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Abstract: Visual Servoing is an important issue in robotic vision but one of the main problems is to cope with the

delay introduced by acquisition and image processing. This delay is the reason for the limited velocity and
acceleration of tracking systems. The use of predictive techniques is one of the solutions to solve this problem.
In this paper, we present a Fuzzy predictor. This predictor decreases the tracking error compared with the

classicKalmanfilter (KF) for abrupt changes of direction and can be used for an unknown object’s dynamics.
The Fuzzy predictor proposed in this work is based on several cases<dlthanfiltering, therefore, we have
named it: FuzzyKalmanFilter (FKF). The robustness and feasibility of the proposed algorithm is validated
by a great number of experiments and is compared with other robust methods.

1 INTRODUCTION strate that steady-statéalman filters (af and afy
filters) performs better than the KF in the presence

During the last few years, the use of visual servoing Of abrupt changes in the trajectory, but not as good
and visual tracking has been more and more commonas the KF for smooth movements. Some research
due to the increasing power of algorithms and com- Works about the motion estimation are presented in
puters. (S. Soatto and Perona, 1997) and (Z. Duric and Rivlin,

Visual servoing and visual tracking are techniques 1996). Further, some motion understanding and tra-
that can be used to control a mechanism according tol€ctory planning based on ti&enet-Serreformula
visual information. This visual information is avail- are described in (J. Angeles and Lopez-Cajun, 1988),
able with a time delay, therefore, the use of predictive (Z. Duric and Rosenfeld, 1998) and (Z. Duric and
algorithms are widely extended (notice that prediction Davis, 1993). Using the knowledge of the motion
of the object’s motion can be used for smooth move- and the structure, identification of the target dynamics
ments without discontinuities). may be accomplished.

The Kalmanfilter (Kalman, 1960) has become a To solve delay problems, taking into account these
standard method to provide predictions and solve the considerations, we propose a new prediction algo-
delay problems (considered the predominant problem rithm, thefuzzy Kalman filte(FKF). This filter min-
of visual servoing) in visual based control systems imizes the tracking error and works better than the
(Corke, 1998), (Dickmanns and V., 1988) and (Wil- classic KF because it decides what of the used filters
son and Bell, 1996). (aps'*Vapfast (Chroust and Vincze, 2003)py, Kv,

The time delay is one of the bigger problems in KaandKj) must be employed. The transition between
this type of systems. For practically all processing ar- them is smooth avoiding discontinuities.
chitectures, the vision system requires a minimumde-  These five filters should be used in a combination
lay of two cycles, but for on-the-fly processing, only because: Th&almanfilter is considered one of the
one cycle of the control loop is needed (Chroust and reference algorithms for position prediction (but we
Vincze, 2003). must consider the right model depending on the ob-

Authors of (Chroust and Vincze, 2001) demon- ject’s dynamics: velocity—acceleration—jerk). When
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the object is outside the image plane, the best predic-of the state fromk to k+ 1 andC € O™" describes
tion is given by steady-state filtera§/ofy depend-  the way in which the measurement is generated out of
ing on the object’s dynamics: velocityacceleration).  the statex. In our case of visual servoingis 1 (be-
Obviously, considering more filters and more be- cause only the position is measured) and 4. The
haviour cases, FKF can be improved but computa- matrix G € 0™ distributes the system noiggto the
tional cost of additional considerations can be a prob- states and is the measurement noise. In the KF the
lem in real-time execution. These five filters are con- noise sequencegk andy are assumed to be gaussian,
sidered by authors as the best consideration (solu-white and uncorrelated. The covariance matrices of
tion taking into account the prediction quality and the &y andng areQ andR respectively (these expressions
computational cost). This is the reason to combine consider 1D movement). A basic explanation for the
these five filters to obtain the FKF. assumed gaussian white noise sequences is given in

This paper is focused on the new FKF filter and (Maybeck, 1982).
is structured as follows: in section 2 we present the In the general case of tracking, the usual model
considered dynamics, the considered dynamics is aconsidered is a constant acceleration model (Chroust
Jerk model with adaptable parameters obtained byand Vincze, 2003), but in our case, we consider a con-
KFs (Nomura and T., 2000), (Li and Jilkov, 2000) stant jerk model described by matrideésndC are:
and (Mehrotra and Mahapatra, 1997). In section 3, 1 T T2 3

