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Abstract: In certain robot applications, path planning has to be viewed, not only from a motion perspective, but also
from a process perspective. In 3-dimensional Friction Stir Welding (FSW) a properly planned path is essential
for the outcome of the process, even though different control loops compensate for various deviations. One
such example is how sharp path intersection is handled, which is the emphasis in this paper. We propose a
strategy based on Hermite and Bezier curves, by whichG1 continuity is obtained. The blending operation
includes an optimization strategy in order to avoid high second order derivatives of the blending polynomials,
yet still to cover as much as possible of the original path.

1 INTRODUCTION

Being a quite recent welding process, Friction Stir
Welding (FSW), has been announced ’the next big
thing’ in the welding community since its release on
the market a decade ago. Since its invention at The
Welding Institute (TWI) in 1991 (patent filed in 92
(Thomas et al., 1991)), it has been declared a supe-
rior welding technique, in term of quality and repeata-
bility, compared to traditional fusion welding tech-
niques, for joining aluminium alloys.

The high quality of the FS weld is a result from a
non-melting welding process without the use of filler
material. And by the means of quality, it is defined
through elimination (or close to) of shrinkage, poros-
ity and distortions, which are quality issues in tradi-
tional fusion welding (Chao et al., 2003; Lomolino
et al., 2005).

From an application point of view, the quality of
the weld and the robustness of the process, has ap-
pealed certain types of industries with extreme de-
mands on the results of the joining process. Two
examples are the aerospace industry and in nuclear
waste management (Cederqvist and Andrews, 2003),
which both has an obvious zero tolerance for error.
But the application does not necessarily have to be
extreme to benefit from FSW, as a typical application

is joining extruded aluminium profiles.
But regardless of the application area, the process

is constrained by a few factors. One being the large
forces and torques needed to achieve a good result.
Depending on the type of material used and its thick-
ness, a certain amount of force is applied to produce
heat (by friction). These forces normally range from a
few kN up to 200 kN, which calls for heavy duty ma-
chinery to support the process. And as a result from
applying large forces, the object needs to be rigidly
clamped in a fixture and supported by a backingbar. If
the object is capable of supporting the applied forces
using its internal structure, the backingbar may not be
needed.

The issue of self support can in some cases be
eliminated through engineering. That is, by design-
ing the pieces properly for FSW and selecting a loca-
tion of joining where it is most suited. The machinery
issue, on the other hand, can not be solved with one
single track. The extreme range in forces, calls for
multiple solutions. A machine capable of applying
200 kN, is most certainly oversized for application
in the lower region of FSW. And another issue is of
course flexibility as well as the dextrous workspace of
the machine. A machine capable of applying 200 kN
in one direction does not necessarily have the power
to apply its forces in a arbitrary direction, if even the

92
Soron M. and Kalaykov I. (2007).
BLENDING TOOL PATHS FOR G1-CONTINUITY IN ROBOTIC FRICTION STIR WELDING.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 92-97
DOI: 10.5220/0001624400920097
Copyright c© SciTePress



possibility to reach it, which limits the application and
lowers the flexibility.

As a complement in the lower region of FSW
(from a force perspective), industrial robots have been
introduced. The 3-dimensional workspace of the
robot as well as the relative low cost, are indeed ap-
pealing and several research project has aimed to de-
velop a robotic solution. One, using a parallel de-
signed robot (Strombeck et al., 2000), while the other
attempts made used a serial designed robot (Smith,
2000; Soron and Kalaykov, 2006).

Even though the robots used in these applications
were the ones having the greatest pay-load capabili-
ties, the robot applications are limited in terms of ma-
terial, thickness and speed due to the lack of capabil-
ity to produce forces greater than approximately 10
kN. Along with the ability to apply forces, comes ne-
cessity to handle positional errors due to compliance.
Both in the main direction (into the object) as well as
in the plane perpendicular to the main direction.

To handle the compliance issues (especially in
the main direction) force control is normally imple-
mented in all FSW machines, robot as well as stan-
dard machines. In robotics, a standard solution is
a force/position hybrid control (Raibert and Craig,
1981), enabling position based control in one or more
direction, while achieving a desired force value in the
other. A solution that fits FSW, since a path may be
followed having a constant contact force with the ma-
terial.

