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Abstract: The problem of minimizingl,-sensitivity subject tol,-scaling constraints for two-dimensional (2-D)
separable-denominator state-space digital filters is investigated. The coefficient sensitivity of the filter is anal-
ized by using a purdé>-norm. An iterative algorithm for minimizing ah-sensitivity measure subject to
Io-scaling constraints is then explored by introducing a Lagrange function and utilizing an efficient bisection
method. A numerical example is also presented to illustrate the utility of the proposed technique.

1 INTRODUCTION (Hinamoto et al., 2004; Hinamoto et al., 2005).

In this paper, anl,-sensitivity minimization
In the fixed-point finite-word-length (FWL) imple- Problem subject tol>-scaling constraints for 2-D
mentation of recursive digital filters, the character- Separable-denominator digital filters is formulated.
istics of an actual transfer function deviate from the An efficient iterative algorithm is explored to solve
original ones due to either truncation or rounding of the constrained optimization problem directly. This
filter coefficients. So far, several techniques for syn- iS performed by applying a Lagrange function and an
thesizing two-dimensional (2-D) filter structures with €fficient bisection method. Computer simulation re-
low coefficient sensitivity have been reported (Kawa- Sults by a numerical example demonstrate the validity
mata et al., 1987)-(Hinamoto and Sugie, 2002). Some and effectiveness of the proposed technique.
of them use a sensitivity measure evaluated by a mix-
ture ofly /I>-norms (Kawamata et al., 1987; Hinamoto
et al., 1992; Hinamoto and Takao, 1992), while the 2 SENSITIVITY ANALYSIS
others rely on the use of a pulgnorm (Li, 1998;
Hinamoto et al., 2002; Hinamoto and Sugie, 2002). There is no loss of generality in assuming that a
Moreover, minimization of frequency-weighted sen- 2-D digital filter which is separable in the denom-
sitivity for 2-D state-space digital filters has been inator can be described by the Roesser local state-

considered in accordance with both a mixXedl,- space (LSS) model A, Az, Aq,b1,b2,¢1,C2,d min
sensitivity measure and a pueesensitivity measure  (Roesser, 1975; Hinamoto, 1980) as

(Hinamoto et al., 1999). Thie-sensitivity minimiza- hy: . A A he s

tion is more natural and reasonable than the conven- [Xv(ffl’”] = [ ! 2} {XV(!’ J)} {bl] (i,J)
tional l1/1,-mixed sensitivity minimization, but it is x'(i, j+1) 0 AgfLx(ij) by
technically more challenging. Alternatively, a state- X, §)

space digital filter with,-scaling constraints is ben- yi,h)=[ca c] { v } +duf, j)
A / > : x'(i, 1)

eficial for suppressing overflow oscillations (Mullis D

and Roberts, 1976; Hwang, 1977). However, satis- where x"(i, j) is an m x 1 horizontal state vector,

factory solution methods fdp-sensitivity minimiza-  xY(i, j) is ann x 1 vertical state vecton(i, ) is a

tion subject tdl,-scaling constraints are still needed scalar inputy(i, j) is a scalar output, andy, Az, A4,
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b1, by, c1, 2, andd are real constant matrices of ap- andz. Thelp-norm ofX(z;,2) is then defined as
propriate dimensions. The LSS model in (1) is as-
sumed to be asymptotically stable, separately locally pdzdz 1/p
controllable and separately locally observable (Kung HX”P [(21-[] ?{f{ 1X (22,2 )”F 212 ]

et al., 1977). The transfer function of the LSS model (5)

in (1) is given by
H (Zl, 22)

- alm—AL A | [ b
LG 0 o»ln—A b

=[1 a@ln—~A)1]
[ k?l :22 ] { (22|n—]A4)71b2 }

2
Definition 1: Let X be anmx nreal matrix and let
f(X) be a scalar complex function ¥, differentiable
with respect to all the entries &f. The sensitivity
function of f with respect toX is then defined as

af of
S = =—— with (&)ij = —
( )J axij

®3)

wherex;; denotes théi, j)th entry of the matrixX.
With these notations, it is easy to show that

