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Abstract: Traditional methods of data collection are often expensive and time consuming. We propose a novel data 
collection technique, called Bayesian Adaptive Sampling (BAS), which enables us to capture maximum 
information from minimal sample size. In this technique, the information available at any given point is 
used to direct future data collection from locations that are likely to provide the most useful observations in 
terms of gaining the most accuracy in the estimation of quantities of interest. We apply this approach to the 
problem of estimating the amount of carbon sequestered by trees. Data may be collected by an autonomous 
helicopter with onboard instrumentation and computing capability, which after taking measurements, would 
then analyze the currently available data and determine the next best informative location at which a 
measurement should be taken. We quantify the errors in estimation, and work towards achieving maximal 
information from minimal sample sizes. We conclude by presenting experimental results that suggest our 
approach towards biomass estimation is more accurate and efficient as compared to random sampling. 

1 INTRODUCTION 

Bayesian Adaptive Sampling (BAS) is a 
methodology which allows a system to examine 
currently available data in order to determine new 
locations at which to take new readings. This 
procedure leads to the identification of locations 
where new observations are likely to yield the most 
information about a process, thus minimizing the 
required data that must be collected. As an example 
of the application of this methodology, we examine 
the question of standing woods in the United States. 

In order to estimate the amount of carbon 
sequestered by trees in the United States, the amount 
of standing woods must be estimated with 
quantifiable uncertainty (Wheeler, 2006). Such 
estimates come from either satellite images or near 
ground measurements. The amounts of error in the 

estimates from these two approaches are currently 
unknown. To this end, an autonomous helicopter 
with differential GPS (Global Positioning System), 
LIDAR (Light Detection and Ranging), stereo 
imagers, and spectrometers has been developed as a 
testing platform for conducting further studies 
(Wheeler, 2006). These instruments are capable of 
measuring the reflectance data and the location of 
the Sun and helicopter in terms of the zenith and the 
azimuth angles (Figure 1). The objective is to 
develop a controlling software system for this 
robotic helicopter, which optimizes the required 
ground sampling.  

The first simplistic data collection method is to 
conduct an exhaustive ground sampling i.e. to send 
the helicopter to every possible location. The second 
approach is to perform random sampling until the 
estimates have acceptable standard errors. Although 
random sampling presents a possibility that the 
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helicopter will take samples from the locations that 
offer the greatest amount of information and 
therefore reduce the needed sample size, there is no 
guarantee that such a sample set will be chosen 
every time. The third and more efficient method is to 
take only a few samples from “key” locations that 
are expected to offer the greatest amount of 
information. The focus of this paper is to develop a 
methodology that will identify such key locations 
from which the helicopter should gather data. 

 
Figure 1: θS, φS are the zenith and the azimuth angles of 
the Sun, and θV, φV are the zenith and the azimuth angles 
of the view, respectively (Wheeler, 2006).  

In the work described here, the key locations are 
identified using current and previously collected 
data. The software works in tandem with the 
sampling hardware to control the helicopter’s 
position. Once a sample has been taken, the data are 
fed into the system, which then calculates the next 
best location to gather further data. Initially, the 
system assumes an empirical model for the ground 
being examined. With each addition of data from the 
instruments, the parameter estimates of the model 
are updated, and the BAS methodology is used to 
calculate the helicopter’s next position. This process 
is repeated until the estimated uncertainties of the 
parameters are within a satisfactory range. This 
method allows the system to be adaptive during the 
sampling process and ensures adequate ground 
coverage.  

The methodology employs a bi-directional 
reflectance distribution function (BRDF), in which 
the calculation of the amount of reflection is based 
on the observed reflectance values of the object, and 
the positions of the Sun and the viewer (Nicodemus, 
1970). The advantage of using this function is that it 
enables the system to compensate for different 
positions of the Sun during sampling. Once the 
reflectance parameters are estimated, BAS uses the 
principle of maximum entropy to identify the next 

location where new observations are likely to yield 
the most information. 

In summary, the BAS methodology allows the 
system to examine currently available data with 
regards to previously collected data in order to 
determine new locations at which to take new 
reflectance readings. This procedure leads to the 
identification of locations where new observations 
are likely to yield the most information. 