2 PATH GENERATION FOR FSW

Path generation has for decades been a well investi-
gated topic for application areas such as milling (El-
ber and Cohen, 1993; Choy and Chan, 2003) and cut-
ting (Wings and J̈utter, 2004). To create a high defined
path in such applications without an off-line program-
ming (or CAM) tool, can be considered a time con-
suming operation, if not impossible in many cases.

The resemblance between mentioned processes
and FSW is in many areas high, where:

• In all processes a tool is in contact with an object.

• The tool must follow a pre-defined path (or con-
tour) with high accuracy.

• The tool’s orientation must be defined at all time
also often with high accuracy.

To achieve a satisfying result in such process, us-
ing an industrial robot as manipulator instead of an
NC machine, a set of new motion control algorithms
are essential. Typically, guidance by (3D) vision or
force/torque sensing is used to compensate for the

lack of positional accuracy or to gain robustness (Kim
et al., 2003; Motta et al., 2001).

As mentioned earlier, force control is often used
in robotic FSW applications to handle compliance is-
sues. But also when compliance is not in play, as with
traditional FSW machines, force control can increase
the success rate by handling the occurrence of small
deviations in the object’s surface as well as indirect
control the heat generation (Venable et al., 2004).

In FSW, one of the main reasons for implementing
a robot application is the support of a 3-dimensional
workspace. This implies that the main use of robots
in FSW should be in application containing complex
weld paths. At least, these are the application that
benefits from a robotic solution. And as complex
weld paths are in focus, so becomes the need to create
those, preferably as simple as possible.

Another interesting aspect is the fact that one nor-
mally gains robustness, in force controlled motions,
by having an accurate reference path. Ill-defined
paths obviously need a higher amount of corrections,
which the control system might be incapable of han-
dling. And as (more) errors are introduced, new ones
may arise as a result of the old.

The use of CAD objects in the path generation
process is a well known technology, especially in NC
applications. In robotics, on the other hand, the em-
phasis has been more in the area of factory modeling.
The ability to visualize the robot cell (and the robot’s
motion), measuring cycle times as well avoiding col-
lisions, are features supported in most of today’s off-
line programming (OLP) tools. But the features to
model and improve a path, based on underlying CAD
data and the application at hand, are often modest.
Simple features, such as path blending algorithms and
tool orientation control, are often hidden within more
general path planning algorithms, if included at all.
Even though, they are essential for many of today’s
robot applications, including FSW.

On most robotic systems, a path smoothing oper-
ation exists. Such operations may be defined as zones
(Norrlöf, 2003) in which the control system is allowed
to re-author the path in order to reach motion con-
tinuity. Such implementation are definitely helpful,
e.g. when executing way-point motions, but gener-
ally not useful from a path planning perspective. Even
as the FSW process is bounded to the motion of the
robot, the process constraints are not accounted for
in the motion controller, leaving the operator to pure
guesses at the path designing stage.
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3 PATH BLENDING
TECHNIQUES

Blending of curves or surfaces are well known tech-
niques when joining simple primitives to construct
complex shapes. Instead of using only one equation
to express a complex shape, which may lead to a high
degree polynomial, it becomes natural to use several,
less complex sub-shapes. And in order to maintainGn

continuity, we apply blending techniques. In terms of
constructing a robot path, it becomes even more obvi-
ous since the continuity is directly linked to the ability
to execute the motion. Also, in order to generate mo-
tion commands for the robot, we are restricted to use
simple path primitives such as lines and arcs.

To represent a curve, with the lowest possible
complexity, still offering good enough flexibility we
use cubic polynomials. Expressed on a parametric
form we get:

C(u) = (x(u),y(u),z(u)) (1)

whereu∈ [0,1] and

x(u) = axu
3 +bxu

2 +cxu+dx

y(u) = ayu
3 +byu

2 +cyu+dy (2)

z(u) = azu
3 +bzu

2 +czu+dz

giving the compact form as:

C(u) = au3 +bu2 + cu+d (3)

The tangent vector atu of the curveC is obtained by
differentiatingC(u) as:

dC(u)

du
=

(

dx(u)

du
,
dy(u)

du
,
dz(u)

du

)

, (4)

or as in the case with a cubic polynomial:

dC(u)

du
= 3au2 +2bu+ c (5)

which are the parametric derivatives.

