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Abstract: This paper presents a nonlinear optimal control scheme for a mechatronic system that consists of a guided
carriage and an antagonistic pair of pneumatic muscles as actuators. Modelling leads to a system of nonlinear
differential equations including polynomial approximations of the volume characteristic as well as the force
characteristic of the pneumatic muscles. The proposed control has a cascade structure: the nonlinear norm-
optimal control of both pneumatic muscle pressures is based on an approximative solution of the corresponding
HJB-equation, whereas the outer control loop involves a multivariable NMPC of the carriage position and the
mean internal pressure of the pneumatic muscles. To improve the tracking behaviour, the feedback control
loops are extended with nonlinear feedforward control based on differential flathess. Remaining model un-
certainties as well as nonlinear friction can be counteracted by an observer-based disturbance compensation.
Experimental results from an implementation on a test rig show an excellent control performance.

1 INTRODUCTION provided at a maximum pressure Dfbar, whereas
the out-flowing air is discharged at atmospheric pres-
sure, i.e.l bar. Pressure declines in the case of large
commanded mass flows are counteracted by using
compensator reservoirs, which maintain an approxi-
mately constant pressure supply level for each pneu-

Pneumatic muscle actuators are tension actuators con
sisting of a fiber-reinforced vulcanised rubber tubing
with connection flanges at both ends. Due to a spe-

cial fiber arrangement, the pneumatical muscle con- ) - -
matic muscle. Similarly, an additional compensator

tracts with increasing internal pressure. This effect S binati ith d absorb
can be used for actuation purposes. Pneumatic mus_(rjeservotlr: In combina '03 \g' d'a ioun da _sorT?]r re-
cles offer major advantages in comparison to classi- uces he noise caused by discharged air. € pa-

cal pneumatic cylinders: significantly less weight, no peris struc_tured as fc_>||ows: first, the modelling of t'he
stick-slip effects, insensitivity to dirty working envi- mechatronic system is addressed. Second, a nonlinear

ronment, and a larger maximum force. The nonlinear cas_cade control scheme_ is proposed: . ”0”"@@*_
characteristics of the muscle, however, demand for optlma] control loops, which can be. realised with h'gh.
nonlinear control, e.g. flatness-based control (Fliess bandwidth, guarantee a specified internal pressure in

et al., 1995), (Aschemann and Hofer, 2004). For the each pneumatic muscle (Aschemann et al., 2006).

practical investigation of control approaches the test T.he. outer control loop involves non.llnear mqqel pre-
fig shown in figure 1 has been built. Two guide- dictive trajectory control of the carriage position and

ways with roller bearing units allow for rectilinear the r%eantrr]nusclee pressure as cor;trotllhed. variables and
movements of a carriage with small nonlinear friction provides the reference pressures for the inner pressure

forces. On opposite sides of the carriage, pneumatic]f;or‘(;;OI Ioogs. A{'rq'%g at dg°°d dF][faCk”][Q Ibf(Thtawour_,
muscles are arranged in an antagonistic configuration eedforward control based on difierential Natness 1S

between the carriage and the rigid frame. The rnaSSconsidered in the control structure as well. A distur-

flow of air of each pneumatic muscle is controlled by bance f(ircti refsultlng r{rom trem?InlnfgtrTodelllng etf'
means of a proportional valve. The in-flowing air is rors w.r.t. the force characteristic ot the pneumatc
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a maximum value opas; maez = 7 bar, the ideal
gas equation represents an accurate description of the
thermodynamic behaviour. The thermodynamic pro-
cess is modelled as a polytropic change of state with
n = 1.26 as identified polytropic exponent. The iden-
tified volume characteristic of the pneumatic muscle
can be described by a polynomial function

3 1

Vi (Alaris pari) = Zaj ALy, Zbk Dy

j=0 k=0
2
with the contraction lengtthA?,;; and the muscle
pressurep,s;. The resulting state equation for the in-
ternal muscle pressure in the muscle given by