; . /2 T3/6

we present the block diagram for the visual servo- o1 T T2
ing task. This block diagram is widely used insev- F=| o o 1 { [:¢=[1 0 0 O]
eral works like (Corke, 1998) or (Chroust and Vincze, o0 Yo 1
2003). Section 4 presents the basic idea applied in our

case (see (Wang, 1997b) and (Wang, 1997a)), but thewhereT i; the sampling time_. This model is callepl a
main work done is focused in one of the blocks de- constant jerk modebecause it assumes that the jerk

scribed in section 3, the Fuz#almanFilter (FKF) (dxX°(t)/dt°) is constant between two sampling in-

is described in section 5. stants. _ _ . _
In section 6, we can see the results with simulated F andC matrices are obtained from expression 3to 7:

data. These results show that FKF can be used to im- a-a _Na_ » B
prove the high speed visual servoing tasks. This sec- t—t At

o . . e ; \ 1 1

tion is organized in two parts: in the first one (Sub X(t) = % +Vi (t—ti)+*a.i(t—ti)z'i‘é\]i(t—ti)?) @)

section 6.1), the analysis of the FKF behaviour is fo- 2

cussed and in the second one (Subsection 6.2) their = v talt—t }J )2 5
results are compared those with achieved by Chroust Vi) =viFalt=t)+ 5kt -t) ®)
and Vince (Chroust and Vincze, 2003) and with CPA at)=a+Jht-t) (6)
(Tenne and Singh, 2002) algorithm (algorithm used J)=k ()
for aeronautic/aerospace applications). Conclusions

and future work are presented in section 7. where,x is the positiony is the velocity,a is the ac-

celeration and is the jerk. So the relation between
them is:

2 THE DYNAMICSOF A MOVING X(t) = £(t); X(t) = v(t); X(t) =a(t); X(t) =J()
OBJECT

The object's movement is not known (a priori) in 3 DESCRIPTION OF THE

a general visual servoing scheme. Therefore, it is CONTROL SYSTEM

treated as an stochastic disturbance justifying the use

of a KF as a stochastic observer. The KF algorithm The main objective of the visual servoing is to bring
presented by Kalman (Kalman, 1960) starts with the the target to a position of the image plane and to keep

system description given by 1 and 2. it there for any object’s movement. In figure 1 we
can see the visual control loop presented by Corke in
Xer1 = F X+ G- & Q) (Corke, 1998). The block diagram can be used for a

Vic=C X+ NN 2) moving camera and for a fixed camera controlling the

motion of a robot. Corke use a KF to incorporate a
wherex, € 0™ is the state vector angk € 0™ is feed-forward structure. We incorporate the FKF algo-
the output vector. The matrik € O™™M is the so- rithm in the same structure (see figure 2) but reorder-
called system matrix witch describes the propagation ing the blocks for an easier comprehension.

134



IMPROVEMENT OF THE VISUAL SERVOING TASK WITH A NEW TRAJECTORY PREDICTOR - The Fuzzy
Kalman Filter

4 THEORETICAL BACKGROUND

+ o image plane error Ax
x> »V(z) OF THE FUZZY KALMAN
- “ Vision System Ax FILTER (FK F)
Z»n
ll Prediction The most common fuzzy inference process used is
KF | e known as Mamdani'’s fuzzy inference method, but on
M the other hand, we can find a so-call8dgeno or
Xr Y Xd Takagi-Sugeno-Kangnethod of fuzzy inference. It
& was introduced in 1985 (Sugeno, 1985) and is simi-
Robot Controller

