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Abstract: This paper describes the fast computation, and some applications, of entropies and mutual information for
color and multispectral images. It is based on the compact coding and fast processing of multidimensional
histograms for digital images.

1 INTRODUCTION

Entropies and mutual information are important tools
for statistical analysis of data in many areas. For im-
age processing, so far, these tools have essentially
been applied to scalar or one-component images. The
reason is that these tools are usually derived from
multidimensional histograms, whose direct handling
is feasible only in low dimension due to their memory
occupation and related processing time which become
prohibitively large as the number of image compo-
nents increases. Here, we use an appraoch for multi-
dimensional histograms allowing compact coding and
fast computation, and show that this approach easily
authorizes the computation of entropies and mutual
information for multicomponent or multispectral im-
ages.

2 A FAST AND COMPACT
MULTIDIMENSIONAL
HISTOGRAM

We consider multispectral images withD components
Xi(x1,x2), for i = 1 to D, eachXi varying amongQ
possible values, at each pixel of spatial coordinate
(x1,x2). A D-dimensional histogram of such an im-
age would compriseQD cells. For an image with
N1×N2 = N pixels, only at mostN of theseQD cells
can be occupied, meaning that, asD grows, most of

the cells of theD-dimensional histogram are in fact
empty. For example, for a common 512×512 RGB
color image withD = 3 andQ = 256= 28, there are
QD = 224 ≈ 16×106 colorimetric cells with at most
only N = 5122 = 262144 of them which can be occu-
pied. We developed the idea of a compact represen-
tation of theD-dimensional histogram (Clément and
Vigouroux, 2001; Cĺement, 2002), where only those
cells that are occupied are coded. TheD-dimensional
histogram is coded as a linear array where the entries
are theD-tuples (the colors) present in the image and
arranged in lexicographic order of their components
(X1,X2, . . .XD). To each entry (in number≤ N) is as-
sociated the number of pixels in the image having this
D-value (this color). An example of this compact rep-
resentation of theD-dimensional histogram is shown
in Table 1.

The practical calculation of such a compact his-
togram starts with the lexicographic ordering of the
N D-tuples corresponding to theN pixels of the im-
age. The result is a linear array of theN orderedD-
tuples. This array is then linearly scanned so as to
merge the neighboring identicalD-tuples while accu-
mulating their numbers to quantify the correspond-
ing population of pixels. With a dichotomic quick
sort algorithm to realize the lexicographic ordering,
the whole process of calculating the compact multidi-
mensional histogram can be achieved with an average
complexity ofO(N logN), independent of the dimen-
sion D. Therefore, both compact representation and
its fast calculation are afforded by the process for the
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Table 1: An example of compact coding of the 3-
dimensional histogram of an RGB color image withQ =
256. The entries of the linear array are the components
(X1,X2,X3) = (R, G, B) arranged in lexicographic order,
for each color present in the image, and associated to the
poupulation of pixels having this color.

R G B population
0 0 4 13
0 0 7 18
0 0 23 7
...

...
...

...
255 251 250 21
255 251 254 9

multidimensional histogram.
For example, for a 9-component 838×762 satel-

lite image with Q = 28, the compact histogram
was calculated in about 5 s on a standard 1 GHz-
clock desktop computer, with a coding volume of
1.89 Moctets, while the classic histogram would take
3.60×1016 Moctets completely unmanageable by to-
day’s computers.

3 ENTROPIES AND MUTUAL
INFORMATION FOR IMAGES

3.1 Fast Computation from Compact
Histogram

The multidimensional histogram of an image, after
normalization by the number of pixels, can be used
for an empirical definition of the probabilitiesp(~X)

associated to theD-values present in image~X. In the
compact histogram, coded as in Table 1, only thoseD-
values of~X with nonzero probability are represented.
This is all that is needed to compute any property of
the image that is defined as a statistical average over
the probabilitiesp(~X). This will be the case for the
statistical moments of the distribution ofD-values in
the image (Romantan et al., 2002), for the principal
axes based on the cross-covariances of the compo-
nentsXi (Plataniotis and Venetsanopoulos, 2000), and
for the entropies, joint entropies and mutual informa-
tion that we consider in the sequel.

An entropyH(~X) for image~X can be defined as
(Russ, 1995)

H(~X) = −∑
~X

p(~X) logp(~X) . (1)

The computation ofH(~X) of Eq. (1) from the nor-
malized compact histogram from Table 1, is realized

simply by a linear scan of the array while summing
the terms−p(~X) logp(~X) with p(~X) read from the
last column. This preserves the overall complexity of
O(N logN) for the whole process leading toH(~X).