2 RELATED WORK 

Computing view points based on maximum entropy 
using prior information has been demonstrated by 
Arbel et al., 1970. They used this technique to create 
entropy maps for object recognition. Vazquez et al., 
2001 also demonstrated a technique for computing 
good viewpoints; however their research was based 
on Information Theory. Whaite et al., 1994 
developed an autonomous explorer that seeks out 
those locations that give maximum information 
without using a priori knowledge of the 
environment. Makay, 1992 used Shannon’s entropy 
to obtain optimal sample points that would yield 
maximum information. The sample points are taken 
from the locations that have largest error bars on the 
interpolation function. In our work, the optimal 
locations that offer maximum amount of information 
are identified using the principle of maximum 
entropy, where the maximization is performed using 
techniques suggested by Sebastiani et al., 2000.  

3 MODEL 

The model for the data used in our framework is 
based on the semi-empirical MISR (multi-angle 
imaging spectrometer) BRDF Rahman model 
(Rahman et al., 1993): 
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where ),,,( vsvsr φφθθ is the measured reflectance, 

ρ  is the surface reflectance at zenith, k is the 

surface slope of reflectance, b  is a constant 
associated with the hotspot, or "antisolar point" (the 
point of maximum reflectivity, which is the position 
where the sensor is in direct alignment between the 
Sun and the ground target), ss φθ , are the zenith and 
the azimuth angles of the Sun, respectively (Figure 
1), and vv φθ , are the zenith and the azimuth angles 
of the view, respectively (Figure 1).  

4 METHODOLOGY 

Our framework consists of the following two steps: 
1. Parameter Estimation: In this step, we 

estimate the values of the parameters ( ρ , 

k and b ), and their covariance matrix and 
standard errors, given the data collected to 

date of the amount of observed reflected 
light, and the zenith and azimuth angles of 
the Sun and the observer. 

2. Bayesian Adaptive Sampling (Optimal 
Location Identification): In this step, we 
use the principle of maximum entropy to 
identify the key locations from which to 
collect the data.  

Once the key location is identified, the helicopter 
goes to that location and the instruments on the 
helicopter measure the reflectance information. This 
information is then fed into the Parameter 
Estimation stage and the new values of the 
parameters ( ρ , k and b ) are calculated. This 
process is repeated until the standard errors of the 
parameters achieve some predefined small value, 
ensuring adequacy of the estimated parameters 
(Figure 2).  

5 IMPLEMENTATION 

5.1 Parameter Estimation 

The input to this module is the observed reflectance 
value (r), zenith and azimuth angles of the Sun 

),( ss φθ , and zenith and azimuth angles of the 

observer ),( vv φθ . The parameters ( ρ , k and b ) 
are estimated using the following iterated linear 
regression algorithm: 

First, a near linear version of this model is 
accomplished by taking the natural logarithm of 

),,,( vsvsr φφθθ , which results in the following 

 
Figure 2: Overview of Bayesian Adaptive Sampling. 
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where )0(ρ is set equal to zero.  
Second, regression is performed on our linearized 

model to calculate the estimates of the following 
quantities: 
• ρ , k and b , the parameters  

• 1−R , covariance matrix of the estimated 
parameters (ρ , k and b ) 

• σ , the standard deviation of the errors, 
(which are assumed to be independent 
identically distributed random variables from 
a normal distribution with zero mean)  

Third, the current estimated value of ρ  is then 
used in ),,,( vsvsh φφθθ , and regression is again 
performed.   

This procedure is repeated until the estimate 
ofρ converges. 

