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Abstract: In this paper, we present a hew evolutionary algorithm called genetic pattern search algorithm (GPSA). The
proposed algorithm is closely related to genetic algorithms (GAs) which use binary-coded genes. The main
contribution of this paper is to propose a binary-coded pattern called digital pattern which is transformed from
the real-coded pattern in general pattern search methods. In addition, we offer a self-adapting genetic algo-
rithm by adopting a digital pattern that modifies the step size and encoding resolution of previous optimization
procedures, and chases the optimal pattern’s direction. Finally, we compare GPSA with GA in the robust-
ness and performance of optimization. All experiments employ the well-known benchmark functions whose
functional values and coordinates of each global minimum have already been reported.

1 INTRODUCTION 1996), that have been employed in a large variety of
problems. However, most meta-heuristics including
Global optimization has attracted much attention re- GAs suffer from slow convergence that brings about
cently (Horst and Pardalos, 1995; Pardalos et al., heavy computational costs mainly because they may
2000; Pardalos and Romeijn, 2002), because of afail to detect promising search directions, especially
wide spectrum of applications in real-world systems. in the vicinity of local minima owing to their random
Global optimization refers to finding the extreme constructions.
value of a given function in a pgrtaﬁn feasible region, Combining meta-heuristics with local search
and such problems are classified in two classes; un-methods is a practical solution in overcoming the
constrained and constrained problems. This papergrawhacks of slow convergence and random con-
concerns a class of optimization algorithms that can gr,ctions of meta-heuristics. In these hybrid meth-
be applied to bound constrained problems ods, local search strategies are included inside meta-
min f(x):R" =R, 1) heuristics to guide them in the vicinity of local min-
ima, and to overcome their slow convergence espe-
cially in the final stage of the search. This paper pur-
sues that approach and proposes a new hybrid algo-
wherel;, y; € R andl; < u;. rithm that combines GAs with a new pattern search
Although the works that deal with the global opti- method. Pattern search methods are a class of di-
mization are still not enough, they manage to confront rect search methods that require neither explicit nor
the rapid growth of applications. And such work have approximate derivatives. Abstract generalizations of
yielded new practical solvers for global optimiza- pattern search methods have been provided in (Torc-
tion, called meta-heuristics. The structures of meta- zon, 1997; Audet and Dennis, 2003). We will adopt
heuristics are mainly based on simulating nature anda new idea in pattern search to form a hybrid algo-
artificial intelligence tools (Osman and Kelly, 1996). rithm. The new pattern search method, called digital
Genetic algorithms (GAs) are one of the most effi- pattern search (DPS) method, digitizes the patterns of
cient meta-heuristics (Goldberg, 1989; Michalewicz, pattern search methods into binary-codes. Thus, we
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can easily combine GAs and pattern search method toof the m bit strings m = [bim,- - - ,bi 1], whereb € B
construct a global search method called genetic pat-andi € {1,---,n}, which can be interpreted as the en-
tern search algorithm (GPSA). coding of a vectox € R" for problem (1).

There have been some attempts to utilize the idea  GAs are derived on the principles of natural selec-
of hybridizing local search methods with GA. Simple tion and they incorporate operators for fithess assign-
hybrid methods use the GAs or local search methods ment, selection of points for recombination, recombi-
to generate the points for new population and then nation of points, and mutation of a point.
apply other techniques to improve this new popula- The pseudo code in Figure 1 describes the steps
tion (Glnal, 2000; Zentner et al., 2001). Other hy- executed in a general GA.
brid methods do some modifications in the GA oper-
ations; selection, crossover and mutation using local
search methods (Musil et al., 1999; Yang and Dou-
glas, 1998; Yen et al., 1998; Hedar and Fukushima, {S1(0). -, 9:(0)} whereS(t) = [shm, -, S1.m-

: - ’ Determine the fitness of each individual.
2004). However, the method proposed in this paperis | Repeatt=1,2,---

Randomly generate an initial populatiB0) :=

different from these hybrid methods in many aspects. Perform recombine with probability.

