
MINIMUM COST PATH SEARCH IN AN
UNCERTAIN-CONFIGURATION SPACE

Eric Pierre and Romain Pepy
Institut d’Électronique Fondamentale

Universit́e Paris XI
Orsay, France

Keywords: Path planning, uncertainty, A* algorithm.

Abstract: The object of this paper is to propose a minimum cost path search algorithm in an uncertain-configuration
space and to give its proofs of optimality and completeness. In order to achieve this goal, we focus on one
of the simpler and efficient path search algorithm in the configuration space : the A* algorithm. We then
add uncertainties and deal with them as if they were simple dof (degree of freedom). Next, we introduce
towers of uncertainties in order to improve the efficiency of the search. Finally we prove the optimality and
completeness of the resulting algorithm.

1 INTRODUCTION

Today’s researches on mobile robots focalize on a
specific aspect: the autonomous navigation of a robot.
Navigating a robot generaly involves the use of a path
planner, which determines a path in a graph built from
the environment. However, where path planner tak-
ing into account geometric models of the environment
work well in simulation, the implementation of such
algorithms on real robots leads in most case to failure
to follow the path planned (Latombe, 1991). Thus,
searchers have decided to introduce the concept of
uncertainty, in order to generate a path that would
work even with uncertain data. This field of research
has leaded to various works (Fraichard and Mermond,
1998; Lazanas and Latombe, 1995; Pepy and Lam-
bert, 2006).
The present paper is the following of the work in
(Lambert and Gruyer, 2003), which proposes a path
planner based on the A* algorithm ((Hart et al., 1968;
Nilsson, 1988; Russel and Norvig, 1995)) that takes
uncertainties into account. Using a simulator of exte-
roceptive and proprioceptive sensors and an Extended
Kalman Filter to process the sensors information, the
algorithm finds asafepath for a mobile robot in a
known-but-imperfect indoor environment despite the
uncertainties associated with the lack of precision of
the sensors. Unfortunately, the authors do not prove

the optimality and completeness of the algorithm they
propose.
The goal of the present paper is firstly to generalize
the algorithm given in (Lambert and Gruyer, 2003) to
any problem based on planning a path in a graph with
taking into account uncertainties on the graph’s pa-
rameters. Secondly, it is to prove the optimality and
completeness of this generalized algorithm.
In section 2, we build the mathematical structure
needed to explain the A* algorithm and to prepare the
proofs. Using the mathematical bases proposed in the
previous section, section 3 presents the A* while tak-
ing the uncertainties into account, which we will call
A* in an Uncertain Configuration Space (AUCS*).
Finally, section 4 proposes a second and optimized
version of this algorithm (called Safe A* with Towers
of Uncertainties, or SATU*) using a new concept: the
towers of uncertainties (Lambert and Gruyer, 2003).

2 THE A* ALGORITHM

2.1 Overview

The famous A* algorithm (algorithm 1) is one of
the simpler and efficient path planner in a graph.
This algorithm has first been proposed in (Hart et al.,

103
Pierre E. and Pepy R. (2007).
MINIMUM COST PATH SEARCH IN AN UNCERTAIN-CONFIGURATION SPACE.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 103-109
DOI: 10.5220/0001645301030109
Copyright c© SciTePress



1968), and is based on the Dijkstra algorithm (Di-
jsktra, 1959) on which a heuristic function has been
added.
The algorithm searches the graph in order to find a
path that goes from a start node to a goal node. When
we deal with a path planner, it is important to know its
behaviour, especially about two particular properties :

• Optimality: When the algorithm chooses a path to
go from the start node to the goal node, this path
must be the optimal one (given some criteria of
optimality).

• Completeness: Given that the goal is reachable,
the algorithm must reach it in a finite time.

If the path planner we deal with verifies those proper-
ties, we know for sure that a path will eventually be
found (given that the goal node is reachable) and that
this path will be the best one, according to a given
criteria.