Figure 1: Linear axis test rig. Pari = o [Rr - 9() - g
Vari +n - G2 - pay;
Opmi
. - OV OALny; ;
muscles as well as the friction characteristic of the _8Aém 1 a—m pmiEs|, (3)
Mi s

carriage is estimated by a reduced-order disturbance

observer and used for compensation in the nonlinearWhere Rz, denotes the gas constant of air. The func-
control scheme. By this, desired trajectories for both tion ¥(n, Ts, Tars, sign(rmasi)), Which depends on
carriage position and mean pressure can be trackedhe polytropic exponent, the air supply tempera-

with high accuracy as shown by experimental results ture Ts, the internal temperaturéy,;, and the sign
from an implementation at the test rig. of the mass flow rater,;, can be approximated with

good accuracy by the constant temperafliyef the
ambiance. Thereby, temperature measurements can

be avoided, and the implementational effort is signif-
2 SYSTEM MODELLING i rednbed,

As for modelling, the mechatronic system is divided 2.2 Modelling of the M echanical
in a pneumatic subsystem and a mechanical subsys-"

tem, which are coupled by the tension forces of the Subsystem
two pneumatic muscles. In contrast to the model . ] ]
of (Carbonell et al., 2001) the dynamics of the pneu- The mephanlcgl subsystem is relate_d to the motion of
matic subsystem is also included. The tension force the carriage with mass.s = 30 kg on its guideways.
Fy; > 0 and the volumé/y; of the pneumatic mus- ~ The nonlinear force characteristiy; (pasi, Alas:)
clei, i = r,1, nonlinearly depend on the according qf a pneumatic mugcle represents the resulting ten-
internal pressurg,; as well as the contraction length  Sion force for given internal pressupg;; as well as
Alyy;. The origin of the generalised coordinate(t) given contraction lengtih\Z,,;. It has been |Qent|f|ed
of the carriage is defined as the position where the PY Static measurements and, then, approximated by a
right muscle is fully contracted. Then, the constraints Polynomial description

Fari(Alaris pai) = FMi(AfMi)'pMi—fMi(AfMaj
h The equation of motion follows directly from New-
ton’s second law as a second order differential equa-
tion for the carriage position

Alvi(zs) = xs, Ay (xs) = Al max — TS

hold. Consequently, the contraction lengths of bot
pneumatic muscles are related to the carriage posi-

tion.
_ ) mg - is = Fu () = Fur () — Fu. ®)
2.1 Modelling of the Pneumatic At this, remaining model uncertainties are taken into
Subsystem account by the disturbance fordg;,. These uncer-

tainties stem from approximation errors concerning
The dynamics of the internal muscle pressure follows the static muscle force characteristics, non-modelled
directly from a mass flow balance in combination with viscoelastic effects of the vulcanised rubber material,
the energy equation for the compressed air in the mus-and viscous damping as well as friction forces acting
cle. As the internal muscle pressure is limited by on the carriage.
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3 NORM-OPTIMAL CONTROL
OF THE MUSCLE PRESSURES

In the sequel, the nonlinear norm-optimal control de-
sign is presented (Lukes, 1969). The design approac
applies to the following class of systems

z(t) = Az(t) + Bu(t) + f (z(t), u(t)),
y = h(z(t),u(t)) = Cz(t) + Du(t),

with the affine control inputw € U C R™, the
state vectorr € X C R”™ and the output vector
y € Y C RP. The non-linearityf(x,u) can be
stated asf(z,u) = fP(z,u) + £ (x,u) + ..,
wheref(m)(m, u) denotes a polynomial of degree
in terms ofx andu. The Hy-optimal control aims at
calculating a nonlinear state feedback lagz) with
u(0) = 0 such that the nonlinear cost function

(6)

inf
u€L3[0,00)

