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Abstract: This paper proposes the kinematic resolution method of CoM(center of mass) Jacobian with embedded mo-
tions and the design method of posture/walking controller for humanoid robots. The kinematic resolution of
CoM Jacobian with embedded motions makes a humanoid robot balanced automatically during movement of
all other limbs. Actually, it offers an ability of WBC(whole body coordination) to humanoid robot. Also, we
prove that the proposed posture/walking controller brings the ISS(disturbance input-to-state stability) for the
simplified bipedal walking robot model.

1 INTRODUCTION

Recently, there have been many researches about hu-
manoid motion control, for example, walking con-
trol(Choi et al., 2006; Kajita et al., 2001), and whole
body coordination(Sugihara and Nakamura, 2002).
Especially, the WBC(whole body coordination) al-
gorithm with good performance becomes the essen-
tial part in the development of humanoid robot be-
cause it offers the enhanced stability and flexibility
to the humanoid motion planning. In this paper, we
suggest the kinematic resolution method of CoM Ja-
cobian with embedded motions, actually, which of-
fers the ability of WBC to humanoid robot. For
example, if humanoid robot stretches two arms for-
ward, then the position of CoM(center of mass) of
humanoid robot moves forward and its ZMP(zero mo-
ment point) swings back and forth. In this case, the
proposed kinematic resolution method of CoM Jaco-
bian with embedded (stretching arms) motion offers
the joint configurations of supporting limb(s) calcu-
lated automatically to maintain the position of CoM
fixed at one point.

Also, we will simplify the dynamics of bipedal
robot as the equation of motion of a point mass con-
centrated on the position of CoM. First, let us assume
that the motion of CoM is constrained on the surface
z= cz, then the rolling sphere model with the concen-

trated point massm can be obtained as the simplified
model for bipedal robot as shown in Fig. 1. The mo-
tion of the rolling sphere on a massless plate is de-
scribed by the position of CoM,c = [cx,cy,cz]

T , and
the ZMP is described by the position on the ground,
p = [px, py,0]T . Second, let us take the moments
about origin on the ground of the linear equations of
motion for the rolling sphere (with a point mass =m)
confined to motion on a planez= cz as shown in Fig.
1, then the following equations are obtained:

τx = mgcy−mc̈ycz (1)

τy = −mgcx +mc̈xcz (2)

τz = −mc̈xcy +mc̈ycx (3)

whereg is the acceleration of gravity,cz is a height
constant of constraint plane andτi is the moment
abouti-coordinate axis, fori = x,y,z. Now, if we in-
troduce the conventional definition of ZMP as follow-
ing forms:

px
△
= − τy

mg
and py

△
=

τx

mg
to two equations (1) and (2), then ZMP equations can
be obtained as two differential equations:

pi = ci −
1

ω2
n
c̈i for i = x,y (4)

whereωn
△
=
√

g/cz is the natural radian frequency of
the simplified biped walking robot system. Above
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Figure 1: Rolling Sphere Model for Dynamic Walking.

equations will be used to prove the stability of the
posture/walking controller in the following sections.

2 KINEMATIC RESOLUTION

Let a robot hasn limbs and the first limb be the base
limb. The base limb can be any limb but it should be
on the ground to support the body. Each limb of a
robot is hereafter considered as an independent limb.
In general, thei-th limb has the following relation:

oẋi = oJi q̇i (5)

for i = 1,2, · · · ,n, whereoẋi ∈ ℜ6 is the velocity of
the end point ofi-th limb, q̇i ∈ ℜni is the joint ve-
locity of i-th limb, oJi ∈ ℜ6×ni is the usual Jacobian
matrix of i-th limb, andni means the number of active
links of i-th limb. The leading superscripto implies
that the elements are represented on the body center
coordinate system shown in Fig. 1, which is fixed on
a humanoid robot.

