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Abstract: the rapidly exploring random trees (RRTs) have generated a highly successful single query planner which 
solved difficult problems in many applications of motion planning in recent years. Even though RRT works 
well on many problems, they have weaknesses in environments that handle complicated geometries. 
Sampling narrow passages in a robot’s free configuration space remains a challenge for RRT planners 
indeed; the geometry of a narrow passage affects significantly the exploration property of the RRT when the 
sampling domain is not well adapted for the problem. In this paper we characterize the weaknesses of the 
RRT planners and propose a general framework to improve their behaviours in difficult environments. We 
simulate and test our new planner on mobile robots in many difficult static environments which are 
completely known, simulations show significant improvements over existing RRT based planner to reliably 
capture the narrow passages areas in the configuration space. 

1 INTRODUCTION 

Motion planning can be defined as finding path for a 
mobile device (such a robot) from a given start to a 
given goal placement in workspace without colliding 
with obstacles in the workspace. Beside the obvious 
application within robotics, motion planning also 
pays an important role in animation, virtual 
environments, computer games, computer aided 
design and maintenance, and computational 
chemistry. 

Despite the success of the earlier deterministic 
motion planning algorithms, path planning for a 
robot with many degrees of freedom is difficult. 
Several instances of the problem have been proven 
to be PSPACE-hard (Reif, 1979) or even 
undecidable. In recent years random sampling has 
emerged as a powerful approach for motion planning 
problems. It breaks the computational complexity in 
(Reif, 1979) and shows efficiency and its easy way 
to implement in high dimensional configuration 
space. Current random-sampling based algorithms 
can be divided into two sets of approaches: multiple 
query and the single query methods 

The primary philosophy behind the multiple 
query methods is that substantial pre-computational 

time may be taken so that multiple queries for the 
same environment can be answered quickly. The 
probabilistic roadmap method (PRM) (Svestka, 
1997) (Kavraki, 1994) is an example of such 
method.  

The multiple query methods may take 
considerable pre-computation time thus; different 
approaches were developed for solving single-query 
problems. The rapidly exploring random trees 
(RRTs) is a popular motion planning technique 
which was primarily designed for single-query 
holonomic problems and problems with differential 
constraints (LaValle, 1998), The success of this 
approach provide their extensions to different 
motion planning issues from problems with 
complicated geometries (Ferré, 2004), to 
manipulation problem and motions of closed 
articulated chains in, (Yershova and LaValle, 2007). 
Adapted versions of RRT for non holonomic and 
kinodynamic motions also exists (Lamiraux and 
Ferré, 2004),  

Even though RRT works well in many 
applications, they have several weaknesses, which 
cause them to perform poorly in some cases. Narrow 
passages are small region which naturally restrict the 
movements of the mobile robots in one or many 
directions. Leading to a prohibitively many 
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expensive operations (i.e. collision checks) are being 
performed during the execution of the algorithm. It 
is unlikely that a basic RRTs algorithm can 
overcome this major difficulty entirely. 

Recently a new probabilistic approach to find 
paths through narrow passages areas was proposed 
(Ahmed ali, Vasselin, and Faure, 2006). The 
approach is based on the idea of adapting the 
sampling domain to the geometry of the workspace. 
In this paper, we illustrate the weaknesses of the 
RRT planner and we propose a general framework 
based on the approach (Ahmed Ali, Vasselin, and 
Faure, 2006) to minimize the effects of some of 
these weaknesses. The result is a simple new planner 
that shows significant improvements over existing 
RRT planners, in some cases by several orders of 
magnitude. The key idea in (Ahmed Ali, Vasselin, 
and Faure, 2006) is what we call the Angular-
Domain a specialized sampling strategy for narrow 
passages that takes into account the obstacles in the 
configuration space. Although the idea is general 
enough and should be applicable to other motion 
planning problems (e.g. planning for closed chains, 
non holonomic planning), we focus in this work only 
on holonomic problems. 

The remaining part of the paper is organized as 
follows. First, the original RRT planers are 
presented with an illustration of the Voronoi biased 
exploration strategy. In the end of section 2 we 
analyze the performance of the RRT algorithm on 
one challenging example for the RRT planners. 
Section 3 gives a formal characterization of the 
Angular Domain as a new sampling strategy for 
narrow passages areas Simulations results in case of  
holonomic robots are shown in the end of section 3. 
a sort summary concludes the paper.  