J(u

/ T hl@wdt (7)
0
with

Aol w) =+ (47 Qy +u” Ru) + (. u)

=T Qx + %uTRu + T Nu + I(x,u)

8
is minimized. The symmetric, positive definite
weighting matrixQ = Q” > 0 accounts for the
output variables, whereas the symmetric, positive
definite weighting matrixR regards the control in-
puts. The nonlinear term(z,u) = 1) (x,u) +
1 (x,u) + ... consists of expressions of third or
higher degrees in terms af andw«. In the case of
I(x,u) = 0 the cost function becomes quadratic. The
solution of the above stated optimization problem is
given by the positive definite solutiaff(z) : X —
R* of a nonlinear partial differential equation, the
Hamilton-Jacobi-Bellman-equation (HIB-equation)

muinH (x, Tp(x),u) =0, 9

N~ DN —

with the corresponding Hamiltonian

H=J,(x)[Ax + Bu + f(z,u)] + Az(x, u).
(10)

and
Hy,=TJy(x)(B+ f,(®,u) + "N

- 12
+u"R+1ly,(z,u) =0 (12)

pneed to be solved. These equations are approximately

solved by an approach according to (Lukes, 1969)
based on power series expansions of the involved non-
linear functions . The gradient of the optimal solution
J (x) and the control law are recursively determined
by a step-by-step solution of both equations for a con-
sidered degreé of the according polynomials i
andu.

3.1 Feedback Control Design

The control design for both internal muscle pressures
is identical (Aschemann et al., 2006). For the sake of
simplicity, the internal muscle pressure as state vari-
able is denoted as := pyy4, ¢ = {r,l}, and the con-
trol input asu := uy,; = R - Ty - ra. Then, the
state equation (3) can be rewritten as

o n- (U*kl(lﬂs7i'5)'l'fk2(£ﬂs,i’s)'1'2)

i —

k3(zs) + ka(zs) - x ’
(13)

According to the continuous dependence of the coef-
ficientsk;(xzg,5) onxg andig, the resulting feed-
back control law is adapted by gain-scheduling. Af-
ter a truncated Taylor series expansion with respect to
x = pui, the nonlinear state space description for the
muscles pressure becomes

i =a(u) +b(u) -z +c(u) - 22 + d(u) - 2°
+e(u) - z* + g(u) - 2°,
y=ux,

The quadratic cost function witlfz, u) = 0 is given

(14)

1 oo
J(u) = 5/0 (gpa® + rpu?) dt, (15)

where the scalar, serves as a weighting factor for
the input variable: = u,; and the scalay, as weight-

ing factor for the state variable, i.e. the muscle pres-
surex = pyy;. The Hy-optimal control laws for these
fast inner control loops are calculated up to the degree
k=3, i.e. uprp(x) Zj?zl u°@). The resulting
nonlinear feedback control law,; g (pai, zs, &5)

In the considered unconstrained case, the optimal so-for the left muscle is depicted in Fig. 2 fars =

lution w* is obtained from the stationary condition
H, = 0. Consequently, the two equations

H=J,(z) [Az + Bu + f(x,u)] + %a:TQw

1 -
+ T Nu + iuTRu +l(x,u) =0
11)
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0.1 m/s. Obviously, the linear part dominates the non-
linear terms.

3.2 Feedforward Control Design

As for feedforward control design, differential flat-
ness can be exploited for the system under consid-
eration (Fliess et al., 1995). The muscle pressure
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the sampling time;, i.e.Tp = M -t,. The predicted
input vector at timeé: becomes

o T
$ZAHAZIHL, T T
LA _ (k) (k)
S Uk M = (UL Uy ; (18)
L s st
CALTHALIALTARL75L7 AR LR 7ARLIALF
(PR TARL R4 LIALISRIAL . . .
= Poss et with u, ps € R™M. The predicted state vector at
[ i 27752 AL AL 7558 .. . .
kS S0 s the end of the prediction horizo@,, (xx, wi ar) is
“52323333233?" obtained by repeated substitutionioby & + 1 in the

