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Abstract: The problem of minimizingl2-sensitivity subject tol2-scaling constraints for two-dimensional (2-D)
separable-denominator state-space digital filters is investigated. The coefficient sensitivity of the filter is anal-
ized by using a purel2-norm. An iterative algorithm for minimizing anl2-sensitivity measure subject to
l2-scaling constraints is then explored by introducing a Lagrange function and utilizing an efficient bisection
method. A numerical example is also presented to illustrate the utility of the proposed technique.

1 INTRODUCTION

In the fixed-point finite-word-length (FWL) imple-
mentation of recursive digital filters, the character-
istics of an actual transfer function deviate from the
original ones due to either truncation or rounding of
filter coefficients. So far, several techniques for syn-
thesizing two-dimensional (2-D) filter structures with
low coefficient sensitivity have been reported (Kawa-
mata et al., 1987)-(Hinamoto and Sugie, 2002). Some
of them use a sensitivity measure evaluated by a mix-
ture ofl1/l2-norms (Kawamata et al., 1987; Hinamoto
et al., 1992; Hinamoto and Takao, 1992), while the
others rely on the use of a purel2-norm (Li, 1998;
Hinamoto et al., 2002; Hinamoto and Sugie, 2002).
Moreover, minimization of frequency-weighted sen-
sitivity for 2-D state-space digital filters has been
considered in accordance with both a mixedl1/l2-
sensitivity measure and a purel2-sensitivity measure
(Hinamoto et al., 1999). Thel2-sensitivity minimiza-
tion is more natural and reasonable than the conven-
tional l1/l2-mixed sensitivity minimization, but it is
technically more challenging. Alternatively, a state-
space digital filter withl2-scaling constraints is ben-
eficial for suppressing overflow oscillations (Mullis
and Roberts, 1976; Hwang, 1977). However, satis-
factory solution methods forl2-sensitivity minimiza-
tion subject tol2-scaling constraints are still needed

(Hinamoto et al., 2004; Hinamoto et al., 2005).
In this paper, an l2-sensitivity minimization

problem subject tol2-scaling constraints for 2-D
separable-denominator digital filters is formulated.
An efficient iterative algorithm is explored to solve
the constrained optimization problem directly. This
is performed by applying a Lagrange function and an
efficient bisection method. Computer simulation re-
sults by a numerical example demonstrate the validity
and effectiveness of the proposed technique.

2 SENSITIVITY ANALYSIS

There is no loss of generality in assuming that a
2-D digital filter which is separable in the denom-
inator can be described by the Roesser local state-
space (LSS) model{A1,A2,A4,b1,b2,c1,c2,d}m+n
(Roesser, 1975; Hinamoto, 1980) as
[

xh(i +1, j)

xv(i, j +1)

]

=

[

A1 A2

0 A4

][

xh(i, j)

xv(i, j)

]

+

[

b1

b2

]

u(i, j)

y(i, j) =
[

c1 c2
]

[

xh(i, j)

xv(i, j)

]

+d u(i, j)
(1)

where xh(i, j) is an m× 1 horizontal state vector,
xv(i, j) is an n× 1 vertical state vector,u(i, j) is a
scalar input,y(i, j) is a scalar output, andA1, A2, A4,
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b1, b2, c1, c2, andd are real constant matrices of ap-
propriate dimensions. The LSS model in (1) is as-
sumed to be asymptotically stable, separately locally
controllable and separately locally observable (Kung
et al., 1977). The transfer function of the LSS model
in (1) is given by

H(z1,z2)

=
[

c1 c2
]

[

z1Im−A1 −A2

0 z2In−A4

]−1[

b1
b2

]

+d

=
[

1 c1(z1Im−A1)
−1

]

·

[

d c2

b1 A2

][

1
(z2In−A4)

−1b2

]

.

