

Gω =
(

∆2
−∆1

)
(−∆2|∆1)−

(
D∆2
−D∆1

)
V . (13)

Thus, given V the angular velocitiesωi can be de-
termined up to an orthogonal transformation of the
Euclidean spaceR3.

Proof. By imposing (6) to the functionf = ± g
‖g‖ ,

whereg is defined in (11), we obtain (note that the
sign ambiguity cancels out in both sides):

−
[

g
‖g‖

]

×
(ω1|ω2)V−1 = D(

g
‖g‖ )

= gD(
1
‖g‖ )+

1
‖g‖Dg

= − 1
‖g‖ (g

gtDg
gtg

−Dg) ,

where in the last step we have used that‖g‖ =
√

gtg.

Thus, takingA :=
gtDg
gtg

, we have obtained the follow-

ing relation:

[g]×(ω1|ω2) = (gA−Dg)V . (14)

By (11) the left-hand side term in (14) is

[∆1ω1 +∆2ω2]×(ω1|ω2)+ [ω1∧ω2]×(ω1|ω2) ,

which can be simplified as

ω1∧ω2 (−∆2|∆1)+(ω1|ω2)
(

0 −1
1 0

)
Gω . (15)

Now, (14) can be decomposed in two equalities. The
first one corresponds to the components on the direc-
tion of ω1∧ω2: (−∆2|∆1) = A V, which gives us

A = (−∆2|∆1)V−1 . (16)

A second equality can be obtained by comparing the
parts in (14) on the plane generated byω1 andω2:

(
0 1
−1 0

)
Gω = (∆ A−D∆)V . (17)

The formula forGω in the Theorem follows from this
last equality using (16). Since we can only know the
norm and scalar product of theωi , they are determined
up to an orthogonal transformationM ∈ O(R3). Ob-
serve that the remaining ambiguity is inherent to the
problem: if f andωi satisfy (5), thenM f andMωi
also give a solution.

3.2 Self-Calibration Algorithm

Assume that we know two optical flowsv1, v2 defined
on the whole image, corresponding to two infinitesi-
mal rotations of unknown angular velocitiesω1, ω2.

We fix two directionsd1,d2 ∈ R3, which we will
use to remove the ambiguity in the determination of
the solution.

We propose the following algorithm:

VISAPP 2007 - International Conference on Computer Vision Theory and Applications

28



1) Computeε(u,v) a measure of linear dependence
of the flows at each image pixel:

ε :=
det(v1|v2)

‖v1‖2 +‖v2‖2 . (18)

2) Compute the functions∆i(u,v) defined in (12),
and use the formula forGω in (13) to compute

matricesG(u,v) =
(

A B1
B2 C

)
.

3) ComputeC the set of pixels(u,v) such that:

i) A(u,v) > 0 ,

ii) C(u,v) > 0 ,

iii) |B1(u,v)−B2(u,v)|< median(|B1−B2|) ,

iv) (u,v) is not in the border of the image,

v) ε(u,v) > median(ε) .

Using B := (B1 + B2)/2, take the means ofA, B
andC insideC as the coefficients ofGω.

4) Compute ω1,ω2 such that ω1 = λ1d1 and
ω2 = µ1d1 + µ2d2, with λ1 > 0, µ2 > 0 and
(ω1|ω2)t(ω1|ω2) = Gω.

5) Takeg(u,v) as defined in (11), and finally

f (u,v) := sign(g3(u,v))
g
‖g‖ , (19)

unless fixingf3(u,v) > 0 is not convenient.

3.3 Comments

Since in practice we only know the optical flow on a
grid of pixels, the computation of the∆i , which re-
quires first derivatives, and the computation ofGω,
involving second derivatives of the flow, will be less
accurate at the borders of the image. Note also that
the error (5) in a few pixels could be big due to the
division in (12); the estimation off in those pixels
can be improved by imposing the smoothness off in
a neighborhood containing pixels with lower error.

Besides that, the formula (13) gives us as many
estimators forGω as image points. We select in step
3 those points inside the image where the matrices
are (closer to be) symmetric definite positive and the
optical flows are (closer to be) linearly independent.
Alternative criteria can be used, specially if the sug-
gested conditions turn out to be too restrictive.

Finally, reversing the order in the flows (and ro-
tations) changes the sign of the∆i(u,v) in (12), and
thus the sign ofg in (11). Fixing f3(u,v) > 0 in step 5
makes the algorithm independent of the flows order.

