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Abstract: We use the classification method Fuzzy Pattern Matching (FPM) to realize the industrial and medical 
diagnosis. FPM is marginal, i.e., its global decision is based on the selection of one of the intermediate 
decisions. Each intermediate decision is based on one attribute. Thus, FPM does not take into account the 
correlation between attributes. Additionally, FPM considers the shape of classes as convex one. Finally the 
classes are considered as equi-important by FPM. These drawbacks make FPM unusable for many real 
world applications. In this paper, we propose improving FPM to solve these drawbacks. Several synthetic 
and real data sets are used to show the performances of the Improved FPM (IFPM) with respect to classical 
one as well as to the well known classification method K Nearest Neighbours (KNN). KNN is known to be 
preferment in the case of data represented by correlated attributes or by classes with different a priori 
probabilities and non convex shape. 

1 INTRODUCTION 

In statistical Pattern Recognition (PR) (Dubuisson, 
2001), historical patterns about system functioning 
modes are divided into groups of points, called 
classes, using unsupervised learning method (Duda, 
2001) or human experience. These patterns, or 
points, with their class assignments, constitute the 
learning set. A supervised learning method uses the 
learning set to build a classifier that best separates 
the different classes in order to minimize the 
misclassification error. This separation, or 
classification, is realized by using a membership 
function, which determines the likelihood or the 
certainty that a point belongs to a class. 

The membership function can be generated using 
Probability Density Function (PDF) estimation 
based methods or heuristics-based ones. In the first 
category, the membership function is equal to either 
the PDF or to the probability a posterior. The 
estimation of PDF can be parametric, as the baysien 
classifier (Dubuisson, 1990), or non parametric, as 
the Parzen window (Dubuisson, 2001), voting k 
nearest neighbour rules (Denoeux, 1998), (Denoeux, 
2001) and (Dubuisson, 2001), or by histograms 
(Sayed Mouchaweh, 2004), (Medasani, 1998). In 

heuristic-based methods (Medasani, 1998), the shape 
of the membership function and its parameters are 
predefined either by experts to fit the given data set, 
or by learning to construct directly the decision 
boundaries as the potential functions (Dubuisson, 
1990) and neural networks (Ripley, 1996), or the 
clustering methods as Fuzzy C-Means (Medasani, 
1998). 

One of the applications of PR is the diagnosis of 
industrial systems for which no mathematical or 
analytical information is available to construct a 
model about the system functioning. Each 
functioning mode, normal or faulty, is represented 
by a class. The problem of diagnosis by PR becomes 
a problem of classification, i.e., the actual 
functioning mode can be determined by knowing the 
class of the actual pattern, or observation, of the 
system functioning state.  

There are many fuzzy classification methods in 
the literature. The choice of one of them depends on 
the given application and the available data. We use 
the method Fuzzy Pattern Matching (FPM) 
(Devillez, 2004b), (Grabish, 1992) and (Sayed 
Mouchaweh, 2002a) because it is simple, adapted to 
incomplete database cases and has a small and 
constant classification time. FPM is a marginal 
classification method, i.e., its global decision is 
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based on the selection of one of the intermediate 
decisions. Each intermediate decision is calculated 
using a membership function based on a probability 
histogram for each class according to each attribute. 
Thus, FPM is not adapted to work with data 
represented in a space of correlated attributes. 
Additionally, it does not respect the shape of classes 
if this shape is non convex. Finally, all the classes 
are considered as equi-important, i.e., with the same 
a priori probabilities. 

In this paper we propose a solution to develop 
FPM to take into account the correlation between 
attributes as well as the class importance and its 
shape if this shape is non convex. The paper is 
structured as follows. Firstly, the functioning of 
FPM is explained briefly. Then the limits of FPM 
are discussed using some synthetic examples. Next, 
several real examples are used to evaluate the 
performances of the Improved FPM (IFPM) with 
respect to the classical one as well as to the well 
known classification method K Nearest Neighbours 
(KNN). This evaluation is based on the 
misclassification rate. Finally a conclusion ends this 
paper. 

2 FUZZY PATTERN MATCHING 

FPM, described in (Devillez, 2004b), (Grabish, 
1992) and (Sayed Mouchaweh, 2002a), is a 
supervised classification method based on the use of 
probability histograms. Let C1, C2, …, Cc denote the 
classes described by a attributes. These attributes 
provide different points of view about the 
membership of an incoming point in the different 
classes. The functioning of FPM involves two 
phases: the learning and the classification ones. 