HaZ) QT @)F (@2
OH(z1,
HaE) QT @PT(2)
LEZXQZZ) =G'(2.2)P"(2)
oH(z,
) @
oH
7((32[)12’ 2) _ G'(z,2)
0H(z1,2)
T F (21722)
oH (21,22) .
T = P(Zz)
where
F (Z]_,Zz) = (Zl|m—A1)71[b1—|-A2P(Zz)]
G(z1,2) = [c2+Q(z)A2) (zoln — Ag) 7L
P(z) = (z2ln—As) 1y, Q(z2) =Ci(zalm—Ar) 7t

The termd and the sensitivity with respect to it are

coordinate independent, therefore they are neglected
The matricesK = K"@ KY andW = W"a WY are

called the local controllability Gramian and local ob-
sevability Gramian, respectively, and can be obtained

here.
Definition 2: Let X(z1,2) be anm x n complex
matrix valued function of the complex variables

where||X(z1,2)||r is the Frobenius norm of the ma-
trix X(z1,2) defined by

- 1/2
1X(z1,22) [ = [Z > ’qu(zlaZZ)IZ] :

p=1g=1

The overalll,-sensitivity measure is now defined
by

Mo — oMH(z1,2) ||? 0H (z1,2)
2 aAl 2 6A4 2
+ M aH Zl,Zz
ab:l. 6b2 2
(6)
A M oH(2,2)
oci o ],
aH(zl,zz)
+ 07/% 2.
From (4)-(6), it follows that
Mz = tr[Ma,+Ma,+ W+ WY+ K"+KY] @
+trWhtr [KY]
where
1
Ma, = —— f{ 7{ F(ztzHQ(zt
AL (21-[])2 211 \22\:1[ (1 Z )Q( 1 )]
dad
QT @)F T (@.2)] 2
212p
1
Ma, = 7j{ 7{ G'(z1,22)P" (z
4 = )2 Fopa ol 1[ (21,22)P" (22)]
4 __1.,0zd2
PEY6E LY
22
1 dzdz
Kh:i.f F(z1,2)F*(z1,2
(21j)? Jiz=1 |22|—1( L2)F"(2.22) 712
1 dz
KY = —j{ P(z)P*(z)—
o1 fris (2)P*(2) 2
1 de_
Wh _ 7% *(7 7 2
2m; \zﬂle (2)Q(a) 2
1 dzdz
W=—_—- f fG*z,z G(z1,2 )
@) Fya fy S 0 2ICE 2
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by solving the following Lyapunov equations (Kawa-
mata and Higuchi, 1986):

KY = AJKVA] + byb]
KM = AjKPAT + ASKVAL + by b]
h T\p/h T (8)
Wh = ATWhA; +cl ¢
WY = ATWYA, +AJWNA; +cl co.

Apply the following eigenvalue-eigenvector decom-
positions:
n m

KY = Zo}’uiuiT, wh = ZoihviviT
= =

whereoy andu; (crih andy,) are theith eigenvalue and
eigenvector oK (W"), respectively. Then, we can
write (7) as (Hinamoto and Sugie 2002)

Mz_i; Vir(wh(1 20 oltr[KY(I

Hr WMWY KKV 4 tr[Wh]tr[K"]

vV _ g —
whereoy = 0y =1,

9)

(10)

i — by fori=0
T Ay fori>1
G_{ & fori=0
T Al fori>1

and anm x m matrix W(P1) and ann x n matrix
KY(P4) are obtained by solving the following Lya-
punov equations:

RGN i | i
€270 2
[0 )= Lo A L9E0 2]
Lo 24]+l8 pO]

3 SENSITIVITY MINIMIZATION

3.1 Problem Formulation

The following class of state-space coordinate trans-
formations can be used without affecting the input-

output map:
hri -1
e =L n]

T, O
0 Ta

X0) | an

(i, 1)
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whereT1 and T4 aremx m andn x n nonsingular
constant matrices, respectively. Performing this coor-
dinate transformation to the LSS model in (1) yields a

new realization{A;, A, Ay, b1, b2,C1,C2,d}men char-
acterized by

A= TlilAlTl, Ao = T171A2T4
Ar=T;"ATa,  bi=T 'y
b=T,, T=cTi, CT=cTs

K'=TKTT, K =TT, T

)

W'=TIWhT,, W' =TJW'T,.
(12)
For the new realization, tHe-sensitivity measur#l,

in (10) is changed to

Ma(P) = 5 a'trWM(P)P{ Y + S oftr[KY(P4)Pa)
5 5
+tr[\NhP1+W"P4+KhPl +KVP, Y]