In the humanoid robot, the body center is floating,
and thus the end point motion ofi-th limb about the
world coordinate system is written as follows:

ẋi = X−1
i ẋo +Xo

oJi q̇i (6)

whereẋo = [ṙT
o ;ωo

T ]T ∈ℜ6 is the velocity of the body
center represented on the world coordinate system,
and

Xi =

[

I3 [Ro
or i×]

03 I3

]

∈ ℜ6×6 (7)

is a (6×6) matrix which relates the body center ve-
locity and thei-th limb velocity. I3 and 03 are an

(3× 3) identity and zero matrix, respectively.Ro
or i

is the position vector from the body center to the end
point of thei-th limb represented on the world coordi-
nate frame.[(·)×] is a skew-symmetric matrix for the
cross product. The transformation matrixXo is

Xo =

[

Ro 03
03 Ro

]

∈ ℜ6×6 (8)

whereRo ∈ ℜ3×3 is the orientation of the body center
represented on the world coordinate frame, and here-

after, we will use the relationJi
△
= Xo

oJi .
All the limbs in a robot should have the same body

center velocity, in other words, from Eq. (6), we can
see that all the limbs should satisfy the compatibility
condition that the body center velocity is the same,
and thus,i-th limb and j-th limb should satisfy the
following relation:

Xi(ẋi −Ji q̇i) = X j(ẋ j −J j q̇ j). (9)

From Eq. (9), the joint velocity of any limb can be
represented by the joint velocity of the base limb and
cartesian motions of limbs. Actually, the base limb
should be chosen to be the support leg in single sup-
port phase or one of both legs in double support phase.
Let us express the base limb with the subscript 1, then
the joint velocity ofi-th limb is expressed as:

q̇i = J+
i ẋi −J+

i Xi1(ẋ1−J1q̇1), (10)

for i = 2, · · · ,n, whereJ+
i means the Moore-Penrose

pseudoinverse ofJi and

Xi1
△
= X−1

i X1 =

[

I3 [Ro(
or1−o r i)×]

03 I3

]

. (11)

The position of CoM represented on the world co-
ordinate frame, in Fig. 1, is given by

c = ro +
n

∑
i=1

Ro
oci (12)

wheren is the number of limbs,c is the position vec-
tor of CoM represented on the world coordinate sys-
tem, andoci means the CoM position vector ofi-th
limb represented on the body center coordinate frame
which is composed ofni active links. Now, let us dif-
ferentiate Eq. (12), then the it is obtained as follows:

ċ = ṙo +ωo× (c− ro)+
n

∑
i=1

Ro
oJci q̇i . (13)

whereoJci ∈ ℜ3×ni means CoM Jacobian matrix of
i-th limb represented on the body center coordinate

frame, and hereafter, we will use the relationJci

△
=

Ro
oJci .
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Remark1 The CoM Jacobian matrix of i-th limb rep-
resented on the body center frame is expressed by

oJci

△
=

ni

∑
k=1

µi,k
∂oci,k

∂qi
, (14)

whereoci,k ∈ ℜ3 means the position vector of center
of mass of k-th link in i-th limb represented on the
body center frame and the mass influence coefficient
of k-th link in i-th limb is defined as follow:

µi,k
△
=

mass of k-th link in i-th limb
total mass

. (15)

The motion of body center frame can be obtained
by using Eq. (6) for the base limb as follows:

ẋo = X1{ẋ1−J1q̇1}
[

ṙo
ωo

]

=

[

I3 [Ro
or1×]

03 I3

]{[

ṙ1
ω1

]

−
[

Jv1

Jω1

]

q̇1

}

,

(16)

whereJv1 andJω1 are the linear and angular velocity
part of the base limb JacobianJ1 expressed on the
world coordinate frame, respectively. Now, if Eq. (10)
is applied to Eq. (13) for all limbs except the base
limb with subscript 1, the CoM motion is rearranged
as follows:

