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Abstract: Further studies on computer-based perception by vision modelling are described. The visual perception is 
mathematically modelled, where the model receives and interprets visual data from the environment. The 
perception is defined in probabilistic terms so that it is in the same way quantified. At the same time, the 
measurement of visual perception is made possible in real-time. Quantifying visual perception is essential 
for information gain calculation. Providing virtual environment with appropriate perception distribution is 
important for enhanced distance estimation in virtual reality. Computer experiments are carried out by 
means of a virtual agent in a virtual environment demonstrating the verification of the theoretical 
considerations being presented, and the far reaching implications of the studies are pointed out. 

1 INTRODUCTION 

Visual perception, although commonly articulated in 
various contexts, it is generally used to convey a 
cognition related idea or message in a quite fuzzy 
form and this may be satisfactory in many instances. 
Such usage of perception is common in daily life. 
However, in professional areas, like computer 
vision, robotics, or design, its demystification or 
precise description is necessary for proficient 
executions. Since the perception concept is soft and 
thereby elusive, there are certain difficulties to deal 
with it. For instance, how to quantify it or what are 
the parameters, which play role in visual perception. 
Visual perception is one of the important 
information sources playing role on human’s 
behavior. Due to the diversity of existing approaches 
related to perception, which emerged in different 
scientific domains, we provide a comprehensive 
introduction to be explicit as to both, the objectives, 
and the contribution of the present research. 

Perception has been considered to be the 
reconstruction a 3-dimensional scene from 2-
dimensional image information (Marr, 1982; 
Poggio, Torre et al., 1985; Bigun, 2006). This image 
processing approach attempts to mimic the 

neurological processes involved in vision, with the 
retinal image acquisition as starting event. However, 
modeling the sequence of brain processes is a 
formidable endeavor. This holds true even when 
advanced computational methods are applied for 
modeling of the individual brain-components’ 
behavior (Arbib, 2003). The reason is the brain 
processes are complex.  

Brain researchers trace visual signals as they are 
processed in the brain. A number of achievements 
are reported in the literature (Wiesel, 1982; Hubel, 
1988; Hecht-Nielsen, 2006). However, due to 
complexity there is no consensus about the exact 
role of brain regions, sub-regions and individual 
nerve-cells in vision, and how they should be 
modeled (Hecht-Nielsen, 2006; Taylor, 2006). The 
brain models are all different due to the different 
focus of attention that refers to uncountable number 
of modalities in the brain. Therefore they are 
inconclusive as to understanding of a particular 
brain process like perception on a common ground. 
As a state of the art, they try to form a firm clue for 
perception and attention beyond their verbal 
accounts. In modeling the human vision the 
involved brain process components as well as their 
interactions should be known with certainty if a 
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deterministic approach, like the image processing 
approach, is to be successful. This is currently not 
the case. Well-known observations of visual effects, 
such as depth from stereo disparity (Prince, Pointon 
et al., 2002), Gelb effect (Cataliotti and Gilchrist, 
1995), Mach bands (Ghosh, Sarkar et al., 2006), 
gestalt principles (Desolneux, Moisan et al., 2003), 
depth from defocus (Pentland, 1987) etc. reveal 
components of the vision process, that may be 
algorithmically mimicked. However, it is unclear 
how they interact in human vision to yield the 
mental act of perception. When we say that we 
perceived something, the meaning is that we can 
recall relevant properties of it. What we cannot 
remember, we cannot claim we perceived, although 
we may suspect that corresponding image 
information was on our retina. With this basic 
understanding it is important to note that the act of 
perceiving has a characteristic that is uncertainty: it 
is a common phenomenon that we overlook items in 
our environment, although they are visible to us, i.e., 
they are within our visual scope, and there is a 
possibility for their perception. This everyday 
experience has never been exactly explained. It is 
not obvious how some of the retinal image data does 
not yield the perception of the corresponding objects 
in our environment. Deterministic approaches do not 
explain this common phenomenon.  