2225527587
2252

discrete-time state equation (17)

Tryo = f(@rt1, urt1) = F(F(@r, ur), Upt1)

Figure 2: NonlinearH-optimal feedback control law Tirm = FC fop,ur), - s Ukyrr—1)
upt, rB(PMI, TS, Ts) for the left pneumatic muscle for the
gain-scheduling parameterg andzs = 0.1 m/s. M M

= Qp(Tp, wp, ) -
(19)
Yy = pumi, @ = {r,1}, obviously represents a flat out- The difference of¢,; (@, us 1) and the desired

put of the corresponding inner control loop. Evaluat- giate vecton, leads to the final control error
ing the state equation (3) for the muscle pressure with

desired values for the flat outpyy = pasia as well ek = Pp (T, U 1) — Ta (20)
]‘?3 '(;? time ge”V‘tit'\?% by PMid ancllt$°|V'”9 forthe  je. to the control error at the end of the prediction
eediorward control part,;, rr resuitin horizon. The cost function to be minimized follows

Upi, FF = <VM¢ + OV 'pI\/Iid> PMid N il
' n Opnri Jupc = - e%f K€M,k » (21)
OVari OAln; . 2 7 o
- d5 - PMid — Upi, FB(Parid)- and, hence, the necessary condition for an extremum
OAlw: Os (16) can be stated as
0Jmpc !
Note that the measured values and:: g are used for Denr Mk 0. (22)

a gain-scheduled adaptation of the feedforward con-
trol law. As a result, the overall control law for the
inner control loops becomes,; = u,; pr + Upi FB-

A Taylor-series expansion of (22) aiy s in the
neighbourhood of the optimal solution leads to the
following system of equations

0= em i+ 8¢M Auka[ + T.h.O. (23)

4 NONLINEAR MPC Oug m _ _

The vectorAuy 5 denotes the difference which has
The main idea of the control approach consists in a 0 bé added to the input vectas;. 5, to obtain the
minimization of a future tracking error in terms of the OPtimal solution. The: equations (23) represent an
predicted state vector based on the actual state ang'nder-determined set of equations with- M un-
the desired state vector resulting from trajectory plan- Knowns having an infinite number of solutions. A
ning (Lizarralde et al., 1999), (Jung and Wen, 2004). Unique solution forAu; s can be determined by
The minimization is achieved by repeated approxi- SOlving the followingZ,-optimization problem with
mate numerical optimization in each time step, in (23)as S|d1e condition
the given case using the Newton-Raphson technique. LT
The optimization is initialised in each time step with T =5 A Auk
the optimization result of the preceeding time step in T 0d
form of the input vector. The NMPC-algorithm is +tA <eMv’€ ™ A“’““) :
based on the following nonlinear discrete-time state ’
space representation

(24)

Consequently, the necessary conditions can be stated

as
1 = f(xp, ur) , Yp = h(zp, up) , (17) aJ ! o0d T
. ) o =0=Augt+ (5| A
with the state vectat;, € R”, the control inputu, € OAwuy pr oug, m (25)
R™ and the output vectay, € RP. The constanfi/ aJ 1 0= 0Py, A
specifies the prediction horizdfip as a multiple of N T em,k + Dupar Uk, M,
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which leads tae, x:

(%

8uk,M

(S (26)

Uk, M

) x

If the matrixS (¢, ux,ar) is invertible, the vectoA
can be calculated

A=S8""1

eMk =

S(bprste,m)

(27)

An almost singular matrixS (¢, ux, a7) can be
treated by a modification of (27)

A= [ul + S (dpupn)] (28)

wherelI denotes the unity matrix. The regularisation
parametep: > 0 in (28) may be chosen constant or