2 THE RRT FRAMEWORK 

2.1 General Approach 

The rapidly random exploring trees (RRT) are 
incremental search algorithm. They incrementally 
construct a tree from the initial state to the goal state 
(bidirectional versions exists as well). At each step, 
a random sample is chosen and its nearest neighbour 
in the search tree computed. A new node 
(representing a new configuration in the free 
configuration space) is then created by extending the 
nearest neighbour toward the random sample. See 
Figure 1 for the construction of the tree and Figure 2 
for a pseudo code of the algorithm. 

 
Figure 1: Incremental construction of a basic RRT tree. 

__________________________________________ 
Build_RRT( initq ) 

1 );.(. initqinitτ  

2 for 1=k to N do (until the maximum number of 
nodes is reached) 
3 ();_ ConfigRandomqrand ←  

4 ),.(_ τrandnear qNeighborNearestq ←  

5 if CONNECT ),,,( newnearrand qqqτ ; 

6       );.(_. newqvertexaddτ  

7         );,.(_. newnear qqedgeaddτ  

8 if the goal configuration goalq  is reached then 

    Exit Nk =  
 Return 

Figure 2: The basic RRT algorithm. 

2.2 RRT and Voronoi Bias 

This exploration strategy has an interesting property: 
it is characterized by Voronoi bias. At each iteration, 
the probability that a node is selected is proportional 
to the volume of its Voronoi region; hence, the 
search is biased toward those nodes with the largest 
Voronoi regions (the unexplored regions of the 
configuration space 

2.3 Bug Trap and Narrow Passages 

We consider the problems shown in Figure.3 (a). (c). 
the task is to move the robot outside the bug trap1  
for the first two figures, and from the left side to the 
right side through a narrow passage for the second. 
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(a)                            (b)                              (c) 

Figure 3: A bug trap problem and a narrow passage in 
high dimension can be very challenging for RRT planners. 
The problem become more challenging when the sampling 
domain is enlarged (b) and (c). 

The tree constructed by the RRT planner in the 
bug trap is shown in blue and the Voronoi region 
associated with the nodes of the tree are shown in 
red Figure.3.a. A frontier node are vertices in the 
tree that has their Voronoi region growing together 
with the size of the environment, while a boundary 
node are those that lie in some proximity to the 
obstacles. Note that frontier nodes are suitable for 
the RRT planners because they provide a strong bias 
toward the unexplored portions of the configuration 
space. The problem is that given the geometry of the 
narrow passages a frontier node is usually a 
boundary node, since that the boundary nodes are 
given more Voronoi bias than they can explore; 
prohibitively many expensive operations are being 
performed during the execution of the RRT. Finally 
the tree in the middle of the bug trap or in the 
narrow passage does not grow at all leading to a 
considerable slow-down in the performance of the 
RRT. 

Thus, the goal of this paper is to find a way of 
reducing the number of expansive iterations in RRT. 
The obvious solution to this problem would be to 
limit the sampling domain to get more nodes in the 
middle of the bug trap and the narrow passage. We 
define a new sampling domain called the Angular 
domain which tends to get useful nodes which avoid 
expansive collision checking operations for the 
RRT. 

3 ANGULAR DOMAIN PLANNER 

A narrow passage is a difficult region which 
contains a lot of or huge obstacles and the free space 
is considerably limited To deal efficiently with a 
narrow passage we do not need many samples in 
large open region we do need samples that lies in the 
narrow passage. Therefore, we take into account in 
the construction of the tree the obstacles region see 
Figure 4. We start by giving some definitions we 

need to formulate the Angular-Domain. 

3.1 Problem Definition 

Let be an n  dimensional space, and obsC  be the set 
of obstacles in this space. Let V a set of N collision 
free points lying inside obsfree CCCS /=   

Definition 1: for ℑ  a local method that computes a 
path ),( 'vvℑ  (a straight line segment) between two 
given nodes in the tree. We define the visibility 
domain of a point v  for ℑ as follows: 

{ freeCSvvVis ∈=ℑ
')( }freeCSvv ∈ℑ ),( ' (1) 

Definition 2: for a given goal configuration the 
visibility domain for a node v  is defined as 
follows:

}{ freegoalfreegoalv CSvvCSvvVis ∈ℑ∈=ℑ ),(,)(, (2) 

3.2 RRT with Obstacle 

 
Figure 4: RRT with obstacles. 