(2)

Definition 1: Let X be anm×n real matrix and let
f (X) be a scalar complex function ofX, differentiable
with respect to all the entries ofX. The sensitivity
function of f with respect toX is then defined as

SX =
∂ f
∂X

with (SX)i j =
∂ f
∂xi j

(3)

wherexi j denotes the(i, j)th entry of the matrixX.
With these notations, it is easy to show that

∂H(z1,z2)

∂A1
= QT(z1)F T(z1,z2)

∂H(z1,z2)

∂A2
= QT(z1)PT(z2)

∂H(z1,z2)

∂A4
= GT(z1,z2)PT(z2)

∂H(z1,z2)

∂b1
= QT(z1)

∂H(z1,z2)

∂b2
= GT(z1,z2)

∂H(z1,z2)

∂cT
1

= F (z1,z2)

∂H(z1,z2)

∂cT
2

= P(z2)

(4)

where

F (z1,z2) = (z1Im−A1)
−1[b1 +A2P(z2)]

G(z1,z2) = [c2 +Q(z1)A2](z2In−A4)
−1

P(z2) = (z2In−A4)
−1b2, Q(z1) = c1(z1Im−A1)

−1.

The termd and the sensitivity with respect to it are
coordinate independent, therefore they are neglected
here.

Definition 2: Let X(z1,z2) be anm× n complex
matrix valued function of the complex variablesz1

andz2. Thelp-norm ofX(z1,z2) is then defined as

||X||p =

[

1
(2π j)2

I I
Γ2
||X(z1,z2)||

p
F

dz1dz2

z1z2

]1/p

(5)
where||X(z1,z2)||F is the Frobenius norm of the ma-
trix X(z1,z2) defined by

||X(z1,z2)||F =

[

m

∑
p=1

n

∑
q=1

∣

∣xpq(z1,z2)
∣

∣

2

]1/2

.

The overalll2-sensitivity measure is now defined
by

M2 =

∣
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∣
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∣
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∣
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∣
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(6)

From (4)-(6), it follows that

M2 = tr
[

MA1+MA4+Wh+Wv+Kh+Kv
]

+tr[Wh]tr [Kv]
(7)

where

MA1 =
1

(2π j)2

I
|z1|=1

I
|z2|=1

[F(z−1
1 ,z−1

2 )Q(z−1
1 )]

·[QT(z1)F T(z1,z2)]
dz1dz2

z1z2

MA4 =
1

(2π j)2

I
|z1|=1

I
|z2|=1

[GT(z1,z2)P
T(z2)]

·[P(z−1
2 )G(z−1

1 ,z−1
2 )]

dz1dz2

z1z2

Kh =
1

(2π j)2

I
|z1|=1

I
|z2|=1

F(z1,z2)F
∗(z1,z2)

dz1dz2

z1z2

Kv =
1

2π j

I
|z2|=1

P(z2)P
∗(z2)

dz2

z2

Wh =
1

2π j

I
|z1|=1

Q∗(z1)Q(z1)
dz1

z1

Wv =
1

(2π j)2

I
|z1|=1

I
|z2|=1

G∗(z1,z2)G(z1,z2)
dz1dz2

z1z2
.

The matricesK = Kh ⊕ Kv and W = Wh ⊕Wv are
called the local controllability Gramian and local ob-
sevability Gramian, respectively, and can be obtained
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by solving the following Lyapunov equations (Kawa-
mata and Higuchi, 1986):

Kv = A4KvAT
4 +b2bT

2

Kh = A1KhAT
1 +A2KvAT

2 +b1bT
1

Wh = AT
1WhA1 +cT

1 c1

Wv = AT
4WvA4 +AT

2WhA2 +cT
2 c2.

(8)

Apply the following eigenvalue-eigenvector decom-
positions:

Kv =
n

∑
i=1

σv
i uiu

T
i , Wh =

m

∑
i=1

σh
i viv

T
i (9)

whereσv
i andui (σh

i andvi) are theith eigenvalue and
eigenvector ofKv (Wh), respectively. Then, we can
write (7) as (Hinamoto and Sugie, 2002)

M2 =
n

∑
i=0

σv
i tr[W

h
i (Im)]+

m

∑
i=0

σh
i tr[Kv

i (In)]

+tr[Wh+Wv+Kh+Kv]+ tr[Wh]tr[Kv]

(10)

whereσv
0 = σh

0 = 1,

ũi =

{

b1 for i = 0
A2ui for i ≥ 1

ṽi =

{

cT
2 for i = 0

AT
2 vi for i ≥ 1

and anm× m matrix Wh
i (P1) and ann× n matrix

Kv
i (P4) are obtained by solving the following Lya-

punov equations:
[

Wh
i (P1) ∗

∗ ∗

]

=

[

A1 ũic1

0 A1

][

Wh
i (P1) ∗

∗ ∗

]

·

[

A1 ũic1

0 A1

]T

+

[

0 0
0 P1

]

[

Kv
i (P4) ∗

∗ ∗

]

=

[

A4 0

b2ṽT
i A4

]T [

Kv
i (P4) ∗

∗ ∗

]

·

[

A4 0
b2ṽT

i A4

]

+

[

0 0

0 P−1
4

]

.