2.1 Learning Phase 

In the learning phase, the data histograms are 
constructed for each class according to each 
attribute. The number of bins h for a histogram is 
experimentally determined. This number has an 
important influence on the performances of FPM 
(Sayed Mouchaweh, 2002b). The histogram upper 
and lowest bounds can be determined either as the 
maximal and minimal learning data coordinates or 
by experts. In this paper, we adopted the first 
manner and we have added a tolerance Tol to adjust 
this histogram in order to maximize FPM 
performances. The height of each bin is the number 
of learning points located in this bin. The probability 

distribution j
ip of the class Ci according to the 

attribute j is calculated by dividing the height of 
each bin bk by the total number Ni of learning points 
belonging to the same class. Then these probabilities 
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centres
kby . The PDF j

iP is obtained by a linear 
linking between the bins heights centres. Indeed if 
we have a large number of data, the normalized 
histogram can be assumed to approximate the PDF. 

In order to take into account the uncertainty and 
the imprecision contained in the data, the probability 
distribution j

ip is converted into possibility one j
iπ . 

This conversion is realized using the transformation 
of Dubois and Prade (Dubois, 1993) defined as: 
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We have chosen this transformation for the good 
results which it gives in PR applications (Sayed 
Mouchaweh, 2002b), (Sayed Mouchaweh, 2006). A 
linear linking between bins heights centres converts 
the distribution of possibilities 

{ }{ }hky
kb

j
i ,...,2,1,)( ∈π  into density one j

iΠ . This 
operation is repeated for all the attributes of each 
class. 

2.2 Classification Phase 

The membership function j
iμ for each class Ci and 

according to each attribute j is considered to be 
numerically equivalent to the possibility distribution 
(Zadeh, 1978). Thus, the classification of a new 
point x, whose values of the different attributes are 
x1, …, xj, …, xa, is made in two steps:  

 Determination of the possibility membership 
value j

iπ of the point x to each class Ci 
according to the attribute j by a projection on 
the corresponding possibility density j

iΠ ; 
 Merging all the possibility values 1,  ..., a

i iπ π , 
concerning the class Ci, into a single one by an 
aggregation operator H:  

 
),...,( 1 a

iii H πππ =  (2) 
 

The result iπ  of this fusion corresponds to the 
global possibility value that the new point x belongs 
to the class Ci. The operator H can be a 
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multiplication, a minimum, an average, or a fuzzy 
integral (Grabish, 1992). Finally, the point x is 
assigned to the class for which it has the maximum 
membership value. 

3 LIMITS OF FPM 

3.1 Classes of Non Convex Shape 

FPM is similar to the naive Bayesian classifier who 
supposes the attributes statistically independent. 
This classifier defines the probability a 
posterior ( )iC xΦ  that x belongs to the class Ci by: 

 
a

j=1

( ) ( ) ( )j
i i iC x p x C P CΦ =∏  (3) 

 
Where ( )j

ip x C  is the marginal conditional density 
of the attribute j given the class Ci and P(Ci) denotes 
the a priori probability of the class Ci. If the a priori 
probabilities of classes are the same, then the 
equation (3) becomes similar to the equation (2). 
Thus FPM, as all the other marginal methods, does 
not take into account neither the correlation between 
attributes nor the class importance or its shape if it is 
non convex. Indeed, FPM produces always 
rectangular membership level curves for all the 
possible class shapes. Figure 1.a and Figure 1.b 
present respectively the membership level curves 
obtained by FPM for a class defined either by two 
linear or non linear correlated attributes. We can 
notice that these levels do not respect the class 
shape.  

 

 
Figure 1.a: Membership level curves obtained by FPM for 
a class defined by linear correlated attributes. 

In (Devillez, 2004a), two improvements were 
proposed to integrate the information about class 
shape in the learning phase. These two 
improvements are based on the division of each 
class into several sub ones. However these 
improvements have some drawbacks as the critical 

determination of the value of some parameters, like 
the number of subclasses, the expensive computation 
time and the rejection areas inside classes, i.e., areas 
in which points are not assigned to any class. 

 
Figure 1.b: Membership level curves obtained by FPM for 
a class defined by non linear correlated attributes. 