One of the main differences lies in the coding repre- Perform mutation with probabilitpm.

sentation. We use the DPS methods in which digital Determine the fitness of each individual.
patterns are binary-coded genes, and it is capable of Perform replacement with an elitist replacement

policy.

using the evolutionary operators in GAs without mod- Until some Stopping criterion is satisfied.

ifications. Another significant difference is the self-
adapting genetic algorithms that modify the step size
and chase the approximate optimal direction by using
local information from digital patterns. Numerical re-
sults from well-known benchmark functions indicate ’ o )
that GPSA exhibits a very promising performance in  GAS start by generating an initial populatig(0)
obtaining the global minima of multimodal functions. ©f K randomly generated poin&0). Then, the fit-

In the remainder of the paper, we briefly review N€SS values are evaluated for each poir(@). The
the basics of GAs and pattern search methods in Sec-{itn€ss of a point indicates the worth of the point in
tion 2. Section 3 proposes the DPS methods. The relation t(_) all other pomts_ in the populat|o_n. The_se—
description of the main GPSASs is given in Section 4. |€cted points are recombined to a new pair of points.
In Section 5, we show experimental results. Finally, N récombination, the crossover position is randomly
the conclusion is given in Section 6. selecte(_j with a probability of, € [0,1] and the bits

Notation LetB, R, Q andZ denote the sets of bi- aftgr this position are exchanggd between the two
nary, real, rational and integer numbers, respectively. POints. Each recombined point is mutated by a mu-
All norms will be Euclidean vector norms or the as- tation, which changes the value of some bits of the

sociated operator horm. binary strings with a probability obm, € [0, 1]. After-
wards, replacement selects thefittest points (0<

Me < M) of the generation as the elite set. These points
will be put in the next generation.

Figure 1: Pseudo code of general GA.

2 BACKGROUND

. . o / o 2.2 Pattern Search Methods
In this section, we will give a brief description of GAs
and pattern search methods. Both of them only use aoccording to (Audet and Dennis, 2003), pattern
the function values rather than derivatives, and they search methods have common things after a finite
can be used for problems with discrete design param-number of iteration. They search for a cost function

eters. However, they are different in the coding repre- yajye lower than that of the current iterageon the
sentation. GAs use binary-coded genes, while patterntria| points in thepoll set

search methods use real-coded (floating-point) genes.

We propose a digital pattern in order to hybridize GAs Lk = {X+ kP, Pk € P}, @
and pattern search methods. whereAy > 0 is a step size, and pattern g is the

) ] columns of thepattern matrix R defined in (Torczon,
2.1 Genetic Algorithms 1997). The pattern matrix is decomposed into a basis

matrix B € R™" and a generating matri®, € Z"~P,
GAs are algorithms that operate on a finite set of p> 2n. Restrictions oi€y guarantee that the columns
points, called gopulation The population consists  of BG spanR". Conceptually, the generating matrix
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defines the search directions, while the basis matrix & & G
rotates and scales the search directions to determine
the coordinate system used during the search. @@ ()
In addition, each PS method has a rule called
search stefdAudet and Dennis, 2003) that selects a () &)
finite number of points on meshdefined by (a) (b)
My = {}+ APz, z€ ZP}. 3 Figure 3: Trial points generated by some kinds of digital

. . . patterns. Ash-colored bulbs are trial points. (a), (b), and (c)
At iterationk, the mesh is centered around the current correspond to digital patterns of compass search, evolution-

iteratexy, and its fineness is parameterized through ary operation using factorial designs and coordinate search,
the step sizé\x. The search step strategy that gives respectively.
the set of points is usually provided by the user; it
must be finite and the set can be empty.
The pseudo code in Figure 2 describes the main ) .
elements of a pattern search method. It is based on@/gorithm for generalized DPS methods follow de-

the method presented in (Audet and Dennis, 2003). scriptions of pattern search methods provided in (Tor-
czon, 1997) and (Audet and Dennis, 2003).

Let the initial solutiorxg € R" and step lengtig be 3.1 Digital Pattern
given. )
Repeat k=1,2,---
Perform theSearch Step: Adding 0 or 1 to an existing binary string as a least
Evaluatef on a finite subset of trial points on significant bit (LSB) can be interpreted as generating
the meshVi defined by (3). trial points of pattern search methods. The decoded

Perform thePoll Step: ; - .
Evaluatef on the poll set defined by (2). real number of a new binary string that is appended