4 EXPERIMENTAL RESULTS

We simulated different generic calibration mapsf :
S2 → R2 by composingT : S2 → R2, the central pro-
jection from the unit sphere onto the plane{z = 1},
with rectifying mapsF : R2 → R2 defined on the
plane{z= 1}. We considered different maps (Gross-
mann et al., 2006):

1. F(u,v,1) = K−1(u,v,1), pinhole sensor,

2. F(u,v,1) = (u, 1
2(v+sin(3πu

4 )),1), sine sensor,

3. F(u,v,1) = (10
u−1

2 cos(πv),10
u−1

2 sin(πv),1), log-
polar sensor,

4. F(u,v) = ( tan(θ
√

u2+v2)

2tan( θ
2 )
√

u2+v2
u, tan(θ

√
u2+v2)

2tan( θ
2 )
√

u2+v2
v,1), a

fish-eye modelwith angular field of viewθ (De-
vernay and Faugeras, 2001),

with (u,v) ∈ (−1,1)× (−1,1). See Figure 2 for a
20×20 discrete representation of the sensors.
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Figure 2: Examples of the considered ”unwarping” mapsf .

In a first experiment, we wanted to study the be-
havior of Algorithm 3.2 with exact data. For each
sensor, we simulated two optical flows in a 20× 20
discrete image, like those in Figure 3, and computed
the estimations forGω and f . The goodness of the
obtainedf with the Pinhole and Sine models can be
observed in the upper-left picture in figures 5 and 6
respectively, forω1 = (0.2,0,0) andω2 = (0,0,0.2).

Since our algorithm needs to estimate numerically
the derivatives of the optical flows, it is expected to
work better with very dense flows. The improvement
in the solution with respect to the size of the image
flow grid (taken to haveN×N pixels, with N rang-
ing from 20 to 300) can be observed in Figure 4. We
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Figure 3: Image optical flows withω = (0,0,0.2).
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Figure 4: Errors with exact data for different image grid
sizes.

used as an over-all error measure the mean of all the
differences in the Flow equation (5).

In a similar way, we varied the field of view in the
Pinhole and Log-Polar sensors, and observed that our
closed-form formulas gave better results with bigger
field of view, i.e. bigger image changes.

In order to simulate real (regular) optical flow
data, we perturbed exact 300×300 image rotational
flows with gaussian noises relative to the flows (i.e.
vsim

i j = (1+ s)vexact
i j ), then smoothed the flow with a

Gaussian convolution and finally downsampled it into
a 20× 20 flow. In Figures 5 and 6 we show exam-
ples of typical self-calibration results with noise for
ω1 = (0.2,0,0) andω2 = (0,0,0.2).

We observed that, specially in presence of noise,
not only the product matrixGω was important, but
also the initial directions of theωi . As an example,
and to summarize, we show in figures 7 and 8 the be-
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Figure 5: Calibration example of the Pinhole sensor with
noises relative to optical flow; x and z rotation axes.

havior of the considered models withω1 = (0.2,0,0)
and eitherω2 = (0,0.2,0) or ω2 = (0,0,0.2). Note
that in both casesGω is the same. The relative er-
ror in the estimation ofGω (Figure 7) corresponds to
the matrix norm of the difference with its true value
divided by four times the norm of the true matrix.

5 CONCLUSIONS

In this paper we have shown that it is possible to solve
in a closed-form way the problem of self-calibrating
any differentiable generic central camera from only
two rotational flows, not necessarily observed on the
whole image. We have proved that the only remaining
ambiguity in the solution is an orthogonal displace-
ment, which affects both the estimation of the rotation
angular velocities and the calibration map.

We have also given a self-calibration algorithm
based on the previous results. Using simulated data,
we have shown that it works quite well with noisy reg-
ular optical flows, and that its performance improves
with dense image flows and big fields of view. In the
future, strongly encouraged by the obtained results,
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Figure 6: Calibration example of the Sine sensor with noise
s relative to optical flow; x and z rotation axes.
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Figure 7: Relative error inGω with respect to noise relative
to the flows; two different rotation pairs are shown.

we will use our algorithm with pairs of real rotational
flows and also adapt it to have a robust self-calibration
method able to work with more than two flows.
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Figure 8: Flow mean error with respect to noise relative to
the flows; two different rotation pairs are shown.
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