2.2 Spaces Used

We want to find a path in an-dimension con-
figuration spaceX . The n dimensions represent
the degree of freedom (dof) of the system. We
have to deal with two subspaces ofX , one repre-
senting thefree-configuration space (calledX f ree),
where we can move, and the other representing the
collision-configuration space (calledXcollision), where
the movements are impossible.

2.3 Structure of the Graph

We discretizeX f ree into an infinite number of nodes.
Let N be the set of those nodes. They are char-
acterised byn parameters. We can build a directed
graph (the nodes are linked together by one-way
edges) inX f ree, which follows those properties :

Property 1 There is a minimum positive edge cost
between any two nodes (i.e., there is a given positive
ε so that the cost between any two nodes is greater
thanε)

Property 2 The number of edges starting from a
node is finite.

Property 3 The edge cost between any two nodes in
a path is finite.

When a graph possesses the first two properties,
it is called alocally finite graph(in a given and finite
area of the space, there is a finite number of paths
between any two nodes) (Nilsson, 1988).

Algorithm 1 A*
1: CLOSE← /0
2: OPEN← NodeStart
3: while OPEN6= /0 do
4: Node← Shortestf ∗ Path(OPEN)
5: CLOSE← CLOSE + Node
6: OPEN← OPEN - Node
7: if Node = NodeGoalthen
8: return (Success,Node)
9: end if

10: NEWNODES← Successors(Node)/∈ CLOSE
11: for all NewNode of NEWNODESdo
12: if NewNode /∈ OPEN or g(NewNode) >

g(Node)+cost(Node,NewNode)then
13: g(NewNode)← g(Node)+cost(Node,NewNode)
14: f ∗(NewNode) ←

g(NewNode)+h(NewNode,NodeGoal)
15: parent(NewNode)← Node
16: if NewNode/∈ OPENthen
17: OPEN← OPEN+NewNode
18: end if
19: end if
20: end for
21: end while
22: return NoSolution

2.4 Paths of the Graph

• let P be the set of all the paths beginning at the
start node and exploring the configuration space.
An important characteristic is that no path inP
can loop (a path cannot go through a node twice).

• let Pgoal be the set of all the paths beginning at the
start node and ending on the goal node.

• let Pgoal be the set of all the paths beginning at the
start node and that do not reach the goal node. We
have

Pgoal = P \Pgoal. (1)

An important thing to keep in mind is that the A*
works incrementally withP . It tests paths ofP node
by node and does not know if those paths belong to
Pgoal or Pgoal until it reaches their final node.

2.5 Parameters of the Algorithm

2.5.1 Criteria of Optimality

Each path has an associated cost, which is the cumu-
lated costs of every edge in the path. Letf (ci) be this
cost, for allci ∈ P .

Let us introduce,g(ci ,n), which represents the
length of the part of the pathci going from the start
node to the noden, n∈ ci . If ci is finite, we can ob-
serve that

f (ci) = g(ci ,finalnode(ci)). (2)

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

104



We want to find a shortest path, i.e. a pathc∈ Pgoal
that verify

f (c)≤ f (ci) ∀ci ∈ Pgoal. (3)

Finding such a path is ourcriteria of optimality.

2.5.2 Rule to Expand the Graph

As it is well known, the A* works with a path-
independant heuristic functionh(n j ,nk) that estimates
the unknown length between two nodesn j andnk. We
can then work with an estimated total lengthf ∗(ci ,n)
rather than the real (unknown)f (ci), such that

f ∗(ci ,n) = g(ci ,n)+h(n,goalnode). (4)

2.6 Proofs of the Algorithm

Both the proof of optimality and of completeness have
been given in (Nilsson, 1988). We won’t detail them
further here.

3 THE A* IN AN UNCERTAIN
CONFIGURATION-SPACE

3.1 The Concept of Uncertainties

The uncertainties represent the fact that in the real
world, one cannot precisely know the real model of
the systems. Thus, we can determine the errors in-
duced by all the models used and we can calculate the
uncertainties associated to each node (inN ) of each
path (in P ). Let us consider that the uncertainties
are fully described in am-dimension space. Conse-
quently, a full uncertain configuration is now given by
n + m parameters:n for the coordinates in the space
X and m for the coordinates in the uncertainties-
space. Such an uncertain configuration will be called
anextended node.
In this section, we are going to present a way to run a
simple A* on a new graph based on extended nodes,
in considering that the uncertainties can be managed
as additional degree of freedom.