(¢)Ma uk,]ﬂ) EM K -

1
EM,k

may be calculated by a sophisticated algorithm. The

latter solution improves the convergence of the op-
timization but increases, however, the computationa
complexity. Solving (25) forAwy ;s and inserting

A according to (27) or (28), directly leads to the-

optimal solution
T
<8uk,M>

(9o ',
5’uk,M M,k -

Here, ( ‘9“”” ) denotes the Moore-Penrose pseudo

Opm

Aug v = — (s wr,nr) €k

(29)

inverse of ‘N’M . The overall NMPC-algorithm can
be descnbed as follows:

Choice of the initial input vectow s at timek = 0,
e.g.uo,ps = 0, and repetition of steps a) - ¢) at each
sampling timek > 0:

a) Calculation of an improved input vectoy, »; ac-
cording to

T
ad’M) erin. (30)
Oug, v

The step widthy, can be determined with, e.g.,
the Armijo-rule.

Vi,M = Uk, M — Nk (

b) For the calculation ofi, 1,5, the elements of the
vectorvy, s have to be shifted by: elements and
the steady-state input vectay corresponding to
the final state has to be inserted at the apd

|

I (m(nr-1))
O(mxm(M—1))

O(m(M—1)xm)

Ban [ I(m)

‘|

O(m(M—1)xm)

Ome

:| VE,M-

(1)
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In general, the steady-state control input can
be computed from

zq = f(xd,uq). (32)

For differentially flat systems the desired input
vector uy is given by the inverse dynamics and
can be stated as a function of the flat outputs and
their time derivatives.

¢) The firstm elements of the improved input vector

v, v are applied as control input at tinke

Uk = [ Iny  O(msxm(m-1)) ]’Uk,M . (33)

In the proposed algorithm only one iteration is per-
formed per time step. A similar approach using sev-
eral iteration steps is described in (Weidemann et al.,
2004).

I4.1 Numerical Calculations

The analytical computation of the Jacobgﬁ% be-

comes increasingly complex for larger valuesidt
Therefore, a numerical approach is preferred taking

advantage of the chain rule with= 0, ..., M — 1
Opm _ _ Obym  OXpymor
8111(.?1 OXpym—1 OXpym—2 o
COXpyite OXpyiva (34)
Oxpyit1  oul)

Introducing the abbreviations

_ O%pyinn _ Of
A = Tkﬂ = % (mk+u z+1) (35)
0xpyi1  Of
B; W ~ 9u (wk+’b7 ) (36)
i+1

the Jacobian can be computed as follows
Odm

ouy m
Apy_1---AsBy, ..,

AlB()v

= [Arv_1Ar_o---
[]\11 M—2 (37)

Apy_1Bay—2,Buya] .
For the inversion of the symmetric and positive def-

. T
inite matrix S (¢, wp p) = diihi, (%) the

Cholesky-decomposition has proved advantageous in
terms of computational effort.

4.2 Choice of the Nmpc Design
Parameters

The most important NMPC design parameter is the
prediction horizonl’p, which is given as the prod-
uct of the sampling time, and the constant value
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M
Desired Trajectory N (k)
e 2ug ) = D h(u)”) (39)
Xd,1 j=1
Ou(Xy, uy M) T .
Xao /[ EMO Instead ofe,,;, the vector[e{/, o z] has to be min-

Tp

imized in the NMPC-algorithm.

Om(Xos Uom)
T Predicted state

5 MODIFICATIONSOF THE
ALGORITHM

I YR C To improve trajectory tracking behaviour, the NMPC-

algorithm can be modified as follows:
(1) Instead of a minimization of the control error at
the end of the prediction horizon given by the dif-

