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Abstract: Adaptive motor control under continuously varying context, like the inertia parameters of a manipulated object,
is an active research area that lacks a satisfactory solution. Here, we present and compare three novel strategies
for learning control under varying context and show how adding tactile sensors may ease this task. The first
strategy uses only dynamics information to infer the unknown inertia parameters. It is based on a probabilistic
generative model of the control torques, which are linear in the inertia parameters. We demonstrate this
inference in the special case of a single continuous context variable — the mass of the manipulated object. In
the second strategy, instead of torques, we use tactile forces to infer the mass in a similar way. Finally, the
third strategy omits this inference — which may be infeasible if the latent space is multi-dimensional — and
directly maps the state, state transitions, and tactile forces onto the control torques. The additional tactile
input implicitly contains all control-torque relevant properties of the manipulated object. In simulation, we
demonstrate that this direct mapping can provide accurate control torques under multiple varying context
variables.

1 INTRODUCTION the latter have been tested only with linear models.
The above studies learn robot control based purely
In feed-forward control of a robot, an internal inverse- ©On the dynamics of the robot; here, we demonstrate
model of the robot dynamics is used to generate the the benefit of including tactile forces as additional
joint torques to produce a desired movement. Such'npu_t for Iearnlng_non-lmearmverse models under
a model always depends on the context in which the continuously-varyingontext. Haruno _et al. (H.aruno
robot is embedded, its environment and the objects it €t al., 2001) already use sensory information, but
interacts with. Some of this context may be hidden to ©Nnly for mapping a visual input onto discrete context
the robot, e.g., properties of a manipulated object, or States.
external forces applied by other agents or humans. Using a physics-based robot-arm simulation (Fig.
An internal model that does not incorporate all rel- 1), We present and compare three strategies for learn-
evant context variables needs to be relearned to adapt"d inverse models under varying context. The first
to a changing context. This adaptation may be too o infer the unknown property (hidden context) of an
slow since sufficiently many data points need to be ©bject during its manipulation (moving along a given
collected to update the learning parameters. An alter- trajectory) and immediately use this estimated prop-
native is to learn different models for different con- €rty for computing control torques.
texts and to switch between them (Narendra and Bal-  In the first strategy, only dynamic data are used,
akrishnan, 1997; Narendra and Xiang, 2000; Petkosnamely robot state, joint acceleration, and joint
et al., 2006) or combine their outputs according to a torques. The unknown inertia parameters of an object
predicted error measure (Haruno et al., 2001; Wolpert are inferred using a probabilistic generative model of
and Kawato, 1998). However, the former can handle the joint torques.
only previously-experienced discrete contexts, and In the second strategy, we use instead of the
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solutions to the dynamics inaccurate and cumbersome
to derive. Thus, in our approach, we learn the dy-
namics for control from movement data. Particularly,
we learn an inverse model, which maps the robot’s
state (here, joint angle® and their velocitied) and

its desired change (joint acceleratid)onto the mo-

tor commands (joint torques) that are required to
produce this change,

T=1(6,6,6) . @

Under varying context, learning (1) is insufficient.
Here, the inverse model depends on a context variable
T[!

Figure 1: Simulated robot arm with gripper and force sen- N A

sogrs and its real counterpart, the DL?Q IFi)ght-weight arm Il1. T=4(6,8,6, , @

Arrows indicate the three active joints used for the exper- In Sections 3 and 4, we first infer the hidden context

iments. The curve illustrates the desired trajectory of the variable and then plug this variable into function (2) to

ball. compute the control torques. In Section 5, the context
variablertis replaced by sensory input that implicitly
contains the hidden context.

torques the tactile forces exerted by the manipulated

object. The same inference as above can be carried

out given that the tactile forces are linear in the ob- 3 |[NFERRING CONTEXT FROM

ject's mass. We demonstrate both of these steps with

mass as the varying context. If more context variables DYNAMICS

are changing, estimating only the mass as hidden con-_ . .

text is insufficient. Particularly, if also the mass dis- Puring robot control, hidden inertia parameters can

tribution changes, both the center of mass and iner-P€ inferred by observing control torques and cor-
tia tensor vary, leading to a high-dimensional latent r€Sponding accelerations (Petkos and Vijayakumar,

variable space, in which inference may be infeasible 2007). This inference can be carried out efficiently
given a limited number of data points. because of a linear relationship in the dynamics, as