The psychology community established the 
probable “overlooking” of visible information 
experimentally (Rensink, O’Regan et al., 1997; 
O’Regan, Deubel et al., 2000), where it has been 
shown that people regularly miss information 
present in images. For the explanation of the 
phenomenon the concept of visual attention is used, 
which is a well-known concept in cognitive sciences 
(Treisman and Gelade, 1980; Posner and Petersen, 
1990; Itti, Koch et al., 1998; Treisman, 2006). 
However, it remains unclear what attention exactly 
is, and how it can be modeled quantitatively. The 
works on attention mentioned above start their 
investigation at a level, where basic visual 
comprehension of a scene must have already 
occurred. An observer can exercise his/her bias or 
preference for certain information within the visual 
scope only when he/she has already a perception 
about the scene, as to where potentially relevant 
items exist in the visible environment. This early 
phase, where we build an overview/initial 
comprehension of the environment is referred to as 
early vision in the literature, which is omitted in the 
works on attention mentioned above. While the 
early perception process is unknown, identification 

of attention in perception, that is due to a task 
specific bias, is limited. This means, without 
knowledge of the initial stage of perception its 
influence on later stages is uncertain, so that the 
later stages are not uniquely or precisely modeled 
and the attention concept is ill-defined. Since 
attention is ill-defined, ensuing perception is also 
merely ill-defined. Some examples of definitions on 
perception are “Perception refers to the way in 
which we interpret the information gathered and 
processed by the senses,”  (Levine and Sheffner, 
1981) and “Visual perception is the process of 
acquiring knowledge about environmental objects 
and events by extracting information from the light 
they emit or reflect,” (Palmer, 1999). Such verbal 
definitions are helpful to understand what perception 
is about; however they do not hint how to tackle the 
perception beyond qualitative inspirations. Although 
we all know what perception is apparently, there is 
no unified, commonly accepted definition of it. 

As a summary of the previous part we note that 
visual perception and related concepts have not been 
exactly defined until now. Therefore, the perception 
phenomenon is not explained in detail and the 
perception has never been quantified, so that the 
introduction of human-like visual perception to 
machine-based system remains as a soft issue. 

In the present paper a newly developed theory of 
perception is introduced. In this theory visual 
perception is put on a firm mathematical foundation. 
This is accomplished by means of the well-
established probability theory. The work 
concentrates on the early stage of the human vision 
process, where an observer builds up an unbiased 
understanding of the environment, without 
involvement of task-specific bias. In this sense it is 
an underlying fundamental work, which may serve 
as basis for modeling later stages of perception, 
which may involve task specific bias. The 
probabilistic theory can be seen as a unifying theory 
as it unifies synergistic visual processes of human, 
including physiological and neurological ones. 
Interestingly this is achieved without recourse to 
neuroscience and biology. It thereby bridges from 
the environmental stimulus to its mental realization. 

Through the novel theory twofold gain is 
obtained. Firstly, the perception and related 
phenomena are understood in greater detail, and 
reflections about them are substantiated. Secondly, 
the theory can be effectively introduced into 
advanced implementations since perception can be 
quantified. It is foreseen that modeling human visual 
perception can be a significant step as the topic of 
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perception is a place of common interest that is 
shared among a number of research domains, 
including cybernetics, brain research, virtual reality 
computer graphics, design and robotics (Ciftcioglu, 
Bittermann et al., 2006). Robot navigation is one of 
the major fields of study in autonomous robotics 
(Oriolio, Ulivi et al., 1998; Beetz, Arbuckle et al., 
2001; Wang and Liu, 2004). In the present work, the 
human-like vision process is considered. This is a 
new approach in this domain, since the result is an 
autonomously moving robot with human-like 
navigation to some extent. Next to autonomous 
robotics, this belongs to an emerging robotics 
technology, which is known as perceptual robotics 
(Garcia-Martinez and Borrajo, 2000; Söffker, 2001; 
Burghart, Mikut et al., 2005; Ahle and Söffker, 
2006; Ahle and Söffker, 2006). From the human-
like behaviour viewpoint, perceptual robotics is 
fellow counterpart of emotional robotics, which is 
found in a number of applications in practice 
(Adams, Breazeal et al., 2000). Due to its merits, the 
perceptual robotics can also have various 
applications in practice. 