lar to the Mamdani’s method in many respects. The
first two parts of the fuzzy inference process, fuzzi-
fying the inputs and applying the fuzzy operator, are
exactly the same. The main difference between Mam-
dani andSugenas that theSugenooutput member-
ship functions are either linear or constant (for more
information see (Passino and S., 1988)).
For Sugenaegulators, we have a linear dynamic sys-
tem as the output function so that t&rule has the
form: _
If 21 is A andz is A and, .., andy’is A, Then
| - | £ (1) = Uix(t) + u(t)
Figure 2: Operation diagram using FKF. where x(t) = [Xl(t),xz(t),...,xn(t)]T is the state
vector, u(t) = [ug(t),ux(t),...,um(®)]", Ui and V,
are the state and input matrices ardft) =
V(z) in figure 2 represents the camera behaviour, [21(t),Z2(t), ..., zp(t)]T is the input to the fuzzy sys-
which is modeled as a simple delay(z) = k, -z 2 tem, so:
(see (Corke, 1998), (Hutchinson and Corke, 1996),
(Vincze and Hager, 2000), (Vincze and Weiman, R
1997) and (Vincze, 2000)). C(z) is the controller (A
simple proportional controller is implemented in ex- X(t) = =
periments presented in this paper). R(z) is the robot (u(z(1))
(for this work: R(z) = z/z— 1) and thePrediction Z
filter generates the feedforward signal by prediction
the position of the target. The variable for been mini-
mized isAx (generated by the vision system) that rep-
resents the deviation of the target respect to the de- < R

Figure 1: Operation diagram using KF presented by Corke.

+ Ax Xd+ Xr

Vision
System

Prediction filter

sired position (error). The controller calculates a ve- x(t) =
locity signalxy which moves the robot in the right di-
rection to decrease the error. Using this approach, no
path planning is needed (the elimination of this path Where
planning is important because it decreases the com- L
putational load (Corke, 1998)). T B

The transfer function of the robot describes the be- & =[&,8rl = Ri[lh, NI
haviour from the velocity input to the position reached Z Hi
by the camera, which includes a transformation in the =

image plane. Therefore, the transfer function consid- Our work is based on this idea and these expressions

ered is (Chroust and Vincze, 2003): (see (Passino and S., 1988) for more details). We have
7 mixed the Mamdani’s and th&ugeno's idea because
R(2) = 71 we have implemented an algorithm similarSageno

but not for linear systems. We obtain a normalized

weighting of several non linear recursive expressions.
The system works like we can see in figure 3 (see sec-
tion 5).

The FKF block is explained in the next sections (sec-
tions 4 and 5).
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Input MF figure 4. The biggest KF block (rounded) shown in his
X Fi(lns) figure is a combination of all used algorithms in the
fuzzy filter @B and apf@st (Chroust and Vincze,
2003),aBy, Kv, Ka andKj). This block obtains the
output of all specified filters. The 'Output MF’ calcu-
lates the final output using th® rules.

—(KF]

Velocity

Object's
Position

Now, we present the rulesx( considered for the
Weahe fuzzy filter:

(KF]

Accelerat.

Xk

Ri: IF object IS inside AND velocity IS low AND
acceleration IS low AND jerk IS low THEN FKR<v

- Ro: IF object IS inside AND velocity IS medium
: Output MF AND acceleration IS low AND jerk IS low THEN
o FKF=Kv

z _ Outpu
i N e Rs: IF object IS outside AND velocity IS low
FKF—k -afy+tk-Kat+..+c AND acceleration IS low AND jerk IS low THEN
FKF=qpsiow

R4: IF object IS outside AND velocity IS medium
AND acceleration IS low AND jerk IS low THEN

Fa(/)

[ESR R S Py R —————

Figure 3: FuzzyKalmanFilter proposed- FKF.

FKF=qpfast
> THEFUZZY KALMAN FILTER Rs: IF object IS inside AND velocity IS high AND
(FKF) acceleration IS low AND jerk IS low THEN FKR&v

We have developed a new filter that mixes different AR pbject IS{ggiie AND acceleration IS medium
: : e AND jerk IS low THEN FKF=02-afy+0.8-Ka

types ofKalmanfilters depending on the conditions

of the object’s movement. The main advantage of this Ry: IF object IS outside AND acceleration IS medium

new algorithm is the non-abrupt change of the filter's AND jerk IS low

output. THEN FKF=08-apy+0.2-Ka
Consider the nonlinear dynamic system Re: IF object IS inside AND acceleration IS high
x= fi(x,u);  y=gi(xu) AND jerk IS low
THEN FKF=Ka