+ WPy Jtr[KVP, 1]
(13)
whereP = P; & P4 andP; = T; T, fori =1,4.
If l-norm dynamic-range scaling constraints

are imposed on the new local state vector
[X“(i, j)T, XV(i, j)T]T, then

ih _ _

(KY)i = (Tl 1KhT1 T)ii =1

" o (14)
(KDjj = (T4 KT, )i =1

are required for=1,2,--- ,mandj=1,2,--- ,n

From the above arguments, the problem is now
formulated as follows: For giveAq, Ay, A4, by, by,
¢y andcp, obtain an(m+n) x (m+ n) nonsingular
matrix T = T1 & T4 which minimizes (13) subject to
I>-scaling constraints in (14).

3.2 Problem Solution

If we sum upm constraints and constraints in (14)
separately, then we have

KPP =m KPP, (15)
Consequently, the problem of minimizingz(P) in

(13) subject to the constraints in (14) canrblaxed
into the problem

minimize M2(P) in (13)
subject to fK"P; !} = m and t{KYP, 1] =n
(16)
In order to solve (16), we define a Lagrange function
of the problem as

J(P,A1,Aa) = Ma(P) + Aq(tr[K"P; Y — m) an
+A4(tr[KVP, Y —n)

=n.
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where A1 and A4, are Lagrange multipliers. It is
well known that the solution of problem (16) must
satisfy the Karush-Kuhn-Tucker (KKT) conditions
0J(P,A1,A4)/0P; = Ofor i = 1,4 where the gradients

are found to be

0J(P,A1,A _ _
0J(P,A1,A0) = F1(P) — P_ 'Fa(Py,A1)P;
0P,
0J(P,A1,A2) 1 1
T = F3(P4) P4 F4(P,)\4)P4
(18)
with

S

F1(P) oVKM(Py) + (14 tr[KVP; 1)wh

=1l

Fa(Pi,A1) = Y oW (Py) + (A + 1K"

ST

Fa(Ps) = 5 ofKY(Pa) +W"
m

Fa(P,Ag) = Z}o{‘wy(m) + (Ag+ L4+ trW"P1))KY

Lo a1 [ 1]

Ar O 0O O
L + 4
uiC1 Al 0 Pl

[ —
A
=
—~
T
=
~—
*

*
*

)
(3 21 30)

Hence the above KKT conditions become
P1F1(P)P1 = F2(P1,A1)

(19)
P4F 3(P4)Ps = F4(P, ).

Two equations in (19) are highly nonlinear with re-
spect toP; andP,4. An effective approach to solving

two equations in (19) is teelax them into the follow-
ing recursive second-order matrix equations:

PRI (PO)PITY = Ry A ™) 0)
P£i+l>F3(P4(1i))Pz<1i+l) _ F4(P(i>,)\g+l))
with the initial conditionP© = P & P¥ = I,
The solutions?{ "™ andP| "™ of (20) are given by

i1 1F 1 i)~ (i1
P = F1 2 (PU)[FZ (PO)Fo(PY ALY

1

respectively. Here, Lagrange multipliek Y and

(i+1)

A, 7 can be efficiently obtained using a bisection

method so that
™) =m-uRyFl0g =0
fa(g ") = n =t RYFYOG ) = 0

are satisfied where

Ty < Tmin
Th < Tmax

Output
A €

Figure 1: A flow chart of the bisection method.

A flow chart of the above bisection method is
shown in Fig. 1. The iteration process continues until

JPHDATY A _3p0 AV AD) <& (23)
is satisfied for a prescribed tolerange> 0. If the
iteration is terminated at stépthenP() is viewed as
a solution point.

