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Abstract: Visual tracking is an important part of artificial Vision for robotics. It allows robots to move towards a 
desired position using real world information. In this paper we present a novel particle filtering method for 
visual tracking, based on a clonal selection and a somatic mutation processes used by the natural immune 
system, which is excellent at identifying intrusion cells; antigens. This capability is used in this work to 
track motion of the object in a sequence of images. 

1 INTRODUCTION 

Artificial intelligence has found a source of ideas 
borrowed from biological systems such as swarms, 
ant colonies, neural networks, genetic algorithms 
and immune systems. They have been successfully 
used in many different areas: control (Macnab, 
2000), optimization (Charbonneau, 2002), pattern 
recognition (Tashima, 2001), robotics (Ramirez-
Serrano, 2004) and prediction (Connor, 1994). The 
immune system is composed of a complex 
constellation of cells, organs and tissues, arranged in 
an elaborate and dynamic communications network 
and equipped to optimize the response against 
invasion by pathogenic organisms. The immune 
system is, in it simplest form, a cascade of detection 
and adaptation culminating in a system that is 
remarkably effective, most of the time. It has many 
facets, a number of which can change to optimize 
the response to these unwanted intrusions (Dasgupta, 
2002). The immune system has a series of dual 
natures, the most important of which is self - non-
self recognition. The others are: general - specific, 
natural - adaptive, innate - acquired, cell_mediated - 
humoral, active – passive and primary - secondary. 
Parts of the immune system are antigen-specific 
(they recognize and act against particular antigens), 
systemic (not confined to the initial infection site, 
but work throughout the body), and have memory 
(recognize and mount an even stronger attack to the 
same antigen the next time) (Gilbert, C. , 1994). It 
can recognize and remember millions of different 
enemies, and it can produce secretions and cells to 
match up with and wipe out each one of them. The 

secret to its success is an elaborate and dynamic 
communications network (de Castro, 2002). Millions 
and millions of cells, organized into sets and subsets, 
gather like clouds of bees swarming around a hive 
and pass information back and forth. The key to a 
healthy immune system is its remarkable ability to 
distinguish between the body’s own cells and 
foreign cells (Bergstrom, 2004). The body’s immune 
defences normally coexist peacefully with cells that 
carry distinctive “self” marker molecules. But when 
immune defenders encounter cells or organisms 
carrying markers that say “foreign,” they quickly 
launch an attack. In this work, we use the intruder 
detection capability of artificial immune systems in 
order to track the object in a sequence of images. 

2 VISUAL TRACKING 

Visual tracking is the action of consistently locating 
a desired feature in each image of an input sequence. 
The problem is typically complicated by sensor 
noise, motion in the scene, motion on the part of the 
observer and real-time constraints. The problem can 
be further complicated when more than one identical 
feature must be tracked, in which case it is up to the 
observer to decide the optimal set of 
correspondences which are consistent with a priori 
assumptions about, and recent observations of, the 
behavioural characteristics of the features (Prassler, 
1990)(Carlsson, 1990). Given an image 

, the problem is to track a sub-image 
(object). In a sequence of images the object will be 
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in different positions, moving in a determined 
pattern. Therefore the prediction part of the filter is 
needed to predict where the object I(u,v) will be in 
the image I(i,j), giving a region of interest to 
accelerate the processing of recognizing the object. 
Recognizing the object by filtering the clutter and 
noise due to change of illumination, shadows, etc. is 
the second part of the filter. The use of filters such 
as the Kalman filter (Gutman, 1990)(Welch, 2001), 
which is based in optimal prediction for linear 
system and noise with Gaussian distribution, are 
excellent tools to overcome the problems in visual 
tracking. Extensions of the Kalman filter for non-
linear systems have been developed such as 
Extended Kalman filter (Ribeiro, 2004) and 
Unscented Kalman filter (Jeffrey, 1997). Another 
algorithm of interest is the condensation 
(Conditional Density Propagation) (Isard, 1998), 
which is based on computing the Bayes’ rule to a set 
of particles (particle filtering). In general the filters 
mentioned above can be seen as Bayesian filters, 
where the following density distributions are needed 
(Isard, 1996) (Grewal, 1993): 
 

)|( kk Zxp :  A posteriori density given the measurement. 