From the introduction above, it should be 
emphasized that, the research presented here is 
about to demystify the concepts of perception and 
attention as to vision from their verbal description to 
a scientific formulation. Due to the complexity of 
the issue, so far such formulation is never achieved. 
This is accomplished by not dealing explicitly with 
the complexities of brain processes or neuroscience 
theories, about which more is unknown than known, 
but incorporating them into perception via 
probability. We derive a vision model, which is 
based on common human vision experience 
explaining the causal relationship between vision 
and perception at the very beginning of our vision 
process. Due to this very reason, the presented 
vision model precedes all above referenced works in 
the sense that, they can eventually be coupled to the 
output of the present model. 

Probability theoretic perception model having 
been established, the perception outcome from the 
model is implemented in an avatar-robot in virtual 
reality. The perceptual approach for autonomous 
movement in robotics is important in several 
respects.  On one hand, perception is very 
appropriate in a dynamic environment, where 
predefined trajectory or trajectory conditions like 
occasional obstacles or hindrances are duly taken 
care of. On the other hand, the approach can better 
deal with the complexity of environments by 
processing environmental information selectively.  

The organization of the paper is as follows. 
Section two gives the description of the perception 
model developed in the framework of ongoing 
perceptual robotics research. Section three describes 
a robotics application. This is followed by 
discussion and conclusions. 

2 A PROBABILISTIC THEORY 
OF VISUAL PERCEPTION 

2.1 Perception Process 

We start with the basics of the perception process 
with a simple and special, yet fundamental 
orthogonal visual geometry. It is shown in figure 1. 
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y

y
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y

 
Figure 1:  The geometry of visual perception from a top 
view, where P represents the position of eye, looking at a 
vertical plane with a distance lo to the plane; fy(y) is the 
probability density function in y-direction. 

In figure 1, the observer is facing and looking at a 
vertical plane from the point denoted by P. By 
means of looking action the observer pays visual 
attention equally to all locations on the plane in the 
first instance. That is, the observer visually 
experiences all locations on the plane without any 
preference for one region over another. Each point 
on the plane has its own distance within the 
observer’s scope of sight which is represented as a 
cone. The cone has a solid angle denoted by θ. The 
distance of a point on the plane and the observer is 
denoted by l and the distance between the observer 
and the plane is denoted by lo. Since visual 
perception is associated with distance, it is 
straightforward to proceed to express the distance of 
visual perception l in terms of θ and lo. From figure 
1, this is given by 
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)cos(θ
oll =  (1)

Since we consider that the observer pays visual 
attention equally to all locations on the plane in the 
first instance, the probability of getting attention for 
each point on the plane is the same so that the 
associated probability density function (pdf) is 
uniformly distributed. This positing ensures that 
there is no visual bias at the beginning of visual 
perception as to the differential visual resolution 
angle dθ. Assuming the scope of sight is defined by 
the angle θ = ± π/2, the pdf  fθ is given by 

πθ
1

=f  (2)

since θ is a random variable, the distance x in (1) is 
also a random variable. The pdf fl(l) of this random 
variable is computed as (Ciftcioglu, Bittermann et 
al.) 
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for the interval   ∞≤≤ ll o
. 

Considering that 

ol
ytg =θ)(   (4)

and by means of pdf calculation similar to that to 
obtain fx(x) one can obtain fy (y) as (Ciftcioglu, 
Bittermann et al.). 
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for the interval ∞≤≤∞− y . (9) and (11) are dual 
representation of the same phenomenon. The 
probability density functions fl(l) and fy(y) are 
defined as attention in the terminology of cognition. 

By the help of the results given by (9) and (11) 
two essential applications in design and robotics are 
described in a previous research  (Bittermann, 
Sariyildiz et al.). In this research the fundamental 
orthogonal visual geometry is extended to a general 
visual geometry to explore the further properties of 
the perception phenomenon. In this geometry the 
earlier special geometry the orthogonality condition 
of the infinite plane is relaxed. This geometry is 
shown in figure 2 where the attentions at the points 
O and O’ are subject to computation, with the same 
axiomatic foundation of the probabilistic theory, as 
before. Since the geometry is symmetrical with 

respect to x axis, we consider only the upper domain 
of the axis without loss of the generality. 
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Figure 2: The geometry of visual perception where the 
observer has the position at point P with the orientation to 
the point O. The x,y coordinate system has the origin 
placed at O and the line defined by the points P and O 
coincides with the x axis for the computational 
convenience. 