3.2 Spaces Used

Let X e be the uncertain configuration space, which
is {n + m}-dimension space and fully includeX (we
can then consider that we deal with{n+m} dof, even
if some of them are uncertainties). Knowing the un-
certainties associated to a given node, we can build a
newn+m dimensions free-configuration spaceX e

f ree

taking into account those incertainties.
Let X e

collision be characterised by

X e
collision = X e\X e

f ree. (5)

Our goal is now to find a safe path, which is a path that
never go inX e

collision (considering the uncertainties of
every extended node).

3.3 Structure of the Graph

In the previous case (see section 2.3 above) we al-
ready introduced a graph based onN . However, we
do not want to work with the set of nodesN , as it
does not take the uncertainties into account. Let us
introduce a new set of nodes, calledU . The nodes
in this set will then beextendednodes. The proper-
ties applying onN apply also onU (the three proper-
ties presented in section 2.3 applie on this new graph).
Thus, our new graph is locally finite.
Another property may be pointed out:

Property 4 An infinite number of extended node can
be based on the same node.

3.4 Paths of the Graph

We can now introduce the paths generated through the
extended nodesof U .

• let G be the set of all the paths beginning at the
start extended nodeand exploring the{n + m}-
dimension space configurationX e

f ree. The criteria
of optimality presented in section 2.5 applies fully
here.

• let Ggoal be the set of all the paths beginning at
the startextended nodeand reaching the goalex-
tended node. A direct consequence is thatGgoal⊂
G .

• letGgoal be the set of all the paths beginning at the
startextended nodeand that do not reach the goal
extended node. We have

Ggoal = G \Ggoal. (6)

• g, f , f ∗ and h represent respectively the length
from the start node to a fixed node in a path, the
total length of a path, the estimated length of a
path and the heuristic of a path in the{n + m}-
dimension space.

What we finally search is theshortest path, which
is the shortest pathc in G . This path must verify

f (c)≤ f (ci) ∀ci ∈ G . (7)

MINIMUM COST PATH SEARCH IN AN UNCERTAIN-CONFIGURATION SPACE

105



3.5 The Algorithm

It is now possible to implement the A*, which we
will call A* in an Uncertain Configuration-Space
(AUCS*), directly on the newly described{n + m}-
dimension graph. The AUCS* is exactly the same al-
gorithm than the A*, the only difference is the graph
on which it performs. The goal node is then defined
by n + m parameters, the firstn corresponding to the
location we want to reach and them other parameters
being the uncertainties we want to have at this loca-
tion.
As the algorithm is exactly the same (despite it per-
forms on a different graph), we do not give it again.
See algorithm 1.

3.6 Proofs of the Algorithm

3.6.1 Proofs of Optimality

Despite the algorithm performs on an improved
graph, its principal characteritics are unchanged. The
heuristic and calculus of length have the same proper-
ties (g and h could eventually be identical to those
used in the previous section), and regarding this
model the AUCS* still find the shortest path. �

3.6.2 Proofs of Completeness

There again, the only cases the AUCS* could not be
complete is when there is an infinite number of paths
such as their lengths are lower than the found path’s
or when a path with a length lower than the found path
is infinite.
The proof is equivalent to the one determined by
(Nilsson, 1988): the properties of the graph built are
the same than in the previous case (it is locally finite),
this is enough to lead to the same conclusion ; the
AUCS* algorithm is complete. �

3.7 Working in a Finite Graph

In the previous sections, we considered the graphs
were infinite and built in advance, before the algo-
rithm starts. However, building an infinite graph
is impossible for a (necessarily limited) computer.
Thus, some choices must be done if we want to be
able to run the algorithm on a computer. For exam-
ple, we could define a sub-space ofX where to run the
algorithm. Of course, this implies no path not being
entirely contained inX can be found. This is gener-
ally not a problem if the sub-space is cleverly defined
(for example, if we want to find a path leading from
a room to another in a building, we could restrain our

space to the building itself). This is enough to ensure
the new graph will be finite:

Property 5 A graph generated in a finite sub-space
of X and following properties 1 and 2 (section 2.3) is
finite.

