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Abstract: Typically used simplified error measures, like mean-squared-error (MSE), do not reveal everything about 
the clinical quality of lossy compressed medical signals. Errors have to be interpreted via essential medical 
parameters. The medical parameters depend on the type of the signal and only the preservation of essential 
medical parameters can guarantee the correct clinical quality. In this study, short electromyography (EMG) 
signals are compressed with DCT transformation -based lossy compression method. The compression is 
gained with irreversible masking and scalar quantization of the DCT coefficients. The most prominent 
medical parameters of EMG signal are the mean frequency (MNF) and the median frequency (MDF). The 
behaviors of these parameters are studied both by fitting a regression line and by examining the mean 
absolute errors frequency-by-frequency over clinically interesting frequency range. This reveals the 
frequency dependency of errors of the medical parameters and inspires the idea that the generated linear 
model can be used for estimating the correct value of the processed medical parameter.       

1 INTRODUCTION 

The compression ratio, the computational efficiency 
of the method, and the quality of the result are the 
most essential features of lossy signal compression 
(Salomon, 2004). The quality of the result is 
typically characterized with mathematical, 
measurable error, or the distance between original 
and processed (compressed-decompressed) signal.   

It has not been validated that simplified error, 
represented as mean-squared-error (MSE) (Carotti et 
al., 2006), signal-to-noise-ratio (SNR) (Cuerrero and 
Mailhes, 1997) or root-mean-squared difference 
(PRD) (Wellig et al., 1998), can establish the 
preservation of medical parameters. Only the 
preservation of essential medical parameters can 
guarantee the correct clinical quality. In spite of that 
fact, many medical signal compression studies rely 
only on simplified error measurements. However, 
some of the thorough studies have been concentrated 
on distinguishing proper medical parameters (Chan, 
Lovely and Hudgins, 1997; Carotti et al., 2006; 
Grönfors, Reinikainen and Sihvonen, 2006). 

The lossy compression of electromyography 
(EMG) signals is not intensively studied, although 

the first methods have been published almost ten 
years ago (Cuerrero and Mailhes, 1997). Anyway, 
currently many EMG technologies, for example 
wireless measuring and archiving in patient 
recordings, need effective data compression. In this 
study, a DCT-based transformation approach has 
been used (Cuerrero and Mailhes, 1997; Berger et 
al., 2003), because of well-known algorithm with 
efficient implementation. 

The most prominent spectral features of EMG 
signal are the mean frequency (MNF) and the 
median frequency (MDF) (Farina and Merletti, 
2000; Filligoi and Felici, 1999), whose time 
evolution has been used for clinical assessment of 
EMG recordings. The simplified error represents a 
suggestive average estimate of the error value of the 
medical parameters, but it cannot be used to predict 
where in the dynamic range the error has been 
concentrated. In this study, we focus on versatile 
evaluation of compression effects on medical 
parameters. Both systematic and random errors on 
medical parameters are examined over these 
dynamic ranges. 
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2 MATERIALS AND METHODS 

We have used real EMG recordings in this study. All 
the tests and simulations were done with Matlab 
(Versions 6.5.0.180913a Release 13 and 7.14 
Release 14). 

2.1 Test Signals 

We have used EMG signals measured from 
paraspinal muscles of healthy young volunteers. The 
measurements and classification were done by an 
experienced clinical neurophysiologist. The duration 
of every signal was 20 seconds and they were 
sampled with 1 kHz sampling frequency, consisting 
of 20000 twelve-bit integer values measured with 
DCU-600 lightweight EMG system (Sihvonen et al., 
2004). Each signal consists of several muscle 
activity periods. 

We have randomly picked out five 20000 sample 
long EMG signals for training material and another 
five 20000 sample long EMG signals for testing 
material. On other words, we have used two 
independent materials for testing and training, both 
consisting of 100000 samples.   