In our third strategy, we use a direct mapping from S1oWn in the following.
robot state, joint accelerations, and tactile forces onto . o .
control torques. This mapping allows accurate con- 3-1 Linearity in Robot Dynamics
trol even with more than one changing context vari- ) ) )
able and without the need to extract these variables The control torques of a manipulator are linear in
explicitly. the inertia parameters of its links (Sciavicco and Si-
The remainder of this article is organized as fol- Ciliano, 2000). Thusjican be decomposed into

lows. Section 2 briefly introduces the learning of in- T=0(6,0,0)m . (3)

verse models under varying context. Section 3 de-

scribes the inference of inertia parameters based onlyHere, Tt contains the inertia parameters,

on dynamic data. Section 4 describes the inferencem™ = [my, Myl ax, Mylay, Melaz, Ik, Jixys -5 M,

of mass using tactile forces. Section 5 motivates the Malnx, Malny, Malnz, Jnxx, -, Jnz4, Where my is the

direct mapping. Section 6 describes the methods for mass of linki, I its center-of-mass, and its inertia

the simulation experiments. Section 7 shows the re-tensor. The dynamics of a robot holding different

sults of these experiments; and Section 8 concludesobjects only differs in thet parameters of the combi-

the article. nation of object and end-effector link (the robot’s link
in contact with the object). To obtai®, we need to
know for a set of contexts the inertia parameteng,
and the corresponding torques Given a sufficient

2 LEARNING DYNAMICS number oft. and 1. values, we can comput®
using ordinary least squares. After computihgthe

Complex robot structure and non-rigid body dynam- robot's dynamics can be adjusted to different contexts

ics (e.g, due to hydraulic actuation) can make analytic by multiplying @ with the inertia parametems. The
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following two sections show how to estimateonce
@ has been found.

3.2 Inferenceof Inertia Parameters

Given the linear equation (3) and the knowledge of
@, the inertia parametens can be inferred. Assum-

ing Gaussian noise in the torquesthe probability
densityp(t|6, 6,6, equals

p(1]6,6,8,) = (PTLT) (4)
wherea( is a Gaussian function with meabrt and
covariance. Givenp(t|6,0,6,), the most probable
inertia parameteracan be mferred using Bayes' rule,
e.g., by assuming a constant prior probabipityt):

p(17t,6,6,6) O p(t]6,6,6,m) (5)

3.3 Temporal Correlation of Inertia
Parameters

The above inference ignores the temporal correlation
of the inertia parameters. Usually, however, context
changes infrequently or only slightly. Thus, we may
describe the context at time stept + 1 as a small
random variation of the context at the previous time
step:

Te+1 =Tt +&+1 (6)
where € is a Gaussian-distributed random variable
with constant covarianc® and zero mean. Thus, the
transition probabilityp(Tg+1|T%) is given as

P(Te11|T8) = A (T8, Q) (7)

Given the two conditional probabilities (4) and (7),
the hidden variablercan be described with a Markov
process (Fig. 2), and the current estimagean be
updated using a Kalman filter (Kalman, 1960). Writ-
ten with probability distributions, the filter update is

P(Teya [T X =N p(Tea X1, Thy1)
[ Pt mp(reit )d ®

wheren is a normalization constant, axdtands for
{6,0,0} to keep the equation compact. A variable
with superscript stands for all observations (of that
variable) up to time step

3.4 Special Case: Inference of Mass

Figure 2: Hidden Markov model for dependence of torques
T on contextrt. Here, the state and state transitions are com-
bined to a vector = {6,6,6}.

essentially assumes that the shape and center of mass
of the manipulated object are invariant. nfis the

only variable contexXt the dynamic equation is linear
inm,

1=9(6,6,0) +mh(6,6,0) . 9)
In our experiments, we first learn two mappings
11(8,6,6) and12(8,6,6) for two given contextsmy
andmg Given these mappingg,andh can be com-
puted.

To estimatem, we plug (4) and (7) into the fil-
ter equation (8) and use (9) instead of (3). Further-
more, we assume that the probability distribution of
the mass at time t is a Gaussian with meanand
varianceQ;. The resulting update equations fioy
andQ; are

h'= ' (1-9)+g1a
My = 1 hTz_thh+9 ) (10)
oo’
1 -1
Q1= (Q o+ hT Z‘1h> . 1)

Section 7 demonstrates the result for this inference
of m during motor control. For feed-forward control,
we plug the inferredn into (9) to compute the joint
torquest.

4 INFERRING CONTEXT FROM

TACTILE SENSORS

For inferring context, tactile forces measured at the
interface between hand and object may serve as a sub-
stitute for the control torques. We demonstrate this in-
ference for the special case of object mass as context.