Proof: Property 1 ensures that any two nodes must
have a given minimum positive edge cost. Conse-
quently, a finite sub-space can only be filled with a
finite number of nodes. Property 2 ensures that only a
finite numbers of edges can go from a node: the graph
is finite. �

Thus, we can work on a pre-built sub-graph ofX .
However in the case ofX e, the problem is slightly
different. Property 4 implies there could be an infinite
number of extended nodes on each node. Of course, it
is not possible to build such a graph with a computer.
Thus, we are going to work on a dynamically built
graph: fromP , the extended nodes are dynamically
added in the new graphG when they are reached.
Proofs of optimality and completeness ensure that the
graph stays finite, as the dynamically building of the
extended nodes ends when the algorithm reaches the
goal node, which has been proven happens in a finite
time.
The only change in algorithm 1 is that line 10,Suc-
cessorsfunction dynamically creates the nodes if they
do not already exist. This implies that, given a fully-
described extended node and the base of the node
where to go,Successorsmust be able to calculate the
m last parameters of the node to reach.
We now have an implementable algorithm in an un-
certain configuration space, which does not need infi-
nite memory.

4 THE A* WITH TOWERS OF
UNCERTAINTIES

4.1 The Towers of Uncertainties

In section 3.7, we showed that we could work on a
finite dynamically built graph. However, finding a
way to reduce the need of memory needed would be
very helpful. (Lambert and Gruyer, 2003) has deter-
mined a method (described below) that reduces the
field of search (reducing the memory needed) and re-
organizing the way to record the data. This method
involves the use oftowers of uncertainties, and only
works on dynamically built graphs (as presented sec-
tion 3).
However, the graphs must be more constrained than
those seen in the sections above.
Constraint 1: This constraint concerns the evolution

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

106



of the uncertainties between two nodes: this evolu-
tion follows a given function and this function is the
same for every uncertainty. If the uncertainties of a
given extended node include the uncertainties of an-
other extended node (those extended nodes must be
based on the same node), then the pattern ensures that
this property will be kept in the following nodes of the
paths (when the paths follow the exact same nodes).
Constraint 2: If the function (collision-detection) giv-
ing the configuration-space where the path belongs
(X f ree or Xcollision) declares the path inXcollision for
a given uncertainty, then it will declare a new path
following the same (non-extended) nodes with wider
uncertainties inXcollision too.

When the AUCS* searches the graph, it generates
various beginning of paths. Given that numerous ex-
tended nodes can be at the same position (see prop-
erty 4 above), it is perfectly possible to have two or
more different paths reaching the same position (same
node, but different extended nodes).
Without knowing what comes in the future, could not
we already discard some of those paths?
The criteria of optimality we want to minimize is the
length of the path. What we search is the smallest
path. However, some paths expanded at some step
of the algorithm may not reach the goal (for exam-
ple, every path built from this path does not belong
to X e

f ree). Thus, the current smallest path could be in
X e

collision without the algorithm knowing it (the part
being in collision with the environment having not
been reached by the algorithm yet) and a longer path
could be inX e

f ree. The immediate consequence is that
we should keep both of them during the search.
What about if the longer path has also wider uncer-
tainties? Then it is clear that if the smallest path does
belong toGgoal, the longer path belongs toGgoal too
(this is ensured by constraint 2 presented above, in
section 4.1, as from this node on, the exact same paths
will be tried by both of the paths). In this case, we
could discard the longer path. On the other hand, if
the smallest path is inG f ree, then we do not need the
longer path anymore, even if it is inG f ree too, as its
length is by definition longer. We could also discard
it in this case.
Consequently, we canalwaysdiscard the longer path
with the wide uncertainties.
This property considerably reduces the complexity of
the algorithm, as it detects earlier useless paths. In
order to make the detection of the useless paths the
quicker possible, (Lambert and Gruyer, 2003) pro-
poses the use oftowers of uncertaintiesin an algo-
rithm we call SATU* (Safe A* with Towers of Un-
certainties).
Each extended node is divided in two entities:

• A base: Given by the node of the extended node
(then first parameters).