as each one of the filters used. The application of the
fuzzy regulator in our case produces the next space-Rg: IF object IS outside AND acceleration IS high

state expression: AND jerk IS low
N THEN FKF=apy
2, fibou)-wou) Ruo: IF jerk IS high THEN FKEX
where N
WX, U) = Hi (%, U) These rules have been obtained empirically, based
’ N on the authors experience using the Kalman filter in
Z Kj(xu) different applications.
i=
The final system obtained has the same structure tharotice that ruleRyo (when jerk is high) shows that
filters used: % s the best filter considered ij and it does not de-
X=fa(xu); y=0(xu) pend on the object’s position (inside or outside) ve-

Figure 3 shows the FKF block diagram. In this fig- |ocity/acceleration value (low, medium or high).
ure, we can see that the general input is the position
sequence of the targeqf. Using this information, we  We have used a product inference engine, singleton
estimate the velocity, acceleration and jerk of the tar- fuzzifier and centre average defuzzifier. Figure 4
get in three separate KFs (Nomura and Naito presentpresents the fuzzy sets definition wh@ogax, Vmax) IS
the advantages of this hybrid technique in (Nomura the image Sizelel = Hacc = 2M/S, Oyel = Oacc = 0.5,
and T., 2000)). This information is used as’'Input MF’  Cye| = Cacc = 1, Gvel = dace = 3, ivel = lacc = 1 and
to obtain F(Ins), Fx(v), F3(a) and F(j). These MF jvel = jacc = 1 (these values have been empirically
inputs are the fuzzy membership functions defined in obtained).
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Figure 4: Parameter definition of the fuzzy system.
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Figure 6: Prediction of a smooth trajectory.
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6 RESULTS

This section is composed by two different parts: first
(section 6.1), we analyze the prediction algorithm pre-
sented originally in this paper (FKF block diagram
shown in figure 3) and second (section 6.2), some
simulations of the visual servoing scheme (see figure
2) are done including the FKF algorithm.

6.1 Fuzzy Kalman Filter (FKF) Results

In figure 5, we show the effectiveness of our algo-
rithm’s prediction compared with the classical KF
methods. In this figure, we can see positiGjigac-
tual object position)P;_, (object position ink — 1)
andP,_, (object position irk — 2). Next real position
of the object will bePL, ;, and points fromP}, ; to

5f+1, represent the prediction obtained by each single
filter. The best prediction is given by the FKF filter.
This experiment is done for a parabolic trajectory of
an object affected by the gravity acceleration. (See
figures 5 and 6).

We have done a lot of experiments for different
movements of the object and we have concluded that
our FKF algorithm works better than the others filters
compared (filters compared amf, afy, Kv, Ka, K|
and CPA -see section 6.2- with our FKF). Figure 6
shows the real trajectory and the trajectory predicted
for each filter. For this experiment, we have used the
first four real positions of the object as input for all
filters and they predict the trajectory using only this
information. As we can see in this figure, the best
prediction is again the FKF.

6.2 Visual Servoing Control Scheme
Results

To prove the control scheme presented in figure 2, we
have used the object motion shown in figure 7 (up).
This target motion represents a ramp-like motion be-
tween 1<t < 4 seconds and a sinusoidal motion for
t > 6 seconds. This motion model is corrupted with
a noise ofo=1 pixel. This motion is used by Stefan
Chroust and Markus Vincze in (Chroust and Vincze,
2003) to analyze thewitching Kalman filte SKF).