3 SENSITIVITY MINIMIZATION

3.1 Problem Formulation

The following class of state-space coordinate trans-
formations can be used without affecting the input-
output map:

[

xh(i, j)

xv(i, j)

]

=

[

T1 0
0 T4

]−1[

xh(i, j)

xv(i, j)

]

(11)

whereT1 and T4 are m×m and n× n nonsingular
constant matrices, respectively. Performing this coor-
dinate transformation to the LSS model in (1) yields a
new realization{A1,A2,A4,b1,b2,c1,c2,d}m+n char-
acterized by

A1 = T −1
1 A1T1, A2 = T −1

1 A2T4

A4 = T −1
4 A4T4, b1 = T −1

1 b1

b2 = T −1
4 b2, c1 = c1T1, c2 = c2T4

K
h

= T−1
1 KhT−T

1 , K
v
= T−1

4 KvT−T
4

W
h

= T T
1 WhT1, W

v
= T T

4 WvT4.
(12)

For the new realization, thel2-sensitivity measureM2
in (10) is changed to

M2(P) =
n

∑
i=0

σv
i tr[W

h
i (P1)P

−1
1 ]+

m

∑
i=0

σh
i tr[Kv

i (P4)P4]

+ tr[WhP1+WvP4+KhP−1
1 +KvP−1

4 ]

+ tr[WhP1]tr[KvP−1
4 ]

(13)
whereP = P1⊕P4 andPi = T iT T

i for i = 1,4.
If l2-norm dynamic-range scaling constraints

are imposed on the new local state vector
[xh(i, j)T , xv(i, j)T ]T , then

(K
h
)ii = (T −1

1 KhT −T
1 )ii = 1

(K
v
) j j = (T −1

4 KvT −T
4 ) j j = 1

(14)

are required fori = 1,2, · · · ,m and j = 1,2, · · · ,n.
From the above arguments, the problem is now

formulated as follows: For givenA1, A2, A4, b1, b2,
c1 and c2, obtain an(m+ n)× (m+ n) nonsingular
matrix T = T1⊕T4 which minimizes (13) subject to
l2-scaling constraints in (14).

3.2 Problem Solution

If we sum upm constraints andn constraints in (14)
separately, then we have

tr[KhP−1
1 ] = m, tr[KvP−1

4 ] = n. (15)

Consequently, the problem of minimizingM2(P) in
(13) subject to the constraints in (14) can berelaxed
into the problem

minimizeM2(P) in (13)

subject to tr[KhP−1
1 ] = m and tr[KvP−1

4 ] = n.
(16)

In order to solve (16), we define a Lagrange function
of the problem as

J(P,λ1,λ4) = M2(P)+λ1(tr[KhP−1
1 ]−m)

+λ4(tr[KvP−1
4 ]−n)

(17)
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where λ1 and λ4 are Lagrange multipliers. It is
well known that the solution of problem (16) must
satisfy the Karush-Kuhn-Tucker (KKT) conditions
∂J(P,λ1,λ4)/∂Pi = 0 for i = 1,4 where the gradients
are found to be

∂J(P,λ1,λ4)

∂P1
= F1(P)−P−1

1 F2(P1,λ1)P
−1
1

∂J(P,λ1,λ4)

∂P4
= F3(P4)−P−1

4 F4(P,λ4)P
−1
4

(18)
with

F1(P) =
n

∑
i=0

σv
i K

h
i (P1)+(1+ tr[KvP−1

4 ])Wh

F2(P1,λ1) =
n

∑
i=0

σv
i W

h
i (P1)+(λ1 +1)Kh

F3(P4) =
m

∑
i=0

σh
i Kv

i (P4)+Wv

F4(P,λ4) =
m

∑
i=0

σh
i W

v
i (P4)+(λ4 +1+ tr[WhP1])K

v

[

Kh
i (P1) ∗

∗ ∗

]

=

[

A1 0
ũic1 A1

]T [

Kh
i (P1) ∗

∗ ∗

]

·

[

A1 0
ũic1 A1

]

+

[

0 0

0 P−1
1

]

[

Wv
i (P4) ∗

∗ ∗

]

=

[

A4 b2ṽT
i

0 A4

][

Wv
i (P4) ∗

∗ ∗

]

·

[

A4 b2ṽT
i

0 A4

]T

+

[

0 0
0 P4

]

.