Update the pattern matrix arg. _LSB "0" is decreased and that i's appended L.SB "1 !s
Until some stopping criterion is satisfied. increased than that of the original binary string. This
property is adopted as pattern to generate trial points
which are solution candidates. Figure 3 depicts the
Figure 2: Pseudo code of pattern search method. 2 bit string’s trial points that are presented by binary
strings or binary matrices in which each row repre-
The scenario of a pattern search method starts with Z?Qrts an encoded string for the corresponding param-

fitting the initial solution, and then two search stages -
are invoked. The first staged isaarch stepn which P_atterr_1 search methods can be d'V'd?d by pattern
matrix B into a compass search, evolutionary oper-

any search' procgdure fein be deflngd jpy the gger tOation, coordinate search, and so on (Torczon, 1997).
generate trial points fromMg. The main role of the

search stefis to achieve faster convergence of pat- Digital pattern can describe some kinds of patterns

tern search method. The other stage cableltistepis accord!ng to'whethe_r or not an LSB is att.ached to
performed as a systematic search in order to exploit ae_ach dlme_n_smn of bit strings. Figure 3 depicts some
region around the current solution. If teearch step kinds of digital patterns that mimic pattern Qf com-

andpoll stepfail to produce a trial step that gives a pass search, pattern of evolutionary operation using

simple decrease, then the step size is reduced to refinéacmnal designs, and pattern of coordinate search, re-

: o Spectively.
the mesh. Otherwise, the step size is increased or pre- . .
served. The pattern search method may be terminated '!'he DPS methoq requires a mechanism for de-
when the step size becomes small enough. coding from eactm-bit string s, m = [bi,m,-- -, bi1] to

the corresponding object variabtg,. According to
the standard binary decoding functidy: {0,1}™ —

[ui,vi], where (Michalewicz, 1996), the real value is

3 DIGITAL PATTERN SEARCH

. M1
METHOD Xm = fal(S.m) = U+ o 3 B @
In this section, we propose the digital pattern search

(DPS) method before introducing genetic pattern I 0 is added to the LSB of m, let the new string
search algorithm (GPSA). This section formulates the be termed a ®it child string 5|0,m+1- On the other
abstraction of DPS methods. The definitions and the hand, if 1 is added, it is termed ahit child string,
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sponding normalized real values in parenthesis. responding normalized real values in parenthesis.
Stmi1- And the real values of the child strings are  (6)- According to (6), the real values of trial points
' are analogous to the description of generalized pattern
0 B u; 2m+l_2 _ search methods in (Torczon, 1997). A basis matrix
Xmi1 = omi_q T omrl_q ms can be defined a nonsingular matix R™"
xt __ VM Zml—zx_ B=diagly,...,In) = diagluy —v1,...,Un— Vn),
Ml ol _q " oomel_q M

) . _where diag') is a diagonal matrix.B represents the
The Difference between a parent string and each child jntervals of each dimension of A generating ma-
string implies the step siz& in pattern search meth-  ix C € Z"™P, wherep > 2n, contains in its columns
ods. For a given parent stringm, the comparison be-  compinations of{1,0, —1}, except for the column of

tween the distances P81 —Xi.ml @nd|xt 1 —Xi m| zeros. For example, when digital pattern for coordi-
is given by nate search is executed foe= 2, we have a generat-
. . (Vi — U) — 2Xi.m ing matrix such as
Xmer =Xim | = [ Xmes =X [= == et 0 -1 0 1 1 -1 -1
®) F® a0 -1 1 -1 -1 1

From (5), the differences between two step sizes vary

according to the position of the parent string in the It can be seen in Figure 3 (c).

finite intervals{u;, vi]. Digital patternp is then defined by the columns
In Figure 4, the property in (5) is clearly visual- of the digital pattern matri¥ = BC. Because botB

ized in the form of binary trees whose nodes are repre-andC have the rank, the columns oP spanR". The

sented by binary strings and their corresponding real Step sizey is defined as\y = 5 under the given

numbers. Owing to the specific property of digital bit string lengthm. Thus the poll set composed of

pattern that increases the bit length of binary strings, points neighboring the currert, in the directions of

the standard binary decoding function (4) has a bi- the columns o€ is expressed as

ased search tendency to incline its steps toward the 1

middle point of the finite intervalfu;,vi] depending L= {Xm+ ZAmD, p=Bcandce C}.