)|( 1−kk Zxp : A priori density. 
)|( 1−kx xxp : Process density describing the dynamics. 

)|( kk xzp :   Observation density 
 
Bayes’ Rule is 
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One of the drawbacks in these algorithms is the 
assumption of priori density distribution, Gaussian 
distribution such in the case of Kalman filter. 
Particle filters use Bayes (equation 1) and Monte 
Carlo method to approximate the sequence of 
probability distribution; these required a large 
number of particles to converge towards the 
probability distribution. Therefore, the random 
sampling is the main drawback, due to in case that 
the population is not drawn to represent some of its 
statistical features makes a wrong estimation. 
Besides, due to the degeneration of the particles 
through time, re-sampling mechanisms are used.  In 
the next section we introduce an artificial immune 
system to filter noisy signals and predict the state of 
a system. 

3 ARTIFICIAL IMMUNE FILTER 
(AIF): CLONAL SELECTION 
AND SOMATIC MUTATION 

The clonal selection theory, by immunologist Frank 
Macfarlane Burnet (Burnet, 1978), models the 
principles of an immune system. When an antigen is 
present in our body, the B-Lymphocyte cells 
produce antibodies Ab receptors. Each B cell has a 
specific antibody as a cell surface receptor. The 
arrangement and generation of antibody genes 
occurs prior to any exposure to antigen. When a 
soluble antigen is present, it binds to the antibody on 
the surface of B cells that have the correct 
specificity. These B cell clones develop into 
antibody-producing plasma cells or memory cells. 
Only B cells, which are antigen-specific, are capable 
of secreting antibodies. Memory cells remain in 
greater numbers than the initial B cells, allowing the 
body to quickly respond to a second exposure of that 
antigen, as show in Figure 1 (de Castro, 2002). 

 
Figure 1: Clonal Selection Principle. 

 The higher affinity comes from a mechanism 
that alters the variable regions of the memory cells 
by specific somatic mutation. This is a random 
process that by chance can improve antigen binding. 
This same principle is the inspiration in this work to 
produce an artificial immune filter. Initial set of n B-
cells (particles) , representing the 
features of our object to track (positions, velocity, 
etc), weights , representing its 
affinity between the antigens and the antibodies, and 
memory cells , are created. In the 
beginning our best affine cell to our antigen is our 
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initial condition. Therefore we clone and slightly 
mutate the cell, using equation (2) 

 
i

k
best
k

i
k rxx α+=  (2) 

 
where r is a random variable normally distributed 

 and )1,0(~ Nr ℜ∈α  is a small constant. The 
affinity  is integrated by two distance 
measurements from our best B cell, before and after 
prediction. Equation (3) is the first part of affinity 
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The next step k+1 is the prediction part, given by 

 for nonlinear dynamics and by 

 for linear dynamics, where A is known 
as the transition matrix. After all the cells have been 
through the dynamic system, it is time to obtain a 
new measurement , which contains a certain level 
of noise. Then we apply equation (4) to obtain the 
second part of our affinity measurement, where H is 
the observation model in the case of a linear system 
and 
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β is a constant. 
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Equation (5) calculates the affinity of each B-cell to 
the antigen. The m best cells with high affinity will 
conform to our memory cells, and the highest 
affinity will be the estimation 1+kx  and our next best 

B-cell . best
kx 1+

3.1 Application of Artificial Immune 
Filter to Noise Rejection 

Before applying the artificial immune system to 
visual tracking, the filter was tested on a noisy signal 
and compared to a Kalman filter. The signal 
represents the antigen to be recognized. The best B-
cell that binds the antigen is the estimation of the 
state of the signal. The next stage is choosing the 
parameter for mutation, α . Since the level of 
somatic mutation for the cells is a slight change on 
our best B-cell, a value equal or less than dt value, 
the step time of the system, is a good option, 
because it indicates that B-cells could vary 

(0.01 for this example) from their real values. 