3.1 Hermite Blending

A cubic Hermite curve is defined based on the seg-
ments two end-points and the tangent vectors at those
points. Recalling the equations 3 and 5 we obtain the
following four equations:

C(0) = d

C(1) = a+b+ c+d (6)

C′(0) = c

C′(1) = 3a+2b+ c

as we have substitutedu for 0 and 1 respectively.
Solving the equation for the four unknowns we get:

a = 2C(0)−2C(1)+C′(0)+C′(1)

b = −3C(0)+3C(1)−2C′(0)−C′(1) (7)

c = C′(0)

d = C(0)

And by substituting the algebraic coefficients, we get:

C(u) = (2u3−3u2 +1)C(0)

+(−2u3 +3u2)C(1) (8)

+(u3−2u2 +u)C′(0)

+(u3−u2)C′(1)

In a blending algorithm we may selectC(0) andC(1)
from the two intersecting curves to join them with a
C1 continuity. In such case, the only thing affecting
the output of the curve is the location of those end-
points. This may of course lead to unwanted phe-
nomena in the practical case due to high second or-
der derivatives. But if we release theC1 continuity
in order to affect the blending curve by changing the
magnitude of the tangent vectors, we get another vari-
able,k. By doing so, we still have geometric first or-
der continuity,G1, and a more flexible algorithm for
blending. We then form the blending function as:

C(u) = F1(u)p0 +F2(u)p1

+F3(u)kt0 +F4(u)kt1 (9)

where the Fn are the Hermite basis functions
(Martens, 1990) substituted from equation 8, thepn
are the intersecting control points andtn are the tan-
gent vector atpn.

3.2 Bezier Blending

Yet another type of Spline curve, often used in blend-
ing operation, is the Bezier curve(Bezier, 1986). In
difference to the Hermite curve, which interpolates
all its control points, Bezier curves only interpolate
the first and last. The usage of the tangents at the end-
points is similar to the Hermite, but the basis functions
of a Bezier curve are based on a Bernstein polynomial
as:

C(u) =
n

∑
i=0

pi
n!

i!(n− i)!
ui(1−u)n−i (10)

for u∈ [0,1].
In the case of smoothing a sharp intersection, we

now use three control points, giving the Bezier equa-
tion:

C(u) = (1−u)2p0 +2u(1−u)p1 +u2p2 (11)
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Figure 1: On the left a Hermite smoothing using two control points and its tangents. On the right a Bezier smoothing based
on three control points.

As with the Hermite curve, the key to influence
the behavior of the curve is through the basis func-
tions. With Bezier curve we use the expression of
weights at the control points. The weight is general-
ized through specifying multiple-coincident points at
a vertex (control point), by which we pull the curve
closer to that control point. This feature is considered
desirable, due to its straight forward implementation,
making easier to predict the output of the curve, than
in e.g. the Hermite curve. Another important feature
of the Bezier curve is that it is contained within its
convex hull.

4 IMPLEMENTATION

In our path generation system we implement both
Hermite blending as well as Bezier blending, to allow
two different approaches towards the same goal. The
objective is of course to createG1 continuous path for
the robot to execute, with only a limited interaction
with operator/programmer.

In both cases we allow the user to define a min-
imum and maximum distance from the intersection
point, where the blending function should be applied.
The idea behind having an interval in which the blend-
ing is performed is to allow the system to optimize its
blending performance. In the case with the Hermite
curve we also allow an interval for the magnification
of the tangent vector from[0,k], while the Bezier is al-
lowed to put weight on the intersecting control point,
p1.

Since neither Hermite or Bezier curves have any
corresponding motion implementation on the robot’s
control system, the blending motion needs to be ex-
ecuted as a circular motion (or rather as a sequence
of consecutive linear/circular motions). Therefore, at

each iteration of the blending optimization, the curve
is converted into circular path segments, which end-
points tangent’s are evaluated as well as the segments
second order derivative. To avoid a too time consum-
ing operation, we introduce discrete steps on which
we perform the optimization.

4.1 Blending Sequence

The following sequence is used in the Hermite blend-
ing operation:

1. Set initial variables for magnification (m= 1), er-
ror (ε0 = ∞), optimization tolerance (µ) and dis-
tance interval (d ∈ [dmin,dmax])

2. Define the intersection to blend through original
path segments,C0(u) andC1(u)

3. If d < dmax exit

4. Extract control points atp0 = C0(1−d) andp1 =
C1(d)

5. Calculate the tangents,t0 andt1, atp0 andp1

6. Create the blending curve,C, and calculate high-
est,|C′′|.

7. If εi < εi−1 increasem jump to 5.

8. If ε > µ resetm increased and jump to 3.

9. Exit

By applying this strategy we iterate until the tangent
error is less than the optimization tolerance. If the
distance interval is zero,dmin = dmaxwe only optimize
locally on the magnification factor.