Once sampling a new configuration randq  (Line 

3 Figure 2) the proposed edge )( randnear qq  might 

not reach to nearq . In this case, a new edge is made 

from nearq  to sq  the last possible point before 

hitting the obstacle (Figure 4). sq is defined as the 
last configuration returning a positive response to 
the collision free test while the interpolation between 

nearq  and randq  is being performed. In this paper we 
use the incremental method as a collision checker 
indeed, during the interpolation between nearq  and 

randq , we check for collision free test at every 
placement of the robot. If the interpolation succeeds 
it is clear that sq = randq . Since the collision 
detection operations are the most time consuming 

randq  
initq

stopq  
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steps in the RRT planners our planner must reduce 
the number of these collision detection operations. 
The main idea is to reduce the number of the nodes 
in the tree by adding only the sq  node. The 

expansion of our tree is performed then from sq  to 
the nearest neighbor sample which is selected 
according to a new sampling strategy see figure 5 
that keeps the nearest sample candidate in the 
narrow passage and reduces the number of collision 
checks to interpolate it to sq . The algorithm of 
selecting the nearest neighbor and the complete code 
of our planner are presented below: 

3.3 RRT Planner with Controlling the 
Sampling Domain 

 
Figure 5: Controlling sampling domain with angular 
parameter. 

Definition 3: given freeCS  of the configuration 

space. For a node nearv  and the goal 

configuration goalv . The Angular Domain is defined 

as the intersection between freeCS  and the samples 
candidate who satisfies the control sampling 
algorithm (in green colour Figure 5) defined below: 

 
 
SELECT_NEIGHBOR ( )q  
1) Repeat 
2) Pick randq  at random from a uniform distribution 

over freeCS  according to a suitable threshold 

distance R from q . 

3)  ),(1 OxqqAngle rand←θ  

4)   ),(2 OxqqAngle goal←θ  

5)   If   paramθθθ ≤− 21   

6)     Return randq  
7)  End 
 
 
BUILD PLANNER )( initq  

1) initnear qq =  
2) Repeat 
3) )(_ nearrand qNeighborSelectq ←  

4) ),(_ nearrands qqionConfiguratStoppq ←  

5) )(_ sqvertexadd  

6) )(_ snear qqedgeadd  

7) If CONNECT )( sgoal qq  

8)   Return path 
9) Else    snear qq =  
10) End repeat  
 

Figure 6: The control sampling algorithm and the Angular 
Domain planner in 2D environment. 

3.4 Implementation 

Point robot: for those types of robots we have 2 
translational degrees of freedom. The configuration 
of the robot is a vector Tyxq ),(= . Once a random 

configuration randq  is sampled according to 

threshold distance R which is computed by the 
Euclidean distance in 2R , the select neighbour 
algorithm computes two quantities. 1θ  represents 

the angle between the vector 
⎯→⎯

randqq( )and the 
horizontal axis in 2D workspace in which q is the 

current configuration in the tree and randq  the 

sample candidate for interpolation. 2θ  is the angle 

between the vector
⎯→⎯

)( goalqq  and also the horizontal 
axis in 2D workspace see figure (5). If the absolute 
value of the difference between these two quantities 
is less or equal to some chosen prameterθ  value, the 

edge )( randqq  is created. The local planner 
performs the interpolation and checks for collision 
free each placement. 

 

nearq  
1randq  

paramθ  

goalq  
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3.5 Computational Analysis 

The running time T for an RRT planner is given by 
the relation: 

 

conconnodenode NTNTT ×+×=     (3) 

:nodeT  The average cost of sampling one node 

nodeN :  The number of the nodes in the tree  

conT : The average cost of checking collision-free 
connections between two nodes. 

conN : The number of calls to check collision-free 
connections between two nodes.  