Given a linear stochastic difference equation in the 
next form 

dt±
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Noise is modelled by 
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Equation (9) introduce a heavily spike noise with 
non zero mean, while equation (8) is a normal 
distribution, and r is random noise. Figure 2 shows 
the measured position with noise up to 50% of its 
maximum value. 

 
Figure 2: Measured position. 

Using the proposed algorithm of Figure 3, we 
obtained the filtered signal in Figure 4.    
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Figure 3: Pseudo-code for Artificial Immune Filter. 

 
Figure 4: Performance of Filters. 

It is well known that the uncertainty of the 
covariance parameters of the process noise, Q, and 
the observation errors, R, has a significant impact on 
Kalman filtering performance. Q and R influence the 
weight that the filter applies between the existing 
process information and the latest measurements. 
Errors in any of them may result in the filter being 
suboptimal or even cause it to diverge. The 
conventional way of determining Q and R requires 
good a priori knowledge of the process noises and 
measurement errors, which normally comes from 
intensive empirical analysis. Besides of the errors 
due to covariance parameters, the Kalman filter is 

based on the assumption of normal distribution noise 
with zero mean. Figure 4 shows the real signal with 
no noise and the filtered signal. It can be seen that 
the filter affectively attenuated the noise. In this 
example we use the following parameter settings for 
the Kalman filter, 
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The parameter settings for the AIF were, n=20, 
m=5, [ ]01.001.0001.0=α , 1.0=β . 

3.2 Visual Tracking using AIF 

Tracking an object in a sequence of images is a 
challenging problem. An elementary tracking 
approach could be to fit a curve, (contour of an 
object) to each image in a sequence, and an 
estimated curve is therefore required for each image. 
Then a fitted curve from one image is the estimation 
for the next image. This kind of algorithm will be 
affected by fast motion and become sensitive to 
distractions. Clutter in the background, either static 
or dynamic, noise of the sensor and change of 
illumination, are some factors to consider as noise in 
an image (Healey, 1994). The tracking performance 
can be greatly improved by a filter able to predict 
and correct the fitted curve, removing the noise from 
the image. Our artificial immune filter is used in this 
section to track an object in a sequence of images. 
The extension of the artificial immune filter from 
single variable to multivariable is straightforward. 
The contour of the object is a parametric curve 
 

( ) ( )( )tIytIxtc ,)( =  [ ]Lt ,0∈
 

(10) 

 
where t is an independent parameter over the 
interval [0,L], and Ix(t) and Iy(t) are known as spline 
functions (Foley, 1990). An important aspect to 
achieve real time tracking performance has been the 
restriction of measurements of the set of 
observations Z to a sparse set of lines normal to the 
contour of the object, as shown in Figure 5. In this 
case the affinity is given by 
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where P is the number of searching lines and  is 

the edge closest to the hypothetical contour 

j
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Figure 5: Normal lines of object contour to search the 
observation zi. 

Figure 6 shows a sequence for fast tracking motion 
of a ball with clutter added to background. This 
experiment used 100 cells and 10 memory cells, in 
real time (30 frames per second). In spite of the fast 
motion of the ball, the tracker never loses contact 
with the ball in a sequence of image, when we 
bounced the ball several times against the wall. The 
tracker shows the center of the ball with white dots. 
 

 
Figure 6: Tracking a fast motion ball. 

Figure 7 is a group of snapshots from a tracking 
sequence of the ball under heavy clutter, dynamic 
background and partial occlusion.  
 

 
Figure 7: Tracking using Artificial Immune Filter. 

4 CONCLUSIONS 

In this work we introduced a novel filter using a 
clonal selection and somatic mutation model of 
immune system. The filter does not require 
probability distributions or re-sampling, unlike other 
particle filters. The artificial immune filter was 
tested for signal processing and visual tracking, 
showing good performance in both applications. In 
the application of visual tracking of the ball, the 
filter was able to track fast ball motion in a non-
smooth trajectory (bouncing) and clutter in the 
background. Future work will include the adaptation 
of parameters and tracking of several objects. 
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