Once positive-definite symmetric matridésand
P4 satisfying tfK1P; %] = mand t{K4P, %] = n were
obtained, it is possible to construct amx m orthog-
onal matrixU; and am x n orthogonal matrixJ 4 so
that matrixT = Pi/ 2y 1D Pi/ 2U4 satisfied »-scaling
constraints in (14). (Hinamoto et al., 2005)
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4 ILLUSTRATIVE EXAMPLE method, and tolerance= 108 in Fig. 1 and (23), it
took the proposed algorithm 15 iterations to converge

Suppose that a 2-D separable-denominator digital fil- to the solutiorP°Pt = PP ¢ PP where

ter {AY, A9, A3, b%,b8,¢9,c5,d}3.3 in (1) is specified

by [ 0.992455 0702756 0373871
_ PYP'— | 0.702756 0724033 0597920
0 1 0 0.373871 0597920 0674661
A = 0 0 1 -
0.599655 —1.836929 2173645]

[ 2200512 —2.005367 1676709
PP'= | -2.005367 1913721 -1647192
0.064564 0033034 0012881] 1676709 —1647192 1480797
AS= | 0091213 0110512 0102759 )

0.097256 0151864 0172460 ont

or equivalentlyT °P' = TP o T 2P where

0 O 056491 [ —0.975337 —0.066061 0191859
Ab=]1 0 -1.887939 ToP'=| ~0.619458 0147201 (0564479
| 0 1 2280029 | —0.291519 0450550 0621839
0.047053 1 [ —0.799684 (0585116 —1.103928
b= | 0.062274 |, =] 0 TP = | 0493843 -0.684596 1095978 | .
| 0.060436 0 | —0.336031 (0804236 —0.849167
o= [ 1 00 ] The minimizedl,-sensitivity measure in (17) corre-

sponding to the above solution was found to be
J(P°Pt A1, \4) = 1010064

with A1 = 4.786834 and\4 = —4.094596. By substi-
tuting T = T °Pt obtained above into (12), the optimal
state-space filter structure that minimizes (13) subject
to thel,-scaling constraints in (14) was synthesized as

)= [ 0.016556 0012550 C008243]
d =0.019421

By performing thel,-scaling for the above LSS
model with a diagonal coordinate-transformation ma-
trix T =T ® T where

T9 = diag{0.9922890.9876960.964582

[ 0.694418 —0.112298 —0.412379]

T4 = diag{4.63605610.9801938.012803 A= | —0.096981 0765920 —0.345179
we obtained | 0.282990 0456524 0713306 |
[ 0.000000 0995371 0000000 [ 0138105 -0.073790 0140661 ]

A¢= | 0.000000 0000000 0976599 A= | —0.132057 0634682 —0.262494
0.616880 —1.880945 2173645 | 0158022 -0.104957 (0516782 |

A, = | 0428136 1228560 0833645 —0.091049 0837579 (0358967
0.467440 1728723 1432628 | —0.257686 —0.254075 (743031

pd
Il

[ 0.301648 0365538 0104015] [ 0.699418 —0.018435 0273811

[ 0.000000 0000000 (0976460 by = [—0.038277 0028296 0062312]T
As= | 0422220 0000000 —1.377725 _ T
0.000000 1370331 2280029 b, = [ —0.758218 0129041 0422255]
by = [ 0.047419 0063050 0062655]T = [ —0.967816 —0.065551 0190380]
Ty, = | —0.015522 (0003691 0010209
by = [ 0.215701 0000000 0000000]T K [ ]
whose horizontal and vertical controllability Grami-
Cc1 = [ 0.992289 0000000 0000000]

ans were given by

c=[ 0.076755 0137801 0066050 [ 1.000000 —0.090933 —0.400242]

and thely-sensitivity of the scaled LSS model was Kgm = | —0.090933 1000000 0400242
found to be | —0.400242 0400242 1000000 |

M2 = 45260790 [ 1.000000 —0.126238 —0.520618]

ChoosingP©® = P” & P =I5 in (21) as initial KYp = | —0.126238 1000000 0520618

estimate xmin = —22° andxmax= 220 in the bisection _0520618 0520618 1000000 |
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Profile of thel,-sensitivity measure, and profile of
the parameters; andA,4 during the first 15 iterations
of the proposed algorithm are shown in Figs. 2 and 3,
respectively.
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Figure 2:1,-Sensitivity Performance.
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Figure 3:A1 andA4 Performances.

5 CONCLUSION

The problem of minimizing th&-sensitivity measure
subject toly-scaling constraints for 2-D separable-
denominator state-space digital filters has been for-
mulated. An iterative method for minimizing-
sensitivity subject td,-scaling constraints has been
explored. This has been performed by using a La-
grange function and an efficient bisection method.

Computer simulation results have demonstrated the

validity and effectiveness of the proposed technique.
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