3.2 Classes with Correlated Attributes 

The XOR data are a classical example used in the 
literature to show the correlation between attributes. 
Indeed any classifier needs to use the information 
issued from all the attributes to take a correct 
decision. Thus FPM is not adapted for this type of 
data since its decision is based on the selection of 
one attribute. The Figure 2 shows XOR data in a 
representation space of two attributes as well as the 
membership level curves, obtained by FPM for the 
class 1. We can see that the classes have a convex 
shape and that FPM does not distinguish between 
the points of the class 1 and the ones of the class 2. 
Thus the improvements proposed by Devillez 
(Devillez, 2004a) cannot solve this problem since 
they were developed to be adapted to the class shape 
and not to the case of correlated attributes. Same 
remark can be noticed for the membership level 
curves of the class 2.  
 

 
Figure 2: The membership level curves, obtained by FPM, 
for XOR data for the class 1. 

In (Cadenas, 2004) a solution to make FPM 
operant in the case of data with correlated attributes 
is presented. This solution uses the Parzen Window 
method to construct the membership functions of 
each class according to one main feature and, if it is 
necessary, to one auxiliary feature. The 
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classification phase uses the fuzzy integral as an 
aggregation operator. However, this solution is 
consuming of time and has an exponential 
complexity according to the number of attributes. In 
addition, this solution does not work in the case of 
XOR described by more than two attributes.  

4 IMPROVED FPM (IFPM) 

We propose a solution to make FPM operant in the 
case of data with correlated attributes and classes of 
non convex shape. This solution looks for the 
relationship between the attributes of the 
representation space using the learning set. This 
relationship is represented by a correlation matrix 
between the bins of the histogram of the first 
attribute and all the other bins of the other 
histograms of the other attributes. This solution does 
not require any determination of any supplementary 
parameter. The functioning of IFPM is divided into 
two phases: learning and classification ones. 

4.1 Learning Phase 

The learning phase of IFPM is similar to the one of 
FPM but it integrates in addition the information 
about the zones of learning points inside the 
representation space. Each zone is resulting by the 
intersection of the bins of a learning point according 
to all attributes. 

Let X denotes the learning set which contains N 
points x divided into c classes inside a representation 
space of a attributes. Each class Ci contains ni 
points: {1, 2,..., }i c∈ . Each histogram for each 
attribute j, {1, 2,..., }j a∈ , contains h bins 

j

j
kb , 

{1,2,..., }jk h∈ . The correlation matrix B for the 
learning set X is defined as follows: 

 
],...,,...,,[ 21 ci BBBBB =  (4) 

 
Where iB  is the correlation matrix for the class 

Ci. This matrix can be calculated as follows: 
 

{ }[ 1 , 0 ]
x

i i
bB α= ∈  (5) 

Where x belongs to the zone resulting by the 
intersection of the bins 

1 2

1 2[ , ,..., ]
a

a
x k k kb b b b= . 

x

i
bα is 

the correlation factor between the bin 
1

1
kb  of the first 

attribute and all the other bins of the other attributes 

according to the class Ci. This correlation factor can 
be calculated using the following equation: 
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Where “∧ ” and “∩ ” denote respectively the AND 
and intersection operators.  

The Figure 3 shows a simple example of the 
calculation of the matrix B for the case of a 
representation space containing one class defined by 
two attributes. We can notice that the bins 1

2b  and  
2
2b  are correlated because a learning point is located 

in the zone resulting by the intersection of these two 
bins. Thus the correlation factor of this zone 

1 2
2 2

1

b b
α is 

equal to 1 in the matrix B. While there is no learning 
point in the zone of the intersection of the bins 1

1b  
and 2

5b . The correlation factor of this zone
1 2

51

1

b b
α is 

equal to zero in B. 
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Figure 3: Correlation Matrix obtained by IFPM for the 
class 1C  inside 2ℜ . 

4.2 Classification Phase 

The classification of a new point x starts by 
determining its bins according to each attribute 

1 2

1 2[ , ,..., ].
a

a
x k k kb b b b= Then the possibility membership 

value iπ for each class Ci is calculated exactly as 

FPM if and only if 1=i
bx

α . In order to take onto 
account the importance of a class, the possibility of 
each class is multiplied by its a priori probability. If 

,0=i
bx

α  the point x will be rejected according to the 

class Ci, i.e., 0iπ = . Finally the point x will be 
assigned to the class for which it has the highest 
possibility membership value. The Figure 4 
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represents the steps of the classification phase of 
IFPM 

 

Classification by IFPM
1

1[ ,..., ,..., ]
j h

j a
x k k kb b b b=

Calculating by FPM the 
membership value πi of  x to Ci

Rejecting the point x
according to the class

Ci → πi = 0
1 

x

i
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Yes

No

Finding  the correlation factor         in 
the matrix B
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Figure 4: Algorithm of the classification phase of IFPM. 