• A level: The uncertainties associated to the node
and function of the path leading up there (them
following parameters).

So, we can now dynamically (while the algorithm per-
forms) build a tower of uncertainties, with a common
base, and as many levels as the number of extended
nodes (with the same common base) opened at this
point. The levels are placed following some rules:

• The levels are placed in an increasing order of
their length.

• Given a level, if another level under it has uncer-
tainties that completely fits in its own, then the
given level is removed (its length is bigger and its
uncertainties are wider than the level’s under it).

A direct consequence of the description above is
that the memory needed for the SATU* is lower than
for the AUCS*, even if we consider that the AUCS*
build the graph dynamically too: for a given number
n of extended nodes which have the same base, the
needed memory will be(n + m)n in the AUCS* and
only n+n.m in the the SATU*.

4.2 Description of the Algorithm

SATU* is given in algorithm 2. The first part of the
algorithm is the same as algorithm 1: two lists are cre-
ated and initialized, a loop allows to expand extended
node after extended node (selecting the extended node
with the smallestf ), a test verify if the goal extended
node has been reached, otherwise the successors of
the current extended node are selected and opened.
For each of those successors, a first test (line 12)
checks if the base of the successor is already in
CLOSE or OPEN. If it is not, then when can create
a new tower on this base, add a first level with the un-
certainties associated with the successor and add the
base of the node in OPEN (without forgetting to cal-
culate f and to store the parent of the node in order
to be able to find the path when the algorithm is fin-
ished).
If the base of the successor belongs either to CLOSE
or OPEN, we need to check if the successor may enter
the tower or not.
In order to do that, the algorithm must compare each
one of the levels of the tower with the successor’s
uncertainties andg. Line 20 and 21, the algorithm
selects the tower and initialized an index which will
represent the value of the current level being checked.
Line 22 begins the loop that will compare the current
level extracted and the successor.
Line 25, the current level to compare is extracted from

MINIMUM COST PATH SEARCH IN AN UNCERTAIN-CONFIGURATION SPACE

107



Algorithm 2 (SATU*)
1: CLOSE← /0
2: OPEN← NodeStart
3: while OPEN6= /0 do
4: Node← Shortestf ∗ Path(OPEN)
5: CLOSE← CLOSE + Node
6: OPEN← OPEN - Node
7: if Base(Node) = Base(NodeGoal) and uncer-

tainty(Node)⊆ uncertainty(NodeGoal)then
8: return Success
9: end if

10: NEWNODES← Successors(Node)
11: for all NewNode of NEWNODESdo
12: if NewNode/∈ OPEN,CLOSEthen
13: g(NewNode)← g(Node)+cost(Node,NewNode)
14: f ∗(NewNode) ←

g(NewNode)+h(NewNode,NodeGoal)
15: build(NEWTOWER,base(NewNode))
16: AddLevel(NEWTOWER,NewNode)
17: OPEN← OPEN+NewNode
18: parent(NewNode)← Node
19: else
20: TOWER← ExtractTower(base(NewNode))
21: level← -1
22: do
23: AddLevel← false
24: level← level+1
25: LevelNode← ExtractNode(TOWER,level)
26: if (g(NewNode) ≥ g(LevelNode) and uncer-

tainty(LevelNode)* uncertainty(NewNode)) or
g(NewNode)< g(LevelNode) then

27: AddLevel← true
28: end if
29: while level 6= TopLevel(TOWER) and Ad-

dLevel=true
30: if AddLevel=true then
31: level← insert(NewNode,TOWER)
32: OPEN← OPEN + NewNode
33: parent(NewNode)← Node
34: UpperNodes ←