5.2 Bayesian Adaptive Sampling 

This module identifies the best informative location 
),( vv φθ  to which to send the helicopter. We employ 

the principle of maximum entropy, in which the 
available information is analyzed in order to 
determine a unique epistemic probability 
distribution. The maximization is performed as per 
techniques suggested by Sebastiani et al., 2000, 
where in order to maximize the amount of 

information about the posterior parameters, we 
should maximize the entropy of the distribution 
function. Mathematically, maximizing the entropy is 
achieved by maximizing 

1log[ ( ) ]X X R−′Σ +  (7) 

where ∑ is covariance matrix of the error terms, 
1−R is covariance matrix of the estimates of the 

parameter ρ , k and b , and X is matrix of input 
variables where each row in X is associated with one 
observation  
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Under the assumption that the errors are 
independent normally distributed random variables 
with mean zero and variance 2σ , (7) reduces to 
maximizing  

( ) 12/1 −′+ XRXI σ . (9) 

Note that 2σ  and 1−R are estimated in module 1 
and are thus at this stage assumed to be known 
quantities. The matrix X contains both past 
observations, in which case all elements of each 
such row of X are known, and one or more new 
observations where the zenith and the azimuth 
angles of the Sun ),( ss φθ  are known, so the only 
remaining unknown quantities in (9) are the values 
of vθ  and vφ  (the zenith and azimuth angles of the 
helicopter viewpoint) in rows associated with new 
observations. Thus, the new location(s) to which the 
helicopter will be sent are the values of vθ  and vφ  
in rows of X associated with new observations that 
maximize (9).  
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6 EXPERIMENT 

We conduct two simulated experiments in which the 
estimates of the model parameters are calculated. In 
the first experiment, “Estimation Using Random 
Observations”, the data is collected by sending the 
helicopter to random locations. In the second 
experiment, “Estimation using BAS”, the data is 
collected using BAS.  

The experiments are conducted under the 
following assumptions: 
• The view zenith angle ( vθ ) is between 0 and 

2/π , and the view azimuth angle ( vφ ) is 
between 0 and 2π  (≈ 6.283185). 

• The Sun moves 2π  radians in a 24-hour 
period, i.e., at the rate of slightly less then 
0.005 radians per minute.   

• It takes about 2 minutes for the helicopter to 
move to a new location. Thus, the position of 
the Sun changes approximately 0.01 radians 
between measurements. 

In our simulation, the true values of the 
parameters ρ , k  and b  are 0.1, 0.9, and -0.1, 
respectively. For the purpose of this paper, the 
observed values were simulated with added noise 
from the process with known parameters. This 
allows us to measure the efficacy of the algorithm in 
minimizing the standard errors of the parameter 
estimates, and also the estimates of the parameters. 
In actual practice, the parameters would be 
unknown, and we would have no way of knowing 
how close our estimates are to the truth, that is, if the 
estimates are as accurate as implied by the error 
bars. 

6.1 Estimation using Random 
Observations 

In this experiment, we send the helicopter to 20 
random locations to collect data. Starting with the 
fifth observation, we use the regression-fitting 
algorithm on the collected input data set (the 
observed reflectance information, and the positions 
of the Sun and the helicopter), to estimate the values 
of the parameters ρ , k , b  as well as their standard 
errors. Table 1 shows the results of  this experiment 

6.2 Estimation using BAS 

In this experiment, the first five locations of the 

helicopter are chosen simultaneously using an 
uninformative prior distribution (i.e., as no estimate 
of 1−R  has yet been formed; it is taken to be I2σ ) 
and an X matrix with five rows in which the position 
of the Sun ),( ss φθ  is known and (9) is maximized 

over five pairs of helicopter viewpoints vθ  and vφ . 
Subsequently, we use BAS to calculate the next 

best informative location for the helicopter to move 
to in order to take a new reflectance observation., in 
which case the X matrix contains rows associated 
with previous observations, and (9) is maximized 
over a single new row of the X matrix in which the 
position of the Sun ),( ss φθ  is known and the only 
unknowns are a single pair of helicopter viewpoint 
values, vθ  and vφ , in the last row of the X matrix.  

Table 2 shows the results from this experiment.  
In both experiments, estimates of the parameters, 
along with their standard errors, cannot be formed 
until at least five observations have been taken.  