The Figure 5.a and Figure 5.b show the 
membership level curves issued from the application 
of IFPM on the two examples of the Figure 1. 
  

 
Figure 5.a: Membership level curves obtained by IFPM 
for a class defined by linear correlated attributes. 

 
Figure 5.b: Membership level curves obtained by IFPM 
for a class defined by non linear correlated attributes. 

We can find that these curves respect the non 
spherical and non convex shapes of classes.  

Equally, the Figure 6 shows these curves for the 
class 1 obtained by IFPM, for XOR data. We can 

find that IFPM discriminates well the points of the 
class 1 and the class 2. Same result can be obtained 
for the class 2. 

 

 
Figure 6: Membership level curves, obtained by IFPM, for 
XOR data for class 1. 

5 EXPERIMENTAL RESULTS 

We will test the performances of IFPM with FPM 
and classical as well as Fuzzy KNN (FKNN) with 
crisp initialisation and several values of k between 1 
and 15, using the misclassification rate as evaluation 
criterion. For that we use four data sets: XOR 
problem, Spiral, Pima Indians diabetes (Newman, 
1998) and Ljubljana Breast Cancer (LBC) data sets 
(Newman, 1998). XOR problem data set is 
composed of 2 classes in a representation space of 5 
attributes. We have chosen 5 attributes to test IFPM 
performances in the case of a representation space 
characterized by more than 2 correlated attributes. 
Spiral data are represented in terms of evenly spaced 
samples from a non linear two-dimensional 
transformation of the Cartesian coordinates. We 
have chosen this data set because the classes are non 
linearly separable.  The Pima and LBC data sets are 
known to be strongly non Gaussian. The number of 
points in each class, the number of classes and the 
number of attributes are depicted in Table 1. 

We have used the leave-one-out method to 
calculate the Misclassification Rate (MR) because it 
gives a pessimistic unbiased estimation of MR. We 
integrate also the Rejection Rate (RR) to indicate the 
number of points which are not assigned to any 
class. Indeed, it is better to reject a point than to 
misclassify it. The Table 2 shows the obtained 
results for the three methods. These results are 
obtained using the optimal values of h and Tol for 
FPM and IFPM, and K for KNN. We can conclude 
that IFPM provides better results, according to the 
evaluation criterion and for the four data sets, than 
FPM and both, KNN and FKNN. 
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Table 1: Data Sets used for the test. 

Data set Classes DIM Per Class 
XOR 2 5 {400,400} 

Spiral 2 2 {970,970} 
Pima 2 8 {268,500} 
LBC 2 9 {218,68} 

Table 2: Comparison between IFPM, FPM, KNN and 
FKNN, using leave-one-out technique, according to 
Rejection Rate (RR) and to Misclassification Rate (MR). 

Method FPM IFPM 
Criterion  MR (%) RR (%) MR (%) RR (%) 

XOR 44.12 0 0 0 
Spiral 18.24 0 0 1.5 
Pima 30.73 0.78 19.53 20.7 
LBC 25.87 1.05 10.14 30.42 

Method KNN FKNN 
XOR 0 0 0 0 
Spiral 0 0 0 0 
Pima 25.26 0 26.43 0 
LBC 23.78 0 23.43 0 

6 CONCLUSIONS 

In this paper, we have proposed a solution to adapt 
the classification method Fuzzy Pattern Matching 
(FPM) to be operant in the case of classes with 
correlated attributes as well as the class importance 
and its shape if this shape is not convex. The 
integration of this solution in FPM is called 
Improved FPM (IFPM). The performances of IFPM 
are compared with the ones of FPM, K Nearest 
Neighbours (KNN) and Fuzzy KNN (FKNN) using 
the misclassification rate as evaluation criterion. 
This comparison is realized according to four data 
sets. We have also used XOR problem and Spiral 
data which are widely used to study the correlation 
between attributes. In addition, we have used Pima 
Indians diabetes and Ljubljana Breast Cancer data 
sets which are known to be strongly non Gaussian 
with different a priori probabilities. The 
misclassification rate obtained by IFPM is better 
than the one of FPM, KNN and FKNN. However, 
IFPM rejects more points than the previous methods. 
Anyway, it is better to reject a point than to 
misclassify it. 
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