1This assumption is not exactly true in our case. A
changing object mass also changes the center of mass and
inertia tensor of the combination end-effector link plus ob-
ject. Here, to keep the demonstration simple, we make a
linear apprOX|mat|0n and ignore terms of higher ordemin

We will demonstrate the above inference in the case of — the maximum value ahwas about one third of the mass

object massn as the hidden context. This restriction
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The sensory values (the tactile forces) are linear o
in the massnheld in the robot’s hand, as shown in the s=s+md(6,6,8) (14)
following. In the reference frame of the hand, the ac-
celeratiora of an object leads to a small displacement
dx (Fig. 3).

where¢ is a function depending on the state and ac-
celeration of the robot arm. This linearity is illus-
trated in Fig. 4 using data from our simulated sensors.
Based on (14), the same inference as in Section 3 is
possible using (10) and (11), and the estimatezhn

be used for control by using (9).

5 DIRECT MAPPING

Figure 3: A force on the object held in the robot’s hand The above inference of mass fails if we have addi-
leads to a displacemedt This displacement shifts each  tjonal hidden context variables, e.g., if the robot hand
sensor at position (relative to the object’s center) by holds a dumb-bell, which can swing. In this general
case, we could still use the inference based on dy-
This displacement pushes each sensor by thenamics. However, since for the combination of end-
amounth; depending on the sensor’s position Let effector and object, both the inertia tensor and the cen-
g be a vector of unit length pointing in the direction ter of mass vary, we need to estimate 10 hidden con-
of uj, thenh, = e‘quX Our sensors act like Hookean text variables (Sciavicco and Siciliano, 2000). Given
springs; thus, the resulting force equds= khig, the limited amount of training data that we use in our
with K being the spring constant. Since the object is experiments, we expect that inference fails in such a
held such that it cannot escape the grip, the sum of high-dimensional latent space.

sensory forced; must equal the inertial forom a, As alternative, we suggest using the sensory val-
. ues as additional input for learning feed-forward

. - T torques. Thus, the robot’s state and desired acceler-

ma= i; fi= KZ(Q e - 5 ation are augmented by the sensory values, and this

augmented input is directly mapped on the control
torques. This step avoids inferring unknown hidden
dx— T(ETE)fla , (13) variables, which are not our primary interest; our

main goal is computing control torques under vary-

whereE is a matrix with row vectorg,. Thus, each  ing context. .
f; is proportional tam. The total force measured ata ~ The sum of forces measured at the tactile sensors
sensor equam p|u5 a constant gnp force (Whose sum equals the force that the manlpulated ObjeCt exerts

over all sensors equals zero). Therefore, the sensoryon the robotic hand. This force combined with the
valuess can be written as robot’s state and desired acceleration is sufficient in-

formation for predicting the control torques. Thus,
tactile forces contain the relevant effects of an un-
F ' @ L ' known varying context. This context may be, e.g.,
a change in mass, a change in mass distribution, or
a human exerting a force on the object held by the
robot.
, Depending on the number of sensors, the sensory
input may be high-dimensional. However, since the
. sensors encode only a force vector, the intrinsic di-
mensionality is only three. For learning the mapping
] 1(6,6,8,s), regression techniques exist, like locally-
L weighted projection regression (Vijayakumar et al.,
0007 0.<I)11 o.rlle o.(l)ls 0,<I)14 o.rl)15 O.(I)16 o.rI317 0.018 2005), that can exploit this reduced intrinsic dimen-
sensor 1 sionality efficiently. In the following, we demonstrate

Figure 4: Two-dimensional projection of sensor values dur- the Va||d|ty of our arguments in a robot-arm simula-
ing figure-8 movements with four different masses. From tion

left to right, the mass increases as 0.005, 0.01, 0.02, and '

0.03.

This linear equation allows the computationdo§
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6 ROBOT SIMULATION For each task, three trajectories were pre-
computed: eight-figures of three different sizes (Fig.
This section describes the methods: the simulated1 shows the big eight; small and medium eight are 0.9
robot, the simulated tactile sensors, the control tasks,and 0.95 of the big-eight’s size, see Fig. 11) and three
the control architecture, and the learning of the feed- lines of different heights (Fig. 13). For training, data

forward controller. points were used from the two extremal trajectories,
excluding the middle trajectory. For testing, all three
6.1 Simulated Robot Arm trajectories were used.