2.2 Spectral Features Mean Frequency 
and Median Frequency 

The mean and median frequencies are calculated 
from the frequency spectrum of the segmented 
signal. Signal segments are sliding over the signal 
with one sample step (segments are heavily 
overlapping). The frequency spectrum is obtained by 
taking the FFT of the segment, using a Hanning 
window of length 1024. The frequency spectrum 
consists of 512 amplitude coefficients, Ai.  

The mean frequency MNF is the amplitude-
weighted average of the frequencies, 
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Graphically, the median frequency is the 

frequency dividing the area of the amplitude 
spectrum into equal halves. The value can be 
computed using a cumulative function 
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The median frequency MDF is the value of fk for 

which the value of cfk is as close to 1/2 as possible. 

2.3 The DCT Method 

The proposed compression technique is based on 
discrete cosine transformation which is a very 
popular transformation used in many compression 
schemes, especially in image compression standards 
such as JPEG. There are also applications for 
biomedical signal compression based on DCT 
(Cuerrero and Mailhes, 1997; Berger et al., 2003). 
The idea of transformation coding is that the 
sequence of n data samples of one domain is rotated 
to some other domain with equation  

 
(3)=X TY  

 
where X is the vector of original signal coefficients, 
Y is the vector of transformed coefficients and T is  
the transform matrix. The DCT coefficients of n data 
samples in one-dimensional case is (Salomon, 2004) 
given by 
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Input vector of n data values is pt and the output 

vector is a set of n DCT coefficients Gf. The inverse 
DCT transformation is (Salomon, 2004) given by 
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DCT compression concentrates signal energy to 
a small number of DCT coefficients and the 
compression is usually achieved by eliminating the 
coefficients containing less information.  

The DCT method applied here is based on three 
steps: 
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• DCT  
• Eliminating some of DCT coefficients 

by using a masking vector 
• Scalar quantization of the coefficients 

First step was to calculate DCT from the original 
signal using blocks of 16, 24 or 32 signal 
coefficients. In these tests DCT was done by using 
MatLab's DCT-function. After that, some of the 
coefficients were eliminated by using binary 
maskvector. Maskvector is the same size as the used 
DCT block size. If maskvector's value in some index 
is zero, the value of corresponding index of DCT 
block will be eliminated. Otherwise maskvector's 
value is one and DCT coefficient in corresponding 
index will not be eliminated. 

Maskvector is constant during the whole 
compression process and the same vector is used 
when compression is done and when signal is 
decompressed. Before IDCT, receiver adds zeros at 
those indexes of DCT block where coefficients have 
been eliminated to have correct number of 
reconstructed signal coefficients. 

In this study, we have used masking to eliminate 
high end DCT coefficients. For block size 16 
coefficients we masked out last 3, 5 and 7 DCT 
coefficients, for block size 24 respectively 4, 8 and 
12 DCT coefficients, and for block size 32 
respectively 5, 10 and 15. 

After masking the selected coefficients, the rest 
of coefficients will be scalar quantized. Compression 
in this method comes from masking some DCT 
coefficients and from scalar quantization. 

Decompression is done by finding the DCT 
values corresponding to indexes from codebook, 
adding zeros to those places of the DCT block where 
coefficients have been eliminated and making the 
IDCT. 

2.4 Scalar Quantization of Coefficients 

In this study, non-uniform scalar quantization 
method was used to quantize the DCT coefficients. 
In a uniform scalar quantization the difference 
between every value in codebook is the same, 
whereas in a non-uniform scalar quantization the 
difference between codebook values depends on the 
distribution of coefficients' probabilities. In the 
intervals where the probability of that the coefficient 
is placed on that interval is large, the difference 
between codebook values is short, and where the 
probability of coefficient is placed on some interval 
is small, the difference between codebook values is 
bigger. 

Table 1: Raw remaining sizes and mean-squared-errors 
(MSE) of compressed signals in percentages by variations. 