on the location of a parent string. Therefore, we need ) )

a more suitable binary decoding function for digital Among them, the best one is chosen by evaluation as

pattern and thenbiased binary decoding functige ~ @n optimal solution oLm, X, 1 = Xm + z8mBGy, 1,
designed as: wherecy,, ; is the column ofC as adirection vector

pointing the search direction toward the optimal solu-
vi—uy (Mt
Xim= Ui + émjtlI (Z{)bj21+1+1) ;
J=

tion.
3.2 Digital Step
and the real values of the child strings are given as:
I _u Vi — Ui Using the standard binary representation, the DPS
i i 1 I i « . een
o2 Ximy1 = Xim+ omiz (6) method can get caught' on a “Hamming cliff’, be-
ing confined to the barrier of binary branches. For
Both step sizes are the sanfe,— u;)/ 2™2. Figure example, if the DPS method is started at the high-
5 shows that the unbiased binary decoding function est node of “0” in the tree, it can never escape from
guarantees the symmetric search property. the left half plane of parameter®igital stepin the
To define digital pattern, we treat bit strings with DPS method is employed to avoid such problems. If
the decoded real value defined in the iterative form a binary string undergoescrement additionINC)

Xi?m—s—l =Xim—
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(00)+—(o00ya—(o10) <0 o (1} (00)—> (01} (10} (i17) one time, while generation of the trial points dig-
t = = ital stepcontinues until a local minimum is attained
on the same bit mesh.

DEC INC
Figure 6: Process dfigital step. in one dimensional dia-

gram. 3.3 Digital Pattern Search Method

(oM The pseudo code in Figure 8 describes the proposed
% digital pattern search method.

Set an initial row lengttm and a final row lengtif.
Randomly generate an initial binary matfix -
for each low lengtm=a : B do
1. Perform theDigital Pattern.
2. Evaluate trial points and determine a directig
vector.

Figure 7: Process dfigital step. in two dimensional dia- 3. W(halll)ep(gr?oerttr:;sgg;?g g:pt)tamed))

gram. (a) and (b) correspond to the results dependex},on (b) Evaluate trial points
[+1 07 and[+1 — 1T, respectively. end while '
end for

-G @

(@)

=)

or decrement subtractio(DEC), the real number of
each processed string increases or decreases. Through
the simple operations of INC and DEC for binary
strings,digital stepcan readily remove the barrier be- The basic structure of the DPS method consists of
tween any binary trees and broadly search the effec-two asynchronous loops. The outer loop (steps 1-3)
tive area that has a high possibility of finding the op- selects the best trial point generated by digital pat-

Figure 8: Pseudo code of digital pattern search method.

timal solution. Figure 6 illustrates the processlifi- tern and hands over a direction vectordigital step
tal step(if direction vector is 1, then INC is executed, The inner loop (step 3) conducts finite searches in the
otherwise DEC is achieved). guided direction vector until the consecutig@ital

In digital step the objective functionf is eval- stepfails to make progress. When this occurs a local

uated at a finite number of points on a mesh to try minimum of a session is found; the inner loop then
to find a point that yields a lower objective function terminates and the outer loop starts the next session.
value than the current point. The basic component in At steps 1 and 3(a), digital pattern addital step
the definition ofdigital stepis the mesh. The mesh is generaten x mbinary matrices as trial points, i.e., one
a discrete subset &" whose fineness is parameter- of the matriced . implies that each rovn repre-
ized by the step sizA, as follows: sents an encoded string for the corresponding param-
* ; . n eter, and that the row length is exponentially pro-
Min = {Xm + Amcliag2)Ben : 2 € 275, portional to the resolution%f paran?eters. Toye\rl)aluate
where diag-) is a diagonal matrixz is the vector of  trial points in steps 2 and 3(b), each rowloheeds
nonnegative integers amy, is a direction vector cho-  to be converted to the real number using a binary de-
sen by evaluation of poll set. This way of describ- coding function. After evaluation in step 2, the least
ing the mesh is different from the form in (Audet sjgnificant column of the best trial point is appointed

and Dennis, 2003). This specific sub-technique of the the direction vector which is handed over digital
DPS method attempts to accelerate the progress of thestepfor further exploration.

algorithm by exploiting the information gained from
the search.