7 RESULTS 

In this section, we compare and analyze the results 
of our two experiments. The comparison results 
(Figure 3, Figure 4 and Figure 5) show that the 
estimates using the data from the "well chosen" 
locations using BAS are closer to the true values, 

1.=ρ , 9.0=k  and 1.0−=b , than the estimates based 
on data from the randomly chosen locations. Also, 
the error bars using BAS are much shorter indicating 
higher confidence in the estimates of the parameters 
based on the "well chosen locations", i.e., the length 
of the error bar for the estimate calculated using 
data/observations from five well chosen locations is 
as short as the error bar based on data collected from 
20 random locations.  

Within each figure (Figure 3, Figure 4 and Figure 
5), the horizontal axis indicates the number of 
observations between five and twenty that were used 
in forming the estimates. The vertical axis is on the 
scale of the parameter being estimated. Above each 
observation number, an "o" represents the estimate 
(using the data from the first observation through the 
observation number under consideration) of the 
parameter using the randomly chosen locations and 
the observations from those locations. The "x" 
represents the estimate of the parameter using 
observations taken at locations chosen through BAS. 
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The error bars are the standard errors of the 
estimated parameter based on these observations 
taken at "well chosen locations". The "bar" is the 
error bar, which extends one standard error above 
and below the parameter estimate. The horizontal 
line represents the true value of the parameter in our 
simulation. 

Note that in Figure 4 and Figure 5, the error bars 
rarely overlap the true value of the parameter. This 
can be attributed to two factors. In large part, this is 
due to the fact that they are "error bars" with a 
length of one standard error beyond the point 
estimate. Traditional 95% statistical confidence 
intervals based on two standard errors would in 
virtually every case overlap the true values. 
Additionally, these are cumulative plots, in which 
the same data is used, adding observations to form 
the parameter estimates as one moves to the right in 
each figure. Thus the point estimates and error bars 
are dependent upon one another within a figure. 

Finally, we see that the estimates using BAS (to 
select the points from which to take observation) are 
generally closer to the truth than when we use 
random points to take observations, and more 
importantly the standard errors associated with any 
given number of observations are much smaller.  
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Figure 3: Estimates and error bars for ρ . 
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Figure 4: Estimates and error bars for b . 
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Figure 5: Estimates and error bars for k . 

8 CONCLUSION 

Our initial results have shown that BAS is highly 
efficient compared to random sampling. The rate at 
which the standard errors, or the error bars, are 
reduced is much quicker, and hence the significant 
amount of information is found more quickly 
compared to other traditional methods. We have also 
shown that this methodology performs well even in 
the absence of any preliminary data points. Further 
simulation has shown evidence that BAS can be 
three times as efficient as random sampling. This 
efficiency amounts to savings of time and money 
during actual data collection and analysis.  

In addition to the application discussed in this 
paper, the theoretical framework presented here is 
generic and can be applied directly to other 
applications, such as, military, medical, computer 
vision, and robotics. 

Our proposed framework is based on the 
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multivariate normal distribution. The immediate 
extensions of this framework will be:  

a) To accommodate non-normal parameter 
estimate distributions. As part of our future study, 
we intend to employ sampling methodologies using 
Bayesian Estimation Methods for non-normal 
parameter estimate distributions. and  

b) To use cost effectiveness as an additional 
variable. In this initial work, the focus was to 
identify the viewpoints that would give us the most 
information. However, it is not always feasible or 
efficient to send the helicopter to this next “best” 
location. As part of our future work, we intend to 
identify the next “best efficient” location for the 
helicopter from which it should collect data. 
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Table 1: Observation and Estimates Using Random Sampling. 

Table 2: Observations and Estimates using BAS. 