Hence the above KKT conditions become
P1F1(P)P1 = F2(P1,λ1)

P4F3(P4)P4 = F4(P,λ4).
(19)

Two equations in (19) are highly nonlinear with re-
spect toP1 andP4. An effective approach to solving
two equations in (19) is torelax them into the follow-
ing recursive second-order matrix equations:

P(i+1)
1 F1(P(i))P(i+1)

1 = F2(P
(i)
1 ,λ(i+1)

1 )

P(i+1)
4 F3(P

(i)
4 )P(i+1)

4 = F4(P(i),λ(i+1)
4 )

(20)

with the initial conditionP(0) = P(0)
1 ⊕P(0)

4 = Im+n.

The solutionsP(i+1)
1 andP(i+1)

4 of (20) are given by

P(i+1)
1 = F

− 1
2

1 (P(i))[F
1
2
1 (P(i))F2(P

(i)
1 ,λ(i+1)

1 )

·F
1
2
1 (P(i))]

1
2 F

− 1
2

1 (P(i))

P(i+1)
4 = F

− 1
2

3 (P(i)
4 )[F

1
2
3 (P(i)

4 )F4(P(i),λ(i+1)
4 )

·F
1
2
3 (P(i)

4 )]
1
2 F

− 1
2

3 (P(i)
4 )

(21)

respectively. Here, Lagrange multipliersλ(i+1)
1 and

λ(i+1)
4 can be efficiently obtained using a bisection

method so that

f1(λ
(i+1)
1 ) = m− tr[K̃(i)

h F̃(i)
2 (λ(i+1)

1 )] = 0

f4(λ
(i+1)
4 ) = n− tr[K̃(i)

v F̃(i)
4 (λ(i+1)

4 )] = 0
(22)

are satisfied where

K̃(i)
h =F

1
2
1 (P(i))KhF

1
2
1 (P(i))

K̃(i)
v =F

1
2
3 (P(i)

4 )KvF
1
2
3 (P(i)

4 )

F̃(i)
2 (λ(i+1)

1 )= [F
1
2
1 (P(i))F2(P

(i)
1 ,λ(i+1)

1 )F
1
2
1 (P(i))]−

1
2

F̃(i)
4 (λ(i+1)

4 )= [F
1
2
3 (P(i)

4 )F4(P(i),λ(i+1)
4 )F

1
2
3 (P(i)

4 )]−
1
2 .

Figure 1: A flow chart of the bisection method.

A flow chart of the above bisection method is
shown in Fig. 1. The iteration process continues until

|J(P(i+1),λ(i+1)
1 ,λ(i+1)

4 )−J(P(i),λ(i)
1 ,λ(i)

4 )| < ε (23)

is satisfied for a prescribed toleranceε > 0. If the
iteration is terminated at stepi, thenP(i) is viewed as
a solution point.

Once positive-definite symmetric matricesP1 and
P4 satisfying tr[K1P−1

1 ] = m and tr[K4P−1
4 ] = n were

obtained, it is possible to construct anm×m orthog-
onal matrixU1 and ann×n orthogonal matrixU4 so

that matrixT = P1/2
1 U1⊕P1/2

4 U4 satisfiesL2-scaling
constraints in (14). (Hinamoto et al., 2005)
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4 ILLUSTRATIVE EXAMPLE

Suppose that a 2-D separable-denominator digital fil-
ter {Ao

1,A
o
2,A

o
4,b

o
1,b

o
2,c

o
1,c

o
2,d}3+3 in (1) is specified

by

Ao
1 =





0 1 0
0 0 1

0.599655 −1.836929 2.173645





Ao
2 =





0.064564 0.033034 0.012881
0.091213 0.110512 0.102759
0.097256 0.151864 0.172460





Ao
4 =





0 0 0.564961
1 0 −1.887939
0 1 2.280029





bo
1 =





0.047053
0.062274
0.060436



 , bo
2 =





1
0
0





co
1 =

[

1 0 0
]

co
2 =

[

0.016556 0.012550 0.008243
]

d = 0.019421.