In figure 2, an observer at the point P is viewing an 
infinite plane whose intersection with the plane of 
page is the line passing from two point designated as 
O and O’. O represents the origin. The angle 
between OO’ and OP is designated as θ. The angle 
between OP and OO’ is defined by φ.  The distance 
between P and O’ is denoted by s and the distance 
of O’ to the OP line is designated as h. The distance 
of O’ to O is taken as a random variable and denoted 
by r. By means of looking action the observer pays 
visual attention equally in all directions within the 
scope of vision. That is, in the first instance, the 
observer visually experiences all locations on the 
plane without any preference for one region over 
another. Each point on the plane has its own 
distance within the observer’s scope of sight which 
is represented as a cone. The cone has a solid angle 
denoted by θ. The distance between a point on the 
plane and the observer is denoted by l and the 
distance between the observer and the plane is 
denoted by lo. Since we consider that the observer 
pays visual attention equally for all directions within 
the scope of vision, the associated probability 
density function (pdf) with respect to θ is uniformly 
distributed. Positing this ensures that there is no 
visual bias at the beginning of visual perception as 
to the differential visual resolution angle dθ. 
Assuming the scope of sight is defined by the angle 
θ = + π/2, the pdf  fθ is given by 

 
2/

1
πθ =f  (6)
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Since θ is a random variable, the distance r in (1) is 
also a random variable. The pdf fr(r) of this random 
variable is computed as follows. 

To find the pdf of the variable r denoted fr(r) for a 
given r we consider the theorem on the function of 
random variable and, following Papoulis (Papoulis), 
we solve the equation  

r= g(θ)  (7)

for θ in terms of r. If  θ1 , θ2 ,…., θn , .. are all its 
real roots, 
 
r=g(θ1) = g(θ2) =……= g(θn) = …. 
Then 
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Aiming to determine fr(r) given by (8), from figure 2 
we write 

1l
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From above, we solve h, which is 
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From figure 2, we write 
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Using (12) in (13), we obtain 
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We take the derivative w.r.t. θ, which gives 
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Substituting tg(θ) from (14) into (16) yields 
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Above, tg(θ1) is computed from (14) as follows. 
  

We apply the theorem of function of random 
variable (Papoulis): 
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Substitution of (23) into (22) gives 
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To show (25) is a pdf, we integrate it in the interval 
given by (26). The second degree equation at the 
denominator of (25) gives  
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where b=2lor and a=1 and c=lo
2, so that ac4b2 <  

which means, for this the integral  
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as it should verify as pdf. Since attention is a scalar 
quantity per unit, it has to be the same for different 
geometries subjected to computation meaning that it 
is measured with the same units in both cases. In the 
same way we can say that since perception is a 
scalar quantity, the perceptions have to be 
correspondingly the same. Referring to both the 
orthogonal geometry and the general geometry, the 
density functions are shown in figure 3a. The same 
attention values at the origin O are denoted by po. 
Since the attentions are the same, for the perception 
comparison, the attention values have to be 
integrated within the same intervals in order to 
verify the same quantities at the same point. Figure 
3b is the magnified portion of figure 3a in the 
vicinity of origin. In this magnified sketch the 
infinitesimally small distances dy and dr are 
indicated where the relation between dy and dr is 
given by dy =dr sin(ϕ) or 
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substitution of (29) into (30) yields 
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Figure 3: Illustration of the perception in the orthogonal 
geometry and the general geometry indicating the 
relationship between the infinitesimally small distances 
dy and dr. The geometry (a) and zoomed region at the 
origin (b). 
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which is the attention for a general geometry. It 
boils down into the orthogonal geometry for all 
conditions; for a general position of O’ within the 
visual scope, this is illustrated in figure 4 as this was 
already illustrated in figure 3 for the origin O. 
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Figure 4: Illustration of the perception in the orthogonal 
geometry and the general geometry indicating the 
relationship between the infinitesimally small distances dŷ 
and dr. This is the same as figure 3 but the zoomed region 
is at a general point denoted by O’. 