Observation 
Number vθ  vφ  r 

Estimate (se) 
of ρ  

Estimate (se) of 
k  

Estimate (se) of 
b  

1 0.460 0.795 0.172364    
2 0.470 0.805 0.177412    
3 1.561 3.957 0.161359    
4 1.561 0.825 0.183571    
5 1.265 3.977 0.129712 0.1041 (0.0325) 0.90904 (0.00879) -0.1249 (0.0290) 
6 0.514 0.845 0.173072 0.1042 (0.0252) 0.90927 (0.00700) -0.1255 (0.0233) 
7 1.561 3.400 0.160130 0.1045 (0.0223) 0.90857 (0.00615) -0.1220 (0.0199) 
8 1.172 4.007 0.130101 0.1029 (0.0192) 0.90547 (0.00577) -0.1329 (0.0180) 
9 0.723 0.875 0.189697 0.1039 (0.0244) 0.90663 (0.00748) -0.1428 (0.0228) 
10 1.561 0.885 0.192543 0.1042 (0.0213) 0.90801 (0.00569) -0.1394 (0.0185) 
11 0.527 0.895 0.172811 0.1042 (0.0193) 0.90796 (0.00523) -0.1392 (0.0172) 
12 1.561 4.047 0.164530 0.1044 (0.0193) 0.90696 (0.00519) -0.1343 (0.0167) 
13 1.561 4.057 0.164822 0.1046 (0.0190) 0.90636 (0.00505) -0.1314 (0.0161) 
14 1.137 4.067 0.131443 0.1038 (0.0169) 0.90483 (0.00471) -0.1365 (0.0148) 
15 0.713 0.935 0.183894 0.1042 (0.0169) 0.90538 (0.00480) -0.1397 (0.0149) 
16 1.561 0.945 0.192280 0.1048 (0.0163) 0.90777 (0.00427) -0.1333 (0.0136) 
17 1.187 4.097 0.134701 0.1047 (0.0146) 0.90757 (0.00399) -0.1340 (0.0125) 
18 0.655 0.965 0.176841 0.1048 (0.0140) 0.90779 (0.00385) -0.1349 (0.0120) 
19 1.561 4.117 0.168819 0.1049 (0.0142) 0.90694 (0.00388) -0.1321 (0.0120) 
20 1.148 4.127 0.132199 0.1045 (0.0132) 0.90617 (0.00373) -0.1349 (0.0114) 

   

Observation 
Number vθ  vφ  r 

Estimate (se) 
of ρ  

Estimate (se) 
of k  

Estimate (se) of 
b  

1 0.114 1.673 0.157552    
2 0.882 6.013 0.156616    
3 0.761 0.917 0.192889    
4 0.678 1.308 0.180404    
5 0.260 0.114 0.152558 0.0683 (0.1172) 0.8497 (0.0607) -0.5958 (0.1413) 
6 1.195 2.367 0.146659 0.0767 (0.0932) 0.7906 (0.0476) -0.4506 (0.1040) 

7 0.237 2.805 0.149475 0.0830 (0.0746) 0.8268 (0.0404) -0.3745 (0.0893) 
8 0.166 1.700 0.155497 0.0832 (0.0641) 0.8286 (0.0345) -0.3722 (0.0788) 
9 0.320 2.012 0.154191 0.0831 (0.0572) 0.8277 (0.0307) -0.3735 (0.0713) 

10 1.224 4.085 0.129133 0.0917 (0.0465) 0.8369 (0.0381) -0.2483 (0.0539) 
11 1.409 3.442 0.135005 0.0917 (0.0431) 0.8380 (0.0309) -0.2481 (0.0503) 
12 0.092 1.559 0.154096 0.0920 (0.0394) 0.8398 (0.0285) -0.2462 (0.0471) 
13 0.806 0.891 0.200401 0.0888 (0.0402) 0.8129 (0.0284) -0.2952 (0.0453) 
14 1.256 5.467 0.147654 0.0891 (0.0385) 0.8181 (0.0259) -0.2914 (0.0433) 
15 0.227 1.284 0.155373 0.0889 (0.0368) 0.8169 (0.0248) -0.2919 (0.0418) 
16 1.129 5.522 0.148721 0.0889 (0.0354) 0.8174 (0.0236) -0.2918 (0.0402) 
17 0.507 5.696 0.150381 0.0891 (0.0333) 0.8183 (0.0225) -0.2904 (0.0380) 
18 0.119 4.363 0.142232 0.0890 (0.0302) 0.8181 (0.0207) -0.2908 (0.0357) 
19 0.245 0.524 0.151915 0.0889 (0.0299) 0.8172 (0.0205) -0.2901 (0.0355) 
20 0.446 2.408 0.144471 0.0884 (0.0297) 0.8149 (0.0204) -0.2930 (0.0354) 
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