For the basic RRT algorithm collision checks 
operation is performed twice. First in line 5 Figure 2 
to interpolate randq and nearq . The second collision 
detection is made to see if the goal configuration is 
reached or not. The Angular Domain planner 
performs also the collision detection operation twice. 
First to compute sq in line 4 figure 6 in the structure 
of the Angular Domain planner. The second time in 
Line 7 to interpolate sq  to goalq . The difference 

between the two approaches is in the number of 
placements we check for collision indeed; since we 
use the incremental method to check whether a 
placement is free or not, given two nodes the 
number of placements we check represent conN . 
Recall that between two nodes we interpolate 
until sq , we are able to reduce conN  comparing with 
the RRT which checks for all the placements 
between two node 

3.6 Simulations 

The Angular Domain RRT planner and the Basic 
RRT planner were simulated under Matlab 
environment. Simulations were performed on a 3.2 
GHZ Pentium IV. For each example the 
performance of for the mono directional RRT 
algorithms and the Angular Domain RRT algorithms 
are compared. Comparison is performed in terms of 
the running time and the number of collision checks 
made by both planners. 
 

 

                      
 

 Angular domain 
planner 

RRT 
planner 

Time (1) 
(s) 

1.7500 2.3408 

Num.nodes 
N (1) in the tree

7 30 

milln (1)  
191 

 
46 

CD calls 
(1) 

4279 3784 

Success 
rate (%) (1) 

100% 30% 

Time (2) 
(s) 

2.214 6.86 

Num.nodes 
N (2) 

15 80 

milln (2)  
238 

 
149 

CD calls 
(2) 

3967 11479 

Success 
rate (%) (2) 

100% 0% 

best worst Time (3) 
(s) 4.0160se 46.1250 

10.4220

best worst  Num.nodes 
N (3) 15 20 

100 

best worst milln (3) 
280 257853 

202 

best worst CD calls 
(3) 7297 91850 

15884 

Success 
rate (%) (3) 

100% 0% 

Figure 7: simulations results for the environment in 
Figure. 

The table Figure 7 shows the result obtained for 
an environment with a classic narrow passage the 
results are an averaged of 50 runs over the three 
environment. The success rate characterizes the 
performance of both planners to find the solution 
path. The first observation we made on these results 
is that as the width of the narrow passage became 
smaller the performance of the basic RRT planner 
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deteriorate quickly (see the success rate lines for the 
three environments).the deterioration of the 
performance is explained by the fact that the size of 
the free space is considerably larger than the narrow 
opening in the three environments We make the 
second observation on the third environment, as it 
was mentioned in the computational analysis section 
the threshold distance and the angular parameter (set 

to 10 and 2
π ) must be chosen carefully. We can 

see that milln  has a very large value (see Line14 
Figure 7) leading to increase the total running time 
of the algorithm in the worst case. 

 
 Angular domain  RRT N=5 

R  5 10 20 30 5 10 20 30 
time 3.81 4.17 2.96 2.23 0.46 0.32 0.34 0.53 

CD 
calls 

8098 7081 3369 2113 571 554 579 565

milln
 

930 1431 868 69 18 5 6 6 

Succ
es 

(%) 

100 100 100 100 0 0 0 0 

 RRT N=80  RRT N=200 

R  5 10 20 30 5 10 20 30 

time 3.71 3.92 2.96 4.12 24 24 25 25 

CD 
calls 

5597 5838 5884 6045 22335 23504 23892 23193

milln
 

75 66 64 68 293 297 283 285 

Succ
es 

(%) 

0 0 0 0 0 0 0 0 

Figure 8: simulation results for the environment with 
different N (the maximum number of the node for RRT). 

The simulation results demonstrate the efficiency 
of the Angular Domain planner. We take different 
values of R , it appears that the optimal threshold 
distance for the environment figure 8 is 30; it gives 
also the smallest running time. Note that for a small 

threshold distance (5 and 10) we can see that milln  
is big leading to increase the total running time of 
our algorithm. Therefore for a given problem the 

balance between too small or to large value for the 
threshold distance can be difficult to find indeed; too 

small value may increase dramatically milln  and by 
the way the total running time T in the other hand 
too large value may potentially add many nodes in 
the open free space while we need much nodes in 
the narrow passage. 

4 CONCLUSIONS AND FUTURE 
WORK 

There are to ways to improve the current work. First 
the threshold distance and the angular parameter are 
chosen manually a promising approach is to adjust 
these two parameters through on line learning. The 
tuning of these two parameters will be obviously 
based on the position of the obstacles in the 
workspace leading to get an efficient planner for 
different kinds of obstacles. 

Another important direction is to apply this 
frame work for other constrained motion planning 
problems such articulated robot  
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