For this experiment, we compare the proposed fil-
ter (FKF) with a well known filter, theCircular Pre-
diction Algorithm(CPA) (Tenne and Singh, 2002). In
figure 7 (down), we can see the results of FKF and
CPA algorithms. For changes of motion behaviour,
the FKF produce less error than CPA. For the change
in t=1, the FKF error is [+0.008,-0] and [+0.015,-
0.09] for the CPA. For the change in t=4, FKF error =
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Table 1: Numerical comparative for dispersion value of all & ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
filters implemented (bounce of a ball experiment). é 2p .
£ L . : :
g 1
e, ‘ ‘ ‘ ‘ ‘ ‘ ‘
Init. pos.  af apy Kv Ka Kj FKF = 0 : 2 3 4 s 8 7 8 °
0.1 T A ) T T
-- CPA \ "
40 0.619 0.559 0.410 0721 0877 0.353 ”““" | i ]
40(bis) 0547 0.633 0426 0774 0822 0.340 oosf , ] K 1
50 0588 0.663 0.439 0.809 0914 0.381 vos ' ) |
70 0619 0.650 0428 0.700 0.821 0.365 : \ H
90 0.630 0.661 0458 0.818 0.857 0.343 o . ' l ]
150 0.646 0.682 0477 0.848 0.879 0.347 =, X H TN
3 i v 2 N
0.02| ] \ 4
i \
0.04 A \
\ \
[+0,-0.0072] and CPA error = [+0.09,-0.015]. For the SN 7
change in t=6, FKF error = [+0.022,-0] and CPA error ] ] ) y d
= [+0.122,-0.76]. For the region6t < 9 (sinusoidal Figure 7: Simulation result for tracking an object.

movement between 2.5m and 0.5m) both algorithms
works quite similarly: FKF error =£0.005] and CPA
error = [£0.0076]. CPA filter works well because it is
designed for movements similar to a sine shape, but
we can compare this results with the SKF filter pro- ooty
posed in (Chroust and Vincze, 2003) and SKF works
better (due to the AKF (Adaptive Kalman Filter) ef-
fect). Therefore, the FKF filter proposed works better
than CPA for all cases analyzed but comparing FKF E
with SKF, FKF is better for t=1, t=4 and t=6 but not 3
for 6 < t < 9 (sinusoidal movement). =t

0.02~

0.01

Figure 9 shows the zoom region<0t < 2 and
—0.02 < Axp < 0.02 of the same experiment. In this s
figure, we can see the fast response of the FKF pro-

! ; ; ; ; ;
posed . t (seconds)

Figure 8: Zoom of the simulation.

6.3 Experimental Results

Experimental results are obtained for this work us-
ing the following setup: Pulnix GE series high speed —T
camera (200 frames per second), Intel PRO/1000 i i
PT Server Adapter card, 3.06GHz Intel processor
PC computer,Windows XP ProfessionaD.S. and
OpenCVblob detection library.

For this configuration, the bounce of a ball onthe -
ground is processed to obtain data shown in figure 10.
Results of this experiment are presented in table 1.

In this table, we can see the dispersion of several fil-
ters. The FKF dispersion is less thaf, ay, Kv,

Ka andKj although FKF is a combination of them.
This table contains data from this particular experi-

ment (the bounce of a ball on the ground). For this TR ea os o8 1 iz 14 16 18 s
experiment, the position of the ball is introduced to t (seconds)
the filters to prove the behaviour of them. The filter Figure 9: Zoom between 0 and 2 seconds.

proposed (FKF) is the best analyzed.

In figure 11 we can see some frames of the experi-
ment 'bounce of a ball on the ground’. For each frame
the center of gravity of the tennis ball is obtained.
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Figure 10: Bounce of the ball on the ground. Data.

Figure 11: Bounce of the ball on the ground. Frames.
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7 CONCLUSIONSAND FUTURE
WORK

In section 6.1 (figures 5 and 6), we can see the qual-
ity of the new filter presented (FKF) which shows
good behaviour for smooth and discontinuous mo-
tions. The object’s position is estimated even when
it is inside the image plane and when it is outside the
image plane. Therefore, combine classic filters (KF)
when inside and steady-state filtes3(apy) when
outside.

We have compared our filter with3, afy, Kv,

Ka and Kj in experiments of pure prediction. We
have compared too, our filter witBircular Predic-
tion Algorithm (CPA) in this paper reproducing the
same experiment as (Chroust and Vincze, 2003) for a
direct comparison with the work done by Chroust and
Vincze. The filter proposed works very well but not
better than SKF for all conditions, therefore, the addi-
tion of a AKF action can improve the filter behaviour
(future work).

The FKF is evaluated with a ramp-like and
sinosoidal motions Ax; is reduced in all tests done
and the overshoot is decreased significantly.

Results presented in this paper are obtaine@fay =
Kp. Other controllers like PD, PID, ... will be imple-
mented in future work.
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