The compact histogram also allows one to en-
visage the joint entropy of two multicomponent im-
ages~X and~Y, with dimensionsDX and DY respec-
tively. The joint histogram of(~X,~Y) can be calculated
as a compact histogram with dimensionDX + DY,
which after normalization yields the joint probabili-
ties p(~X,~Y) leading to the joint entropy

H(~X,~Y) = −∑
~X

∑
~Y

p(~X,~Y) logp(~X,~Y) . (2)

A mutual information between two multicomponent
images follows as

I(~X,~Y) = H(~X)+H(~Y)−H(~X,~Y) . (3)

And again, the structure of the compact histogram
preserves the overall complexity ofO(N logN) for the
whole process leading toH(~X,~Y) or I(~X,~Y).

So far in image processing, joint entropies and
mutual information have essentially been used for
scalar or one-component images (Likar and Pernus,
2001; Pluim et al., 2003), because the direct handling
of joint histograms is feasible only in low dimension,
due to their memory occupation and associated pro-
cessing time which get prohibitively large as dimen-
sion increases. By contrast, the approach of the com-
pact histogram of Section 2 makes it quite tractable to
handle histograms with dimensions of 10 or more. By
this approach, many applications of entropies and mu-
tual information become readily accessible to color
and multispectral images. We sketch a few of them in
the sequel.

3.2 Applications of Entropies

The entropyH(~X) can be used as a measure of com-
plexity of the multicomponent image~X, with applica-
tion for instance to the following purposes:
• An index for characterization / classification of tex-
tures, for instance for image segmentation or classifi-
cation purposes.
• Relation to performance in image compression, es-
pecially lossless compression.

For illustration, we use the entropy of Eq. (1) as
a scalar parameter to characterize RGB color images
carrying textures as shown in Fig. 1. The entropies
H(~X) given in Table 2 were calculated from 512×512
three-component RGB images~X with Q = 256. The
whole process of computing a 3-dimensional his-
togram and the entropy took typically less than one
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second on our standard desktop computer. For com-
parison, another scalar parameterσ(~X) is also given
in Table 2, as the square root of the trace of the
variance-covariance matrix of the components of im-
age~X. This parameterσ(~X) measures the overall
average dispersion of the values of multicomponent
image~X. For a one-component image~X, this σ(~X)
would simply be the standard deviation of the gray
levels. The results of Table 2 show a specific signif-
icance for the entropyH(~X) of Eq. (1), which does
not simply mimic the evolution of a common mea-
sure like the dispersionσ(~X). As a complexity mea-
sure,H(~X) of Eq. (1) is low for synthetic images as
Chessboard andWallpaper, and is higher for natu-
ral images in Table 2.
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 Figure 1: Nine three-component RGB images~X with Q =

256 carrying distinct textures.

3.3 Applications of Mutual Information

The mutual informationI(~X,~Y), or other measures
derived from the joint entropyH(~X,~Y), can be used
as an index of similarity or of relationship, between
two multicomponent images~X and~Y, with applica-
tion for instance to the following purposes:
• Image matching, alignment or registration, espe-
cially in multimodality imaging.
• Reference matching, pattern matching, for pattern
recognition.
• Image indexing from databases.

Table 2: For the nine distinct texture images of Fig. 1: en-
tropy H(~X) of Eq. (1) in bit/pixel, and overall average dis-
persionσ(~X) of the components.

texture H(~X) σ(~X)

Chessboard 1.000 180.313
Wallpaper 7.370 87.765
Clouds 11.243 53.347
Wood 12.515 31.656
Marble 12.964 44.438
Bricks 14.208 57.100
Plaid 14.654 92.284
Denim 15.620 88.076
Leaves 17.307 74.966

• Homogeneity / contrast assessment for segmenta-
tion or classification purposes.
• Performance evaluation of image reconstruction, es-
pecially in lossy compression.
• Analysis via principal, or independent, component
analysis.