When using the Bezier method we end up with a
similar approach, namely:

1. Set initial variables for weight (w= 0), error (ε0 =
∞), optimization tolerance (µ) and distance inter-
val (d ∈ [dmin,dmax])
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Figure 2: The resulting curves after blending.

2. Define the intersection to blend through original
path segments,C0(u) andC1(u)

3. If d < dmax exit

4. Extract control points atp0 = C0(1− d), p1 =
C1(0) andp2 = C1(d)

5. Create the blending curve,C, and calculate high-
est,|C′′|.

6. If εi < εi−1 increasem jump to 4.

7. If ε > µ resetm increased and jump to 3.

8. Exit

In this approach we still iterate through an inner and
an outer loop. But instead of evaluating the inner loop
on magnification we evaluate the weight,w.

One remark should be that the Bezier curve has
its convex hull property, which does not allow it to
expand outside volume of the control points. This is
however not the case with the Hermite, which might
exhibits undesirable characteristics, such as loops and
cusps (Mortenson, 2006).

5 SIMULATION

In this experiment we compare the output of our two
strategies in a path modeling environment. We will
not declare one better than the other, but simply vi-
sualize the output curves using the same input path
segments. By using the same input parameters for the
common variables, such as distance interval and tol-
erance level.

The two input segments are defined in thexyplane
through three control points as:

p1 = [0,0,0]

p2 = [0,100,0]

p3 = [100,100,0]

where~s1 = p2−p1 and~s2 = p3−p2. The two seg-
ments~s1 and~s2 correspond to two parameterized
curves, denotedC1(u) andC2(u) with u∈ [0,1].

As input parameters to our blending algorithm we
choose:

• A bending distance interval ranging fromdmin =
10 todmax= 50 .

• A tangent magnification factor ofkmax = 5 (for
Hermite).

• A weight ofwmax= 5 (for Bezier).

The resulting intersection blending of the two seg-
ments,~s1 and~s2, is shown in Figure 2. Reviewing
the two operations, one may notice that the Bezier al-
gorithm, due to its convex hull property, deviates less
from the original path than the Hermite algorithm.
The limiting factor in the Bezier case is rather the
rapid increase of the second order derivative. In the
case of the Hermite operation, the change of the mag-
nification factor pulls the curve closer to (or further
away from) the intersecting control point. But in this
case, overexceeding the limits causes an overshot of
the curve. The visual feedback in such case, is a help-
ing factor in the path planning stage.

One may conclude the simulation with the follow-
ing remarks:

• The Bezier algorithm allows less deviation from
the original path, but the second order derivatives
needs to be monitored. One may also mention the
straight-forward solution to manipulate the curve
by adding weights at control points.

• The Hermite solution have a more complex ap-
proach to manipulation, but have on the other
hand a visual response when overexceeding lim-
its.

6 CONCLUSIONS

In this paper we have suggested two methods on how
to blend path segments to createG1 continuous paths.
There certainly exists numerous of way to do this, but
the lack of implementations calls for such studies. In
our solution we provide the following:

• Two different implementations, Bezier or Hermite
blending.

• Allowing the user to define the location (or loca-
tion interval) of the blending function.

• A local optimization based on vector magnitude
(Hermite) or weight (Bezier).

• A global optimization on the interval (if existing).
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One issue that occurs in this type of implementations
is that the blending function needs to be converted
into executable motion, since spline motions rarely
exists in the control system of the robot. One could
probably create better implementations through sub-
dividing the splines until a certain level of accuracy is
obtained, but this is, however, not within the scope of
this implementation.

The idea of intersection blending enlightens only a
portion of all issues involved in path generation. It is,
however, an essential issue in order to achieve good
weld result in 3-dimensional FSW, since the process
output is depending on a continuous motion of the
welding tool.

ACKNOWLEDGEMENTS

The first author’s research is financed by the KK-
foundation and ESAB AB Welding Equipment. Their
support is highly appreciated. The first author is
grateful for the technical support provided by the
project members ESAB AB Welding Equipment,
ABB Robotics and the research centre for Applied
Autonomous Sensor System (AASS) atÖrebro Uni-
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