M. Large values offp lead to a slow and smooth ference of the predicted valug,, (z, ux,r) and
transient behaviour and result in a robust and stablethe according reference value;, the minimization
control loop. For fast trajectory tracking, however, could take into account additional predicted errors
a smaller valueT» is desirable concerning a small  €Mik = @uri(Th, Uk rri) —Tai , 4 €N, Mi < M.
tracking error. The choice of the sampling time Thus, the cost function (21) is modified as follows

is crucial as well: a small sampling time is neces-
sary regarding discretization error and stability; how-
ever, the NMPC-algorithm has to be evaluated in real- The required valuesp,,, are already known from
time within the sampling inverval. Furthermore, the the calculation of¢,, and, hence, do not further
smallert,, the larger becomes/ for a given pre- increase the computational effort. Unfortunately,

diction horizon, which in turn increases the compu- the additional computation 0% as well as the
ot

. . P . Mi,k
tational complexity of the optimization step. Conse- jcreased dimension of the matrix to be inverted

guently, a system-specific trade-off has to be made S(¢ o P

' i M1 Par, Wk M1, -, W, pr) have a significant
for the cr:]o[ce ofM and tﬁ' TT\'S paper follows t,h? impact on the computation time. Therefore, the num-
moving horizon approach with a constant prediction e of expressions in the cost function should be kept

horizon and, he_:nce, a constagn dimens;in_)n M of as small as possible, especially in the given case of a
the corresponding optimization problem in constrast ¢, higher-dimensional system.

to the shrinking horizon approach (Weidemann et al., (2) A further improvement of the trajectory tracking

2004). behaviour can be achieved if an input vector resulting
k from an inverse system model is used as initial vector
4.3 Input Constraints for the subsequent optimization step instead of the last
] F ] input vector. Since the system under consideration is
One major advantage of predictive control is the pos- differentially flat (Aschemann and Hofer, 2004), the
sibility to easily account for input constraints, which required ideal control input can be derived for a given

are present in almost all control applications. To this reference trajectory. The slightly modified algorithm
end, the cost function can be extended with a corre- 5 pe stated as follows

sponding term

Figure 3: Design parameters.

1
Jupc = 5(6511,keM1,k + .. +eirremn) (40)

a) Calculation of the ideal input vecton,(f_lgw by

0 Wpnin < u;“ < Upmax evaluating an inverse system model with the spec-
hu®)y = *) for  u® N 7 ified reference trajectory as well as a certain num-
(u;™) gl(ugk,)) Yy = Umaz ber 3 € N of its time derivatives
g2 (uj ) uj < Umin (d d) (8)
. . (38) ukj)w = ué’M (yd7?]d7 e Y d) . (41)
which has to be evaluated componentwise, i.e. for

each input variable at each sampling time. Thus, b) Calculation of the improved input vectar s

the contribution of the additional input constraints based on the equation
depending omuy s is given by . 96 t
VM = um — M (3161:\14) envi - (42)
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c) Application of the firstn elements ob, ,, to the
process

Up = [ I(m) O(me(M—l)) ] Vi,M - (43)

If the reference trajectory is known in advance, the ac-

cording reference input vecta)rgcdgw can be computed
offline. Consequently, the online computational time
remains unaffected. Of course, all the proposed mod-
ifications could be combined.

5.1 Nmpc of the Carriage Position

5.2 Compensation of the Valve
Characteristic and Disturbances

The nonlinear valve characteristic (VC) is compen-
sated by pre-multiplying with its inverse valve char-
acteristic (IVC) in each input channel. Here, the in-
verse valve characteristic depends both on the com-
manded mass flow and on the measured internal pres-
sure. Disturbance behaviour and tracking accuracy in
view of model uncertainties can be significantly im-
proved by introducing a compensating control action
provided by a reduced-order disturbance observer,

The state space representation for the position controlwhich uses an integrator as disturbance model. The

design can be directly derived from the equation of
motion for the carriage

. Tg o Ts
T = - - Fyi(zs,pavi) —Fur(Ts,pmr)
Trs ms

(44)

The carriage positioms and the carriage velocitys
represent the state variables, whereas the input vecto
consists of the left as well as the right internal muscle
pressurepy;; andp,,,.. The discrete-time representa-
tion of the continous-time system (44) is obtained by
Euler discretisation