Codebook size 64 (6 bit) 
Segment length 16 samples 

Without mask 50% 25.6498 
Masking last 3 41% 25.9935 
Masking last 5 34% 27.6196 
Masking last 7 28% 36.1951 

Segment length 24 samples 
Without mask 50% 17.0290 

Masking last 4 42% 17.2294 
Masking last 8 33% 19.0580 

Masking last 12 25% 36.3946 
Segment length 32 samples 

Without mask 50% 19.5787 
Masking last 5 42% 19.7208 

Masking last 10 34% 20.8712 
Masking last 15 27% 31.1169 

Codebook size 256 (8 bit) 
Segment length 16 samples 

Without mask 67% 20.2835 
Masking last 3 54% 20.6467 
Masking last 5 46% 22.2934 
Masking last 7 38% 30.9039 

Segment length 24 samples 
Without mask 67% 13.6706 

Masking last 4 56% 13.8864 
Masking last 8 44% 15.7420 

Masking last 12 33% 33.1424 
Segment length 32 samples 

Without mask 67% 18.4853 
Masking last 5 56% 18.6404 

Masking last 10 46% 19.8118 
Masking last 15 35% 30.1023 

 
We constructed the codebooks by using Matlab's 

KMEANS function. Before using KMEANS 
function, the DCT of the training signal was 
calculated using the same DCT block size which 
will be used when compressing the test signal. 
KMEANS function was given the following 
parameters: training signal, which has 50000 
samples, replicates 'rep' was 3, which made method 
more optimal, maximum number of iterations 
'maxiter' was 800 and 'EmptyAction' was 'singleton', 
which creates a new cluster consisting of the one 
point furthest from its centroid. We tested codebook 
sizes 64 and 256. For codebook size 64, it is possible 
to present all codebook indexes with 6 bits and 
respectively for codebook size 256, indexes are 
presented with 8 bits. 
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3 RESULTS 

The transformation itself has no compression effect; 
all the compression is gained with irreversible 
masking and scalar quantization of DCT 
coefficients.  

The achieved compression rations and related 
MSE values by processing variations are listed in 
Table 1. The general observation is that the MSE 
increases when more coefficients are masked out 
and MSE decreases when codebook size increases.  

3.1 The Parameter Model 

The mean frequency and median frequency values 
are calculated from sliding segments for original 
testsignal and all compressed-decompressed signals. 
In every case we got 98974 MNF, MDF -pairs from 
every signal. These values are compared time 
synchronically against values of the original 
unprocessed test material. That way we got new set 
of value pairs: 
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where 98973,...,0=i  is the segment number.  

The pairs of values make possible the evaluation 
of the effects of lossy compression to essential 
medical parameters from-frequency-to-frequency. In 
an ideal case, there are no differences. 
  

 
Figure 1: Idea of fitting the regression line. 

To model the behaviour of original MNF and 
MDF values against the processed values, we fit the 
regression lines to all sets with Matlab's POLYFIT 
function.   
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In Figure 1, the best fit line can be seen inside the 
cloud of data points. Both axes are in frequency (Hz) 
and the points are presented as the original value on 
X-axis against the processed value on Y-axis. The 
line coefficients and the norm of residuals are listed 
in Table 2 - 5.  If the line is exactly diagonal, there is 
no error between the medical parameters of original 
and processed signals.  

The error of MNF value is typically positive in 
low frequencies (the MNF of processed signal is 
higher than the MNF of the original signal) and 
negative in high frequencies. Reversal point is 
around 80 Hz. The negative error in high frequencies 
is smaller on nonmasked cases and the masking 
increases it. The behaviour of the error of MDF 
value is similar to MNF value, but typically smaller 
in absolute value.   

The line coefficients and the norm of residuals 
values not seems to be dependent on segment length. 
By comparing MSE values in Table 1 and norm of 
residual values in Tables 2-5, can be recognized that 
results are more or less correlated with each other.  

Table 2: Line coefficients and the norm of the residuals of 
MNF values. 