The trial points generated kgigital stepare de-
cided by a sort of digital patterns. Figure 7 shows the 4 GENETIC PATTERN SEARCH
examples ofligital stepin a two dimensional search ALGORITHM
space. INC or DEC is selected lof, from the pre-
vious digital pattern. Theuligital stepcontinues to ~ GPSA uses the main operations of GA; recombina-
search in the trial points which are generated by per- tion, mutation, and replacement, on a population to
forming INC or DEC at each dimension. Generation encourage the exploration process. Moreover, the
of the trial points by the digital pattern is executed GPSA tries to improve the new children by applying
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DPS method. Figure 9 shows the pseudo code de-Several kinds of benchmark functions are selected to

scribing GPSA. make a generalized conclusion: functions with no lo-

cal minima (f1- f2) and local minima {3-fg). A more

detailed description of each function is given in the

Set an initial row lengtli and a final row lengtifs. Appendix.

Set an GA's generation numbit

Randomly generate an initial populati®q (0) := .

{r(0),-,Th o (0)} 5.1 Experimental Setup

Determine the fitness of each individual.

for each low lengtm=a: B do

for GA's generatiork=0: N do

Perform recombine with probabilitg; .

For both GA and GPSA tests, we used a population
size p of 10 with the elite sefle = 1, and for each

Perform mutation with probabilitp. problem the number of trials was 100. The recombi-
Compute the fitness of each individual. nation operator was uniform crossover with a prob-
Perform replacement with an elitist replace-  ability p. = 0.5, and the mutation probability was
ment policy. pm = 0.001. The length per object variable in GA

end for
Perform theDigital Pattern.
Compute the fitness of trial points of each ind

was 10, and in GPSA, the initial and final low length
per object variable wera = 3 and3 = 10, respec-

vidual and determine direction vector tively. The _number of generations wagd@0 in GA
while a better solution is attaineb andN = 50 in GA loop of GPSA.
Perform theDigital Step. To implement GPSA, it is necessary to deter-

Compute the fitness of trial points of each in mine a proper kind of the generating matrix in dig-

dividual. ital pattern. We used the standard directions,
end while ; o C=1{ey, - ,en,—€1, -+ ,—€n}, whereg € R" is the
Perform replacement with an elitist replacement =~ & ik D g W . .
policy. i —th unit vector, because it gives a linear increase of
end for function evaluation with problem dimension.

GA was terminated after 4000 function eval-
) uations, and the performance comparisons between
Figure 9: Pseudo code of GPSA. GPSA and GA were made based upon the termina-
tion point of GPSA. Our experimental analysis con-

The GPSA starts by generating an initial popu- Siders three performance measures: the number of

lation P(0) of u randomly generated poinfs which trials which succeed in attaining to the global opti-
is composed byt bit-length strings. The inner loop ~ Mum for each benchmark function, the number of cost

in GPSA incorporates GA operators: recombina- function evaluati_ons during simulations, and the value
tion, mutation, and replacement. In recombination, a Of the best solution found.

crossover position is randomly selected with a proba-

bility of pr € [0,1]. Each recombined pointis mutated 5.2 Numerical Results

with a probability ofpy, € [0,1]. Replacement selects
the i fittest points (0< pe < M) of the generation as
the elite set. AfterN times iterations of the inner

Figure 10 shows the performances of GPSA and GA
| he DPS hod i lied h ; on the benchmark functions. The results of GPSA
oop, the method Is applied to the points gen- \qrq selected through 100 independent trials as the

erated by the evolgtionary operators and CONStructs o« case and the worst case, and the result of GA was
each sequence of iterates that converge to a station-, Y

: )  “averaged over 100 independent trials. The GA con-
ary point on the mesh parameterized by the step size, o a4 faster than the GPSA for most functions ini-
Am¢1. The restriction on the replacement strategy en- v around 4,000 to 6,000 of function evaluations.
sures that the elite set is kept for further processing. Howéver GPSA overpe1rformed GA obviously while

fewer function evaluations. Although GA quickly ap-
proaches the neighborhood of the global minimum,

5 EXPERIMENTAL RESULTS GA has a difficulty in obtaining some required accu-

racy. DPS method'’s ability to accelerate the search

This section presents a performance comparison of@nd to refine the solution more evenly helps GA in
the GPSA and the conventional GA on the well- achieving good performance.

known 8 benchmark functions whose functional val- T judge the success of a trial, we used the condi-
ues and coordinates of each global minimum are al- tion A
ready reported in (Yao et al., 1999; Schwefel, 1995). |f* — f| <e&|f*| +e2,
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Table 1: Results of GPSA. The results were averaged over REFERENCES

100 independent trials where “SUCC %” indicates the ra-

tio of trials which succeed in attaining the global optimum Audet, C. and Dennis, Jr., J. E. (2003). Analysis of general-
, “EVAL #’ means the average number of function eval- ized pattern searcheSIAM J. on Optim.13(3):889—
uations, and “VAR” means the variance of trials which 903.

succeed. Functions (Yao et al., 1999; Schwefel, 1995): | 0. D E. (1 netic Algorithms in rch .