(45)

Using this simple discretisation method, the compu-
tational effort for the NMPC-algorithm can be kept
acceptable. Furthermore, no significant improvement
was obtained for the given system with the Heun dis-
cretisation method because of the small sampling time
ts = 5 ms. Only in the case of large sampling times,
e.g.ts > 20 ms, the increased computational effort

Tir1 = T+ ts - far, ur)

caused by a sophisticated time discretisation method
is advantageous. Then, the smaller discretisation er-

ror allows for less time integration steps for a speci-
fied prediction horizon, i.e. a smaller number. As a
result, the smaller number of time steps can overcom-
pensate the larger effort necessary for a single time
step. The flat output variables of (44) are given by

zs

y_[ ]—b.(pMﬁer)

Using the desired trajectories for the carriage position
xsq and the mean muscle pressurg,, the corre-
sponding desired input values result in

{ 1
Uqg =

+ FMT(')
. [ o () = farr (-) + 2F 0 ()para + msisa

s

Pm (46)

PMid
PMrd

} ~ Fan()
e (5) = fan(5) + 2Fan()pva — msdsa
(47)
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observer design is based on the equation of motion for
the carriage (5), where the variabig takes into ac-
count both the friction forcé'gs and the remaining
model uncertainties of the muscle force characteris-
tics AFyy, i.e. Fy = Frs — AF),. Moreover, the
disturbance observer is capable of counteracting im-
pacts of changing carriage madsng as well, which
lresults infFy = Frs + Amg - &5 — AFy. As the
complete state vectat = [zg,4s]” is forthcom-
ing, the reduced-order disturbance observer yields a
disturbance force estimafe;. Disturbance compen-
sation is achieved by using the estimated fof¢e

as additional control action after an appropriate input
transformation.

6 EXPERIMENTAL RESULTS

For the experiments at the linear axis test rig the syn-
chronized reference trajectories for the carriage po-
sition as well as the mean muscle pressure depicted
in the upper part of fig. 4 have been used. First, sev-
eral changes are specified for the carriage position be-
tween0.02 m and0.29 m at a constant mean pressure
of 4 bar. Second, the mean pressure is increased up
to 5 bar and kept constant during some subsequent
fast position variations by-0.02 m. Third, several
larger position changes are performed with a constant
mean pressure df bar.

During trajectory tracking the numb@r is set to
small values. The sampling time has been kept con-
stant att; = 5 ms. Fig. 4 shows the results obtained
with the choiceM = 15,i.e. Tp = 75 ms. Smaller
prediction horizons would lead to a tendency towards
increasing oscillatory behaviour and, finally, to insta-
bility. During the acceleration and deceleration in-
tervalls a maximum position control erreg ,,,q, of
approx.4 mm occurs. The maximum control error
of the mean pressusg, is only slightly above an ab-
solute value of approx).12 bar. The importance of



NONLINEAR MODEL PREDICTIVE CONTROL OF A LINEAR AXIS BASED ON PNEUMATIC MUSCLES

of the internal muscle pressure with high bandwidth.

55

03 The outer nonlinear model predictive control loop is
c g ° responsible for trajectory tracking with carriage po-
& 02 £ 45 ’_\ sition and mean pressure as controlled variables. Re-
* o1 <, maining model uncertainties are taken into account by
. .5 a disturbance force estimated by means of a distur-
o 2 @ w0 & o 2 0 e @ bance observer. Experimental results from an imple-
10° mentation on a test rig emphasise the excellent closed-
4 o1 loop performance with maximum position errors of
L2 . 005 . 4 mm during the movements, negligible steady-state
< o LV-A-v = 0 position error and steady-state pressure error of less
L 005 than0.02 bar.
_a -0.1
0 20 4‘0 60 80 0 20 4_0 60 80
tins tins
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