Our simulated robot arm replicates the real Light-
Weight Robot Il designed by the German Aerospace
Center, DLR (Fig. 1). The DLR arm has seven
degrees-of-freedom; however, only three of them
were controlled in the present study; the remain-
ing joints were stiff. As end-effector, we attached a
simple gripper with four stiff fingers; its only pur-

pose was to hold a spherical object tightly with the
help of five simulated force sensors. The physics
was computed with the Open Dynamics Engine

(http://www ode. or g). Figure 5: Robot swinging a dumb-bell. The black line
shows the desired trajectory.

6.2 Simulated Force Sensors

Our force sensors are small boxes attached to dampeds 4  Control Architecture
springs (Fig. 1). In the simulation, damped springs
were realized using slider joints, whose positions
were adjusted by a proportional-derivative controller.
The resting position of each spring was set such that
it was always under pressure. As sensor readjng
we used the current position of a box (relative to the
resting position).

We used an adaptive controller and separated train-
ing and test phases. To generate training patterns, a
proportional-integral-derivative (PID) controller pro-
vided the joint torques. The proportional gain was
chosen to be sufficiently high such that the end-
effector was able to follow the desired trajectories.
The integral component was initialized to a value that
holds the arm against gravity (apart from that, its ef-

_ ) ~ fect was negligible).

We used two tasks: moving a ball around an eightfig-  For testing, a composite controller provided the
ure.and swinging a dumb-bell. In the first, one context joint torques (Fig. 6). The trained feed-forward con-
variable was hidden, the mass of the ball. The maxi- {rgller was put in parallel with a low-gain error feed-

mum massrh= 0.03) of a ball was about one seventh - pack (jts PD-gain was 1% of the gain used for training

of the total mass of the robot arm. In the second task, i the pall case and 4% in the dumb-bell case). For
two variables were hidden: the dumb-bell mass and those feed-forward mappings that require an estimate
its orientation. The two ball masses of the dumb-bell 4f the object's mass, this estimate was computed us-

were equal. _ _ ing a Kalman filter as described above (the transition
In all tasks, the desired trajectory of the end-

effector was pre-defined (Figs. 1 and 5) and its in-
verse in joint angles pre-computed. The eight was m  Sensor
traversed only once lasting 5000 time steps, and for 0 BB PO g

the dumb-bell, the end-effector swung for two peri-  [oion %

ods together lasting 5000 time steps and followed by | pian | 8464 @ X Plant
1000 time steps during which the end-effector had to

stay in place (here, the control torques need to com- x 9

pensate for the swinging dumb-bell). In both tasks,

a movement started and ended with zero velocity and
acceleration. The velocity profile was sinusoidal with

one peak.

6.3 Control Tasks

Figure 6: Composite control for the robot arm. A feed-
forward controller is put in parallel with error feed-back
(low PD gain).
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noiseQ of mwas set to 10° for both dynamics and
sensor case).

6.5 Controller Learning

The feed-forward controller was trained on data col-
lected during pure PID-control. For each mass con-
text, 10000 data points were collected in the ball case
and 12000 data points in the dumb-bell case. Half
of these points (every second) were used for training
and the other half for testing the regression perfor-
mance. Three types of mappings were learned. The
first maps the state and acceleration val(&®, 0)
onto joint torques. The second maps the same input
onto the five sensory values, and the third maps the
sensor augmented inp(A, 6, 0,s) onto joint torques.
The first two of these mappings were trained on two
different labeled massesy{ = 0.005 andm, = 0.03

for ball or my; = 0.06 for dumb-bell). The last map-

mass

0.035

0.03

0.025

0.02

0.015

0.01

0.005

-0.005

tions 3 and 4) allowed to infer the unknown mass ac-
curately (Figs. 7 to 10).

0.03

0.02

0.01

0

dynamic estimate

T
true mass

0 1000

2000

3000
time step

4000 5000

Figure 7: Inferring mass purely from dynamics. The in-

ference results are shown for all three trajectories. The in-
set shows the normalized mean square error (hnMSE) of the
mass estimate. The error bars on the nMSE are min and

ping used the data from 12 different mass contaxis ( max values averaged over an entire trajectory.

increased from 0.005 to 0.06 in steps of 0.005); here,
the contexts were unlabeled.

Our learning task requires a non-linear regres-
sion technique that provides error boundaries for each
output value (required for the Kalman-filtering step).
Among the possible techniques, we chose locally-
weighted projection regression (LWPR(Vijayaku-
mar et al., 2005) because it is fast — LWPR id\N®D(
where N is the number of data points; in contrast,
the popular Gaussian process regression N3D{f
making no approximation (Rasmussen and Williams,
2006).

mass
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0.03
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0.015

0.01

0.005

0.03

0.02

0.01

T
true mass
sensor estimate

o LT

_0005 L L L L
0 1000 2000 3000 4000

time step
Figure 8: Inferring mass using tactile sensors. For details
The results of the robot-simulation experiments are S€€ Fig. 7.
separated into ball task — inference and control under
varying mass — and dumb-bell task — inference and
control under multiple varying context variables.