ċ = ṙo +ωo× (c− ro)+Jc1q̇1

+
n

∑
i=2

Jci J
+
i (ẋi −Xi1ẋ1)+

n

∑
i=2

Jci J
+
i Xi1J1q̇1. (17)

Here, if Eq. (16) is applied to Eq. (17), then the
CoM motion is only related with the motion of base
limb. Also, if the base limb has the face contact with
the ground (the end-point of base limb represented
on world coordinate frame is fixed, ˙x1 = 0, namely,
ṙ1 = 0, ω1 = 0), then Eq. (17) is simplified as follows:

ċ−
n

∑
i=2

Jci J
+
i ẋi = −Jv1q̇1 + rc1×Jω1q̇1 +Jc1q̇1

+
n

∑
i=2

Jci J
+
i Xi1J1q̇1. (18)

whererc1 = c− r1.
Finally, 3×n1 CoM Jacobian matrix with embed-

ded motions can be rewritten like usual kinematic Ja-
cobian of base limb:

ċfsem= Jfsem q̇1, (19)

where

ċfsem
△
= ċ−

n

∑
i=2

Jci J
+
i ẋi , (20)

Jfsem
△
= −Jv1 + rc1×Jω1 +Jc1 +

n

∑
i=2

Jci J
+
i Xi1J1.

(21)

Here, if the CoM Jacobian is augmented with the
orientation Jacobian of body center (ωo = −Jω1q1)
and all desired cartesian motions are embedded in Eq.
(20), then the desired joint configurations of base limb
(support limb) are resolved as follows:

q̇1,d =

[

Jfsem
−Jω1

]+ [
ċfsem,d
ωo,d

]

, (22)

where the subscriptd means the desired motion and

ċfsem,d = ċd −∑n
i=2Jci J

+
i ẋi,d. (23)

All the given desired limb motions, ˙xi,d are embedded
in the relation of CoM Jacobian, thus the effect of the
CoM movement generated by the given limb motion
is compensated by the base limb. The CoM motion
with fully specified embedded motions,

After solving Eq. (22), the desired joint motion of
the base limb is obtained. The resulting base limb mo-
tion makes a humanoid robot balanced automatically
during the movement of the all other limbs. With the
desired joint motion of base limb, the desired joint
motions of all other limbs can be obtained by Eq. (10)
as follow:

q̇i,d = J+
i (ẋi,d +Xi1J1q̇1,d), for i = 2, · · · ,n. (24)

The resulting motion follows the given desired mo-
tions, regardless of balancing motion by base limb.
In other words, the suggested kinematic resolution
method of CoM Jacobian with embedded motion of-
fers the WBC(whole body coordination) function to
the humanoid robot automatically.

3 STABILITY

The control system is said to be disturbance input-
to-state stable (ISS), if there exists a smooth positive
definite radially unbounded functionV(e, t), a class
K ∞ function γ1 and a classK function γ2 such that
the following dissipativity inequality is satisfied:

V̇ ≤−γ1(|e|)+ γ2(|ε|), (25)

whereV̇ represents the total derivative for Lyapunov
function,e the error state vector andε disturbance in-
put vector.

In this section, we propose the posture/walking
controller for bipedal robot systems as shown in Fig.
2. In this figure, first, the ZMP Planer and CoM Planer
generate the desired trajectories satisfying the follow-
ing differential equation:

pi,d = ci,d −1/ω2
nc̈i,d for i = x,y. (26)

Second, the simplified model for the real bipedal
walking robot has the following dynamics:

ċi = ui + εi

pi = ci −1/ω2
nc̈i for i = x,y,

(27)
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Figure 2: Posture/Walking Controller for Humanoid Robot.

where εi is the disturbance input produced by ac-
tual control error,ui is the control input,ci and pi
are the actual positions of CoM and ZMP measured
from the real bipedal robot, respectively. Here, we as-
sume that the the disturbance produced by control er-
ror is bounded and its differentiation is also bounded,
namely,|εi | < a and |ε̇i | < b with any positive con-
stantsa andb. Also, we should notice that the control
error always exists in real robot systems and its mag-
nitude depends on the performance of embedded local
joint servos. The following theorem proves the stabil-
ity of the posture/walking controller to be suggested
for the simplified robot model.