For illustration, we consider a lossy compression
on an RGB colorN1 ×N2 image~X via a JPEG-like
operation consisting, on theN1 ×N2 discrete cosine
transform of~X, in setting to zero a given fraction(1−
CR−1) of the high frequency coefficients, or equiva-
lently in retaining only theN1/

√
CR× N2/

√
CR low-

frequency coefficients. From this lossy compression
of initial image~X, the decompression reconstructs a
degraded image~Y. While varying the compression
ratio CR, the similarity between images~X and~Y is
measured here by the mutual informationI(~X,~Y) of
Eq. (3) based on the 6-dimensional joint histogram
for estimating the joint probabilitiesp(~X,~Y). In ad-
dition, for comparison, we also used a more common
measure of similarity formed by the cross-correlation
coefficientC(~X,~Y) between~X and~Y, computed as
one third of the sum of the cross-correlation coeffi-
cient between each marginal scalar component, R, G
or B, of ~X and~Y. This C(~X,~Y) = 1 if ~X and~Y are
two identical images, and it goes to zero if~X and~Y
are two independent unrelated images. For the re-
sults presented in Fig. 2, the choice for initial im-
age~X is a 512×512 RGBlena.bmp with Q = 256.
The whole process of the computation of an instance
of the 6-dimensional joint histogram and the mutual
information took around 3s on our standard desktop
computer.

Figure 2 shows that, as the compression ratio
CR increases, the mutual informationI(~X,~Y) and the
cross-correlation coefficientC(~X,~Y) do not decrease
in the same way. Compared to the mutual informa-
tion I(~X,~Y), it is known that the cross-correlation
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Figure 2: As a function of the compression ratio CR:(◦)
cross-correlation coefficientC(~X,~Y) between initial RGB
color image~X and its compressed version~Y; (∗) normalized
mutual informationI(~X,~Y)/H(~X) with the entropyH(~X) =
16.842 bits/pixel.

C(~X,~Y) measures only part of the dependence be-
tween~X and~Y. Figure 2 indicates that when the com-
pression ratio CR starts to rise above unity,I(~X,~Y)

decreases faster thanC(~X,~Y), meaning that informa-
tion is first lost at a faster rate than what is captured
by the cross-correlation. Meanwhile, for large CR in
Fig. 2,I(~X,~Y) comes to decrease slower thanC(~X,~Y).
This illustrates a specific contribution of the mutual
information computed for multicomponent images.

Another application of mutual information be-
tween images can be found to assess a principal com-
ponent analysis. On aD-component image~X =
(X1, . . .XD), principal component analysis applies a
linear transformation of theXi ’s to computeD prin-
cipal components(P1, . . .PD) with vanishing cross-
correlation among thePi ’s, in such a way that some
Pi ’s can be selected for a condensed parsimonious
representation of initial image~X. An interesting
quantification is to consider the mutual information
I(~X,Pi). From its theoretical properties, the joint en-
tropy H(~X,Pi) reduces toH(~X) becausePi is deter-
ministically deduced from~X, henceforthI(~X,Pi) =
H(Pi). This relationship has been checked (on sev-
eral 512×512 RGB color images withD = 3) to be
precisely verified by our empirical entropy estima-
tors forI(~X,Pi) based on the computation of(D+1)-
dimensional histograms for(~X,Pi). This offers a
quantification of the relation between~X and its prin-
cipal componentsPi ; a subset of the wholePi ’s could
be handled in a similar way. Another useful quantifi-
cation shows that principal component analysis, al-
though it cancels cross-correlation between the com-

ponents, does not cancel dependence between them,
and sometimes it may even increase it in some sense,
as illustrated by the behavior of the mutual informa-
tion in Table 3, withI(P1,P2) larger thanI(X1,X2)
for image (2). The mutual information can serve as a
measure to base other separation or selection schemes
of the components from an initial multispectral im-
age~X.

Table 3: For a 512×512 RGB color image~X with D = 3
andQ = 256: cross-correlation coefficientC(·, ·) and mu-
tual informationI(·, ·) of Eq. (3), between the two initial
componentsX1 andX2 with largest variance, and between
the two first principal componentsP1 andP2 after principal
component analysis of~X. (1) image~X is lena.bmp. (2)
image~X is mandrill.bmp.

C(X1,X2) I(X1,X2) C(P1,P2) I(P1,P2)
(1) 0.879 1.698 0.000 0.806
(2) 0.124 0.621 0.000 0.628

4 CONCLUSION

We have reported the fast computation and compact
coding of multidimensional histograms and showed
that this approach authorizes the estimation of en-
tropies and mutual information for color and multi-
spectral images. Histogram-based estimators of these
quantities as used here, become directly accessible
with no need of any prior assumption on the images.
The performance of such estimators clearly depends
on the dimensionD and sizeN1×N2 of the images;
we did not go here into performance analysis, espe-
cially because this would require to specify statistical
models of reference for the measured images. Instead
here, more pragmatically, on real multicomponent im-
ages, we showed that, for entropies and mutual in-
formation, direct histogram-based estimation is feasi-
ble and exhibits natural properties expected for such
quantities (complexity measure, similarity index, . . . ).
The present approach opens up the way for further ap-
plication of information-theoretic quantities to multi-
spectral images.
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