5000

7 RESULTS

Both types of mappings from state and acceler-
ation either onto torques or onto sensors could be
learned with low regression errors, which were of
the same order (torques with m = 0.005: normalized
mean square error (NMSE) =% 1074, m = 0.03:
NMSE = 27x10~%; sensors with m = 0.005: nMSE =

For only one context variable, namely the mass of the 1.3+ 1074, m = 0.03: nMSE = 2x10"“). The error

manipulated object, both inference strategies (Sec-Of the inferred mass was about the same for dynamics
and sensor pathway. However, the variation between

2LWPR uses locally-weighted linear-regression. Data trials was lower in the sensor case.
points are weighted according to Gaussian receptive fields.  Gjyen the inferred mass via the torque and sensory
Our setup of the LWPR algorithm was as follows. For each pathways (Sections 3 and 4), our controller could pro-

output dimension, a separate LWPR regressor was com-_ . .
puted. The widths of the Gaussian receptive fields were vide accurate torques (Fig. 11). The results from both

hand-tuned for each input dimension, and these widths were pathwa'lys overlap with the desired traje_Cto"Y- As i”l{s'
kept constant during the function approximation. Other trated in the figure, a PID controller with a PD-gain
learning parameters were kept at default values. as low as the gain of the error feed-back for the com-

7.1 Inferenceand Control Under

Varying Mass
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0.035

0.03

0.025

0.02

T
true mass

dynamic estimate

posite controller was insufficient for keeping the ball
on the eight figure. The figure furthermore illustrates
that without a correct mass estimate, tracking was im-
paired. Thus, correctly estimating the mass matters
for this task.

2 i VS
® oos|  nMsE 7.2 Inferenceand Control Under
001 | Zzz L g ] Multiple Varying Context
0005 o001 ﬂ 1 1 The inference of mass based on a single hidden vari-
o Loty s s ‘ able failed if more variables varied (Fig. 12). We
0 e Step3°°° 4000 5000 demonstrate this failure with the swinging dumb-bell,

Figure 9: Inferring mass purely from dynamics. For details

whose mass increased continuously during the trial.
In the last part of the trial, when the dumb-bell was

see Fig. 7. .
g heavy and swung, the mass inference was worst. The
wrong mass estimate further impaired the control of
0.035 ‘ the robot arm (see Fig. 13).
true _mass
sensor estimate
0.03 B
0.08 T T
true ‘mass
o0zs [ 1 007 | emeer Simete
- g, . 0.06 -
@ 0.02 1
£ 0.015 - NMSE L 0.05 /
0.03 @ 1
i e, i g o
001 oL | v E i
0.005 - 0.01 + . AP 4 |
0 0 T | | I
0 1000 2000 3000 4000 5000 1
time step ‘ ‘ i
Figure 10: Inferring mass using tactile sensors. For details 0 1000 2000 3000 4000 5000 6000
see Flg 7. time step
Figure 12: Inference of mass in the dumb-bell task.
1.4 F T T T i X
low-gain PID During the last part of the movement, tracking was
1oL dymamc e T 1 better with the direct mapping fror(®, 0, _e,s) onto
torques. For this mapping, the results still show some
e 4| | deviation from the target. However, we expect this
£ error to reduce with more training data.
% 0.8 - E
06 | 8 CONCLUSIONS
0.4 ‘ ‘ ‘ ‘ ] We presented three strategies for adaptive motor con-
-0.6 04 02 0 0.2 0.4 06 trol under continuously varying context. First, hidden

y-coordinate inertia parameters of a manipulated object can be in-
Figure 11: Following-the-eight task. The figure com- ferred from the dynamics and in turn used to predict
pares low-gain PID control (on large eight only) with the control torques. Second, the hidden mass of an object
composite-controller that uses either the predicted mass es-cgn pe inferred from the tactile forces exerted by the
timate (from dynamics or sensors) or a wrong estimate oot Third, correct control torques can be predicted

(m=0.03, on large eight only). The true mass decreased . . L RTHY .
continuously from 0.03 to 0. The results for composite con- by augmenting the input(8,6) with tactile forces

trol based on the predicted mass overlap with the target for @nd by directly mapping this input onto the torques.
all three test curves. We demonstrated the first two strategies with ob-

ject mass as the varying context. For more context
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