Theorem1 Let us define the ZMP and CoM error for
the simplified bipedal robot control system (27) as fol-
lows:

ep,i
△
= pi,d − pi (28)

ec,i
△
= ci,d −ci for i = x,y. (29)

If the posture/walking control input ui in Fig. 2 has
the following form:

ui = ċd
i −kp,iep,i +kc,iec,i (30)

under the gain conditions:

kc,i > ωn and 0 < kp,i <

(

ω2
n−β2

ωn
− γ2

)

(31)

satisfying the following conditions:

β < ωn and γ <

√

ω2
n−β2

ωn
, (32)

then the posture/walking controller gives the distur-
bance input(εi , ε̇i)-to-state(ep,i ,ec,i) stability (ISS) to
a simplified bipedal robot, where, the kp,i is the pro-
portional gain of ZMP controller and kc,i is that of
CoM controller in Fig. 2.

Proof. First, we get the error dynamics from Eq.
(26) and (27) as follows:

ëc,i = ω2
n(ec,i −ep,i). (33)

Second, another error dynamics is obtained by using
Eq. (27) and (30) as follows:

kp,iep,i = ėc,i +kc,iec,i + εi , (34)

also, this equation can be rearranged for ˙ec:

ėc,i = kp,iep,i −kc,iec,i − εi . (35)

Third, by differentiating the equation (34) and by us-
ing equations (33) and (35), we get the following:

ėp,i = 1/kp,i (ëc,i +kc,i ėc,i + ε̇i)

= ω2
n/kp,i(ec,i −ep,i)

+kc,i/kp,i(kp,iep,i −kc,iec,i − εi)+(1/kp,i)ε̇i

=

(

ω2
n−k2

c,i

kp,i

)

ec,i −
(

ω2
n−kp,ikc,i

kp,i

)

ep,i

+
1

kp,i
(ε̇i −kc,iεi). (36)

Fourth, let us consider the following Lyapunov func-
tion:

V(ec,i ,ep,i)
△
=

1
2

[

(k2
c,i −ω2

n)e
2
c,i +k2

p,ie
2
p,i

]

, (37)

whereV(ec,ep) is the positive definite function for
kp,i > 0 andkc,i > ωn, exceptec,i = 0 andep,i = 0.
Now, let us differentiate the above Lyapunov func-
tion, then we can get the following:

V̇ ≤ −(kc,i −α2)(k2
c,i −ω2

n)e
2
c,i

−kp,i [ω2
n− (kp,i + γ2)kc,i −β2]e2

p,i

+

[

(k2
c,i −ω2

n)

4α2 +
kp,ikc,i

4γ2

]

ε2
i +

kp,i

4β2 ε̇2
i(38)

where e2
c,i term is negative definite with any pos-

itive constant satisfyingα <
√

ωn and e2
p,i term

is negative definite under the given conditions
(31). Here, since the inequality (38) follows the
ISS property (25), we concludes that the pro-
posed posture/walking controller gives the distur-
bance input(εi , ε̇i)-to-state(ep,i ,ec,i) stability (ISS) to
the simplified control system model of bipedal robot.
�

To make active use of the suggested control
scheme, the control inputu of Eq. (30) suggested in
Theorem 1 is applied to the place of the term ˙cd in
Eq. (23). In other words, equation (23)is modified
to include the ZMP and CoM controllers as following
forms:

ċfsem,d = u−
n

∑
i=2

Jci J
+
i ẋi,d (39)

whereu
△
= ċd −kpep +kcec. And then, the suggested

kinematic resolution method of Eq. (22) and (24) are
utilized to obtain the desired base limb and other limb
motions in the joint space as shown in Fig. 2.
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