Codebook size 64 (6 bit) 
Segment length 16 samples 

Without mask a=0.9611   b=5.0618 526.1498 
Masking last 3 a=0.9479   b=5.6428 592.4270 
Masking last 5 a=0.9401   b=6.1727 727.8094 
Masking last 7 a=0.9425   b=5.9066 954.0903 

Segment length 24 samples 
Without mask a=0.9824   b=2.5583 280.5778 

Masking last 4 a=0.9616   b=3.6733 486.0408 
Masking last 8 a=0.9421   b=4.6243 833.8518 

Masking last 12 a=0.9110   b=6.0588 1.1791e+003 
Segment length 32 samples 

Without mask a=0.9780   b=2.8869 301.1080 
Masking last 5 a=0.9635   b=3.5139 394.1623 

Masking last 10 a=0.9432   b=4.5146 626.5258 
Masking last 15 a=0.9121   b=5.4824 972.4219 

 

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

152



 

Table 3: Line coefficients and the norm of the residuals of 
MNF values. 

Codebook size 256 (8 bit) 
Segment length 16 samples 

Without mask a=0.9721    b=3.4008 412.3716 
Masking last 3 a=0.9607    b=3.9323 544.9072 
Masking last 5 a=0.9552    b=4.3098 711.5584 
Masking last 7 a=0.9553    b=4.3155 946.9896 

Segment length 24 samples 
Without mask a=0.9865    b=1.7056 242.4786 

Masking last 4 a=0.9660    b=2.8420 505.2355 
Masking last 8 a=0.9469    b=3.8802 832.9791 

Masking last 12 a=0.9160    b=5.3868 1.1716e+003 
Segment length 32 samples 

Without mask a=0.9752    b=2.8877 292.1546 
Masking last 5 a=0.9605    b=3.5969 423.3512 

Masking last 10 a=0.9412    b=4.5570 651.8788 
Masking last 15 a=0.9119    b=5.4024 979.2064 

Table 4: Line coefficients and the norm of the residuals of 
MDF values. 

Codebook size 64 (6 bit) 
Segment length 16 samples 

Without mask c=0.9943  d=0.9374 337.6673 
Masking last 3 c=0.9895  d=1.0218 344.2408 
Masking last 5 c=0.9837  d=1.1714 385.5636 
Masking last 7 c=0.9689  d=1.4947 501.9240 

Segment length 24 samples 
Without mask c=0.9949  d=0.6864 291.5252 

Masking last 4 c=0.9890  d=0.8036 355.9760 
Masking last 8 c=0.9774  d=1.0882 477.4020 

Masking last 12 c=0.9328  d=2.3365 708.1398 
Segment length 32 samples 

Without mask c=0.9960  d=0.6308 279.4163 
Masking last 5 c=0.9910  d=0.7421 295.6508 

Masking last 10 c=0.9807  d=1.0079 361.8950 
Masking last 15 c=0.9445  d=1.9601 574.9671 

Table 5:  Line coefficients and the norm of the residuals of 
MDF values. 

Codebook size 256 (8 bit) 
Segment length 16 samples 

Without mask c=0.9955  d=0.5822 261.3096 
Masking last 3 c=0.9914  d=0.6590 289.8141 
Masking last 5 c=0.9863  d=0.7767 344.2559 
Masking last 7 c=0.9717  d=1.1063 469.8654 

Segment length 24 samples 
Without mask c=0.9978  d=0.3327 243.8635 

Masking last 4 c=0.9918  d=0.4807 296.6823 
Masking last 8 c=0.9806  d=0.7793 422.6246 

Masking last 12 c=0.9365  d=2.0190 672.4723 
Segment length 32 samples 

Without mask c=0.9932  d=0.7448 261.7802 
Masking last 5 c=0.9884  d=0.8634 287.3707 

Masking last 10 c=0.9779  d=1.1613 362.2217 
Masking last 15 c=0.9426  d=2.0834 570.4948 

3.2 Contemplation of Error 

Examining the mean absolute error of MNF and 
MDF values frequency-by-frequency over clinically 
interesting frequency range from 40 Hz to 180 Hz is 
an entirely novel approach. 

The mean absolute error (MAE) is calculated by 
sorting the value pairs (Equation 8) in increasing 
order and averaging the differences between original 
and processed value inside the pair. It must be 
noticed that the distribution of the value pairs is not 
uniform; on the contrary, the average value is in 
some cases coarse.  