By performing the l2-scaling for the above LSS
model with a diagonal coordinate-transformation ma-
trix To = To

1⊕To
4 where

To
1 = diag{0.992289,0.987696,0.964582}

To
4 = diag{4.636056,10.980193,8.012802}

we obtained

A1 =





0.000000 0.995371 0.000000
0.000000 0.000000 0.976599
0.616880 −1.880945 2.173645





A2 =





0.301648 0.365538 0.104015
0.428136 1.228560 0.833645
0.467440 1.728723 1.432628





A4 =





0.000000 0.000000 0.976460
0.422220 0.000000 −1.377725
0.000000 1.370331 2.280029





b1 =
[

0.047419 0.063050 0.062655
]T

b2 =
[

0.215701 0.000000 0.000000
]T

c1 =
[

0.992289 0.000000 0.000000
]

c2 =
[

0.076755 0.137801 0.066050
]

and thel2-sensitivity of the scaled LSS model was
found to be

M2 = 4526.0790.

ChoosingP(0) = P(0)
1 ⊕P(0)

4 = I6 in (21) as initial
estimate,xmin = −220 andxmax= 220 in the bisection

method, and toleranceε = 10−8 in Fig. 1 and (23), it
took the proposed algorithm 15 iterations to converge
to the solutionPopt = Popt

1 ⊕Popt
4 where

Popt
1 =





0.992455 0.702756 0.373871
0.702756 0.724033 0.597920
0.373871 0.597920 0.674661





Popt
4 =





2.200512 −2.005367 1.676709
−2.005367 1.913721 −1.647192
1.676709 −1.647192 1.480797





or equivalently,T opt = T opt
1 ⊕T opt

4 where

T opt
1 =





−0.975337 −0.066061 0.191859
−0.619458 0.147201 0.564479
−0.291519 0.450550 0.621839





T opt
4 =





−0.799684 0.585116 −1.103928
0.493843 −0.684596 1.095978
−0.336031 0.804236 −0.849167



 .

The minimizedl2-sensitivity measure in (17) corre-
sponding to the above solution was found to be

J(Popt,λ1,λ4) = 101.0064

with λ1 = 4.786834 andλ4 = −4.094596. By substi-
tutingT = T opt obtained above into (12), the optimal
state-space filter structure that minimizes (13) subject
to thel2-scaling constraints in (14) was synthesized as

A1 =





0.694418 −0.112298 −0.412379
−0.096981 0.765920 −0.345179
0.282990 0.456524 0.713306





A2 =





0.138105 −0.073790 0.140661
−0.132057 0.634682 −0.262494
0.158022 −0.104957 0.516782





A4 =





0.699418 −0.018435 0.273811
−0.091049 0.837579 0.358967
−0.257686 −0.254075 0.743031





b1 =
[

−0.038277 0.028296 0.062312
]T

b2 =
[

−0.758218 0.129041 0.422255
]T

c1 =
[

−0.967816 −0.065551 0.190380
]

c2 =
[

−0.015522 0.003691 0.010209
]

whose horizontal and vertical controllability Grami-
ans were given by

Kh
opt =





1.000000 −0.090933 −0.400242
−0.090933 1.000000 0.400242
−0.400242 0.400242 1.000000





Kv
opt =





1.000000 −0.126238 −0.520618
−0.126238 1.000000 0.520618
−0.520618 0.520618 1.000000



 .
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Profile of thel2-sensitivity measure, and profile of
the parametersλ1 andλ4 during the first 15 iterations
of the proposed algorithm are shown in Figs. 2 and 3,
respectively.

Iterations

J
 (
P

 ,
λ
1
,λ
4
)

Figure 2:l2-Sensitivity Performance.

Iterations

λ
1

λ
4

λ 1

λ 4

,

Figure 3:λ1 andλ4 Performances.

5 CONCLUSION

The problem of minimizing thel2-sensitivity measure
subject tol2-scaling constraints for 2-D separable-
denominator state-space digital filters has been for-
mulated. An iterative method for minimizingl2-
sensitivity subject tol2-scaling constraints has been
explored. This has been performed by using a La-
grange function and an efficient bisection method.
Computer simulation results have demonstrated the
validity and effectiveness of the proposed technique.
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