nodes(UpperLevels(TOWER,level))
35: for all uppernode of UpperNodesdo
36: if uncertainty(NewNode) ⊆ uncer-

tainty(uppernode)then
37: remove(TOWER,uppernode)
38: OPEN← OPEN - uppernode
39: end if
40: end for
41: end if
42: end if
43: end for
44: end while
45: return NoSolution

the tower.
Line 26, a test is performed. We may insert the suc-
cessor in the tower if either itsg is greater or equal
than the level’s and its uncertainties are not included
in the level’s or if itsg is lower than the level’s. Thus,
if those conditions are met, we keep the successor and

try to compare it to the next level. If, just once, those
conditions are not met, then we can discard the suc-
cessor.
Line 30, if we may insert the successor in the tower,
we do it.
Line 31, we insert the successor in the tower in the
increasing order of level’sg.
we then add the successor in OPEN, for it to be ex-
panded later.
Line 34, we select the nodes with a greaterg than the
successor’s, and check if they can be kept (if their un-
certainties are included in the successor’s, then we can
discard them). This is done in removing them from
the tower and from OPEN lines 37 and 38.

4.3 Proofs of the Algorithm

4.3.1 Proof of Optimality

As shown in section 4, the SATU* works as a AUCS*.
The addition of the tower of uncertainties only allows
to discard very early a path that is either inGgoal or
not the smallest path inG f ree. Thus, regarding the dis-
covery of the smallest path, it has the exact same be-
haviour than a AUCS*, which proves that it respects
the criteria of optimality. The algorithm therefore en-
sures that its found pathc verifies

g(c)≤ g(ci) ∀ci ∈ G f ree. (8)

�

4.3.2 Proof of Completeness

Given that the optimality of the SATU* has been
proven above and that the graphs used have the same
properties than for the AUCS*, we can directly con-
clude that the SATU* is complete (as the graphs used
are locally finite). �

5 CONCLUSION

In this paper, we firstly presented a simple way to run
an A* algorithm in an uncertain-configuration space
(AUCS*) by considering the uncertainties as simple
degree of freedom of the system. This characteristic
allows the add of uncertainties in any path planner al-
gorithm that respects the necessary properties.

Secondly, we introduced a new path planner,
the SATU* algorithm, working in an uncertain-
configuration space, strongly based on the A* algo-
rithm that limits the memory needed. We then gave
the needed proofs of optimality and completeness as-
sociated. Some further work will focalize on the cal-
culation and comparison of the AUCS* and SATU*

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

108



complexities and on the experimental tests using a
real mobile robot.

REFERENCES

Dijsktra, E. (1959). A note on two problems in connexion
with graphs. InNumerische Mathematik, volume 1,
pages 269–271.

Fraichard, T. and Mermond, R. (May 1998). Path planning
with uncertainty for car-like robots. InIEEE Int. Conf.
on Robotic and Automation, pages 27–32.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost
paths. InIEEE Transaction on Systems Science and
Cybernetics, SSC-4(2), pages 100–107.

Lambert, A. and Gruyer, D. (September 14-19, 2003). Safe
path planning in an uncertain-configuration space. In
IEEE International Conference on Robotics and Au-
tomation, pages 4185–4190.

Latombe, J. C. (1991).Robot Motion Planning. Kluwer
Academic Publisher.

Lazanas, A. and Latombe, J. C. (1995). Motion planning
with uncertainty : a landmark approach. InArtificial
Intelligence 76(1-2), pages 287–317.

Nilsson, N. J. (1988).Principles of artificial intelligence.
Morgan Kaufman Publisher inc.

Pepy, R. and Lambert, A. (2006). Safe path planning
in an uncertain-configuration space using rrt. In
Proc. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 5376–5381, Beijing,
China.

Russel, S. J. and Norvig, P. (1995).Artificial Intelligence: A
modern Approach, pages 92–101. Prentice Hall, Inc.

MINIMUM COST PATH SEARCH IN AN UNCERTAIN-CONFIGURATION SPACE

109