By examining Figures 2 – 4, it can be easily 
noticed that the mean absolute error of MNF and 
MDF get the least values between 80 and 120 Hz in 
all processing variations. Error is very moderate 
within this range, and the segment length itself 
doesn't dominate the error.  

In the range less than 80 Hz, the error increases 
when more coefficients are masked out.  However, 
behaviour is similar with MNF and MDF values and 
also with codebook size 64 (6 bit) and codebook size 
256 (8 bit).  

The most prominent differences can be seen in 
the range over 120 Hz. The error is multifold 
compared to other ranges and heavily increasing 
when more coefficients are masked out. At this 
range the errors are also more dependent on the 
codebook size.  

Generally, the MNF error is larger than the MDF 
error. The segment lengths have not fundamental 
effect on error. Again, by comparing MSE values in 
Table 1 and peak level of the MAE in the range over 
120 Hz in Figures 2-5, can be recognized that results 
are more or less correlated with each other, but not 
so evidently than in case of the norm of residual 
values. 

4 CONCLUSIONS 

The main value of this study was to reveal the 
complexity of error evaluation on EMG signal lossy 
compression studies. Guerrero and Mailhes (1997) 
have used standard deviation estimator -based SNR 
to evaluate the quality of the process. Wellig et al. 
(1998) have used both SNR and PRD on quality 
evaluation. Berger et al. (2003) use energy -based 
SNR as a tool for quality evaluation. None of these 
studies cover any medical parameters. Chan, Lovely 
and Hudgins (1997) were first ones to use medical 
parameters in performance evaluation. Carotti et al. 
(2006) have used both MSE and some medical 

VERSATILE EVALUATION OF EFFECTS ON DCT-BASED LOSSY COMPRESSION OF EMG SIGNALS ON
MEDICAL PARAMETERS

153



 

parameters, including MNF and MDF, for quality 
evaluation. Examination is made via four force 
levels and the results show a valid correlation 
between MSE, MNF, and MDF values.  Grönfors, 
Reinikainen and Sihvonen (2006) have used PRD 
value and percentual differences of MNF and MDF 
values in quality evaluation. Also these values 
indicate correlative behaviour. The use of averaged 
values over signals is common for all the referred 
studies.  

The averaged processing errors with standard 
deviations of medical parameters form the baseline 
for the evaluation of a lossy compression method.  
However, there are pitfalls in the use of averaged 
error values. Only the error examinations over the 
whole clinically interesting range of parameter 
values expose the fidelity. 

In this study we have used frequency-by-
frequency aspect and compared synchronically 
generated medical parameters of original and 
processed signals. We have found that there is more 
or less correlation between MSE values and errors in 
medical parameters. However, this interdependency 
can only reveal the coarse amount of error, not 
errors natural for a specific range of MNF or MDF 
values. 

 

The contemplation of error approach (chapter 
3.2) has strong analytic use in finding out the values 
for which the medical parameters are valid. The 
parameter model approach (chapter 3.1) has both 
theoretical, analytical, value and practical, predictive 
usage. The generated regression line can be used for 
estimating the true value of the processed parameter. 
Together both approaches can produce a tool for 
calculating the corrected MNF and MDF value and 
an index for their quality.  

Some of the achieved results are hypothetical, 
such as the best achived compression ratio has the 
worst MSE and the effect of masking on error in 
high frequency range. With DCT-based method, the 
segment length seems not to have prominent effect 
on error as with direct vector quantization based 
method has (Grönfors and Päivinen, 2006).The 
method should be further tested with larger datasets 
and with larger quantity of different lossy 
compression methods.  

      

Figure 2: Mean absolute errors of MNF and MDF values for segment length 16. Solid line for codebook size 64 and 
dotted line for codebook size 256.
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Figure 3: Mean absolute errors of MNF and MDF values for segment length 24. Solid line for codebook size 64 and 
dotted line for codebook size 256.

Figure 4: Mean absolute errors of MNF and MDF values for segment length 32. Solid line for codebook size 64 and
dotted line for codebook size 256.
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