The pdf has several interesting features. First, for 
ϕ=π/2, it boils down  
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An interesting point is that when ϕ→0 but r≠0. This 
means O’ is on the gaze line from P to O. For the 
case O’ is between P and O, fr(r) becomes 
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or otherwise  
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In (33) for r→ l0  fr(r)→∞. This case is similar to 
that in (3) where l→ l0  fl(l)→∞. 
The variation of fr

*(r,ϕ) is shown in figure 5 in a 3-
dimensional plot where ϕ is a parameter. 
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Figure 5: The variation of fr

*(r,ϕ) is shown as a 3-
dimensional plot for lo=5. 

The actual fr(r) is obtained as the intersection of a 
vertical plane passing from the origin O and the 
surface. The analytical expression of this 
intersection is given by (25) and it is shown in figure 
4 where ϕ is a parameter; for the upper plot  
ϕ=π/4 and for the lower plot ϕ=π/2. The latter 
corresponds to the vertical cross section of the 
surface shown in figure 3 as lower plot.  
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Figure 6:  The pdf fr(r,ϕ) where ϕ is a parameter; for the 
upper plot ϕ=π/4 and for the lower plot ϕ=π/2. 

The pdf in (25) indicates the attention variation 
along the line r in figure 2 where the observer faces 
the point O.  

3 APPLICATION 

Presently, the experiments have been done with the 
simulated measurement data since the 
multiresolutional filtering runs in a computationally 
efficient software platform which is different than 
the computer graphics platform of virtual reality. 
For the simulated measurement data, first the 
trajectory of the virtual agent is established by 
changing the system dynamics from the straight 

ahead mode to bending mode for a while, three 
times. Three bending modes are seen in figure 7 
with the complete trajectory of the perceptual agent. 
The state variables vector is given by 

],,,,[ ω••= yyxxX  
where ω is the angular rate and it is estimated during 
the move. When the robot moves in a straight line, 
the angular rate becomes zero. 

In details, there are three lines plotted in figure 7. 
The green line represents the measurement data set. 
The black line is the extended Kalman filtering 
estimation at the highest resolution of the perception 
measurement data. The outcome of the 
multiresolutional fusion process is given with the 
blue line. The true trajectory is indicated in red. In 
this figure they cannot be explicitly distinguished. 
For explicit illustration of the experimental 
outcomes the same figure with a different zooming 
range and the zooming power are given in figures 8 
and 9 for bending mode and 10 for a straight-ahead 
case. From the experiments it is seen that, the 
Kalman filtering is effective for estimation of the 
trajectory from perception measurement. Estimation 
is improved by the multiresolutional filtering. 
Estimations are relatively more accurate in the 
straight-ahead mode. 
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trajectory ref [r], MDF [b], EKF [k] and measurements [g]

 
Figure 7:  Robot trajectory, measurement, Kalman 
filtering and multiresolutional filtering estimation.  

It is noteworthy to mention that, the 
multiresolutional approach presented here uses 
calculated measurements in the lower resolutions. In 
general case, each sub-resolution can have separate 
perception measurement from its own dedicated 
perceptual vision system for more accurate 
executions. The multiresolutional fusion can still be 
improved by the use of different data acquisition 
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provisions which play the role of different sensors at 
each resolution level and to obtain independent 
information subject to fusion. 

 
Figure 8: Enlarged Robot trajectory, measurement Kalman 
filtering and multiresolutional filtering estimation, in 
bending mode (light grey is for measurement, the smooth 
line is the trajectory). 

 
Figure 9: Enlarged Robot trajectory, measurement Kalman 
filtering and multiresolutional filtering estimation, in 
bending mode (light grey is for measurement, the smooth 
line is the trajectory). 

4 DISCUSSION AND 
CONCLUSION 

Although, visual perception is commonly articulated 
in various contexts, generally it is used to convey a 
cognition related idea or message in a quite fuzzy 
form and this may be satisfactory in many instances. 
Such usage of perception is common in daily life. 

However, in professional areas, like architectural 
design or robotics, its demystification or precise 
description is necessary for proficient executions. 
Since the perception concept is soft and thereby 
elusive, there are certain difficulties to deal with it. 
For instance, how to quantify it or what are the 
parameters, which play role in visual perception. 
The positing of this research is that perception is a 
very complex process including brain processes. In 
fact, the latter, i.e., the brain processes, about which 
our knowledge is highly limited, are final, and 
therefore they are most important. Due to this 
complexity a probabilistic approach for a visual 
perception theory is very much appealing, and the 
results obtained have direct implications which are 
in line with our common visual perception 
experiences, which we exercise every day. 