SP (spare function), SC1 (schwefel’s problem 2.22), SC2 Go dl:i(renigzlation éngsla)aciﬁineet iea?gintgAdsdisc?ri?N%s’leoyp

(schwefel's problem 1.2), SC3 (schwefel's problem 2.26), Boston. MA. '

GR (griewank function), AC (ackley function), RA (rastrign . ' )

function), and SH (shubert function). And “n” is the num- Gunal, T. (2000). A hybrid approach to the synthe-

ber of variables. sis of nonuniform lossy transmission-line impedance-
matching sectionsMicrowave and Optical Technol-

Function [ SUCC% EVAL# VAR ogy Letters24:121-125.
SP(n=10) 100 5504.35 0.0 Hedar, A. and Fukushima, M. (2004). Heuristic pattern
SCL (n=10) 100 4773.82 0.0 search and its hybridization with simulated annealing
_ for nonlinear global optimization.Optim. Methods
gg EE _ ;)0) gg gﬁggg 88 and Software19:291-308.
GR(n=10) 100 5321'_53 0'_0 Horst, R. and Pardalos, P. M. (199%)Jandbook of Global
AC (n= 10) 100 548351 0.0 Optimization Kluwer Academic Publishers, Boston,
- ’ ’ MA.
RA(n=10) 92 7590.75 0.0 ) ) s .
SH(n=2) 38 4240.23 0.0013 Michalewicz, Z. (1996).Genetic algorithms + data struc-
. . tures = evolution programsSpringer-Verlag, London,
UK.
. Musil, M., Wilmut, M. J., and Chapman, N. R. (1999).
wheref refers to the best function value obtained by A hybrid simplex genetic algorithm for estimating
GPSA, t* refers to the known exact global minimum, geoacoustic parameters using matched-field inversion.

ande; ande, are small positive numbers. We sat IEEE J. Oceanic Eng24(3):358-369.

ande, equal to 103 and 10°°, respectively. The re-  Osman, I. H. and Kelly, J. P. (1996Yleta-Heuristics: The-

sults are shown in Table 1, where the average number 0y and Applications Kluwer Academic Publishers,

of function evaluations and the variance are related CR1oN e

only to successful trials. Table 1 shows that GPSA Pardalos, P. M. and Romeijn, H. E. (2002jlandbook of

reached the global minima in a very good success rate gé%?g:] ol\ﬁgmuzatuom Kluwer Academic Publishers,

for the majority of the tested functions. Moreover, the e .

numbers of function evaluations and the average er- Pard?j'gjél'g-p':"nﬂerﬁ{é”;%”’t rHeh Es "i"n”%;‘f)g”détzir%?ggﬁs;ce”t

rors show the efficiency of the method. . i
On the other handg, GA had few successful tri- SchWZ?eTp:t'F?iig;‘jﬁ;ﬁ;ﬁ;}zliggo_iﬁium Seeking:

als on any test functions at the termination point of The Sixth Generation Addison-Wesley, New York,

GPSA. NY.
Torczon, V. (1997). On the convergence of pattern search
algorithms.SIAM J. on Optim.7(1):1-25.
6 CONCLUSIONS Yang, R. and Douglas, I. (1998). Simple genetic algorithm
w_ith local tu_ning: efficient global optimizing tech-
This paper first developed a new class of pattern nique. J. Optim. Theory Appl98(2):449-465.
search method that digitizes the patterns, called theYao, X., Liu, Y., and Lin, G. (1999). Evolutionary pro-

digital pattern search (DPS) method. Then, we pre- gramming made fasterlEEE Trans. on Evol. Com-
sented a new hybrid global search algorithm, the ge- put, 3(2):82-102.

netic pattern search algorithm (GPSA), which has a Yen, J., Liao, J., Randolph, D., and Lee, B. (1998). A hy-
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Figure 10: The comparisons of the performance between GPSA and@Aresults of GPSA were selected through 100
independent trials as the best case and the worst case, and thefr&AIlivas averaged over 100 independent trials. (a)-(h)
correspond to the results of test functidisfg, respectively.

387