 

Figure 10: Enlarged Robot trajectory, measurement 
Kalman filtering and multiresolutional filtering estimation 
in straight-ahead mode (light grey is for measurement, the 
smooth line is the trajectory). 

In this work a novel theory of visual perception is 
developed, which defines perception in probabilistic 
terms. The probabilistic approach is most 
appropriate, since it models the complexity of the 
brain processes, which are involved in perception 
and result in the characteristic uncertainty of 
perception, e.g., an object may be overlooked 
although it is visible. Based on the constant 
differential angle in human vision, which is the 
minimal angle humans can visually distinguish, 
vision is defined as the ability to see, that is, to 
receive information, which is transmitted via light, 
from different locations in the environment, which 
are located within different differential angles. This 
ability is modeled by a function of a random 
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variable, namely the viewing direction, which has a 
uniform probability density for the direction, to 
model unbiased vision in the first instance. Hence 
vision is defined as probabilistic act. Based on 
vision, visual attention is defined as the 
corresponding probability density with respect to 
obtaining information from the environment. 
Finally, the visual perception is the intensity of 
attention, which is the integral of attention over a 
certain unit length, yielding a probability that the 
environmental information from a region in the 
environment is realized in the brain. 

It is noteworthy to emphasize that perception is to 
be expressed in terms of intensity, which is the 
integral of a probability density. This is not 
surprising since perception, corresponding to its 
commonly understood status as a mental event, 
should be a dimensionless quantity, as opposed to a 
concept, which involves a physical unit, namely a 
probability density over a unit length, like visual 
attention. The definitions are conforming to 
common perception experience by human. The 
simplicity of the theory in terms of understanding its 
result together with its explanatory power, indicates 
that a fundamental property of perception has been 
identified. 

In this theory of perception a clear distinction is 
made between the act of perceiving and seeing. 
Namely, seeing is a definitive process, whereas 
perception is a probabilistic process. This distinction 
may be a key to understand many phenomena in 
perception, which are challenging to explain from a 
deterministic viewpoint. For example the theory 
explains the common experience, that human beings 
may overlook an object while searching for it, 
although such an overlooking is not justified, and it 
is difficult to explain the phenomenon. This can be 
understood from the viewpoint that vision is a 
probabilistic act, where there exists a chance that 
corresponding visual attention is not paid 
sufficiently for the region in the environment, which 
would provide the pursued information. An 
alternative explanation, which is offered by an 
information theoretic interpretation of the theory, is 
that through the integration of the visual attention 
over a certain domain some information may be lost, 
so that, although attention was paid to a certain item 
in the environment, pursued information is not 
obtained. The theory also explains how it is 
possible, that different individuals have different 
perceptions in the same environment. Although 
similar viewpoints in the same environment have 
similar visual attention with unbiased vision, the 

corresponding perception remains a phenomenon of 
probability, where a realization in the brain is not 
certain, although it may be likely. 

The theory is verified by means of extensive 
computer experiments in virtual reality. From visual 
perception, other derivatives of it can be obtained, 
like visual openness perception, visual privacy, 
visual color perception etc. In this respect, we have 
focused on visual openness perception, where the 
change from visual perception to visual openness 
perception is accomplished via a mapping function 
and the work is reported in another publication 
(Ciftcioglu, Bittermann et al.). Such perception 
related experiments have been carried out by means 
of a virtual agent in virtual reality, where the agent 
is equipped with a human-like vision system 
(Ciftcioglu, Bittermann et al.). 

Putting perception on a firm mathematical 
foundation is a significant step with a number of far 
reaching implications. On one hand vision and 
perception are clearly defined, so that they are 
understood in greater detail, and reflections about 
them are substantiated. On the other hand tools are 
developed to employ perception in more precise 
terms in various cases and even to measure 
perception. Applications for perception 
measurement are architectural design, where they 
can be used to monitor implications of design 
decisions, and autonomous robotics, where the robot 
moves based on perception (Ciftcioglu, Bittermann 
et al.). 
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