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Abstract: This paper presents a contribution in multivariable predictive control. A new approach of multi-model based 
control is presented. The controller used is the quasilinear multivariable generalized predictive control 
(QMGPC). A metric based in 2-norm is presented in order to build a global model using local models. 
Simulation results in a distillation column, with a comparative analysis, are presented. 

1 INTRODUCTION 

The multi-model approach has been presented as an 
alternative method to be applied is systems that 
operate in a long range (Aslan et al., 2004). When a 
process operates in a long range, due to non-
linearities, usually the parametric variation of its 
models is large. For this reason, usually, a controller 
based in just one model has poor performance in 
these kind of process. 

The basic idea of multi-model approach is to 
identify a set of models (one for each operating 
regime in a chosen trajectory) and to interpolate 
these models (through an interpolation function). 
Other approach calculates a suitable control effort as 
a wheighting sum of each control effort (in each 
designed controller for each operating regime). 

Some approches use space state models like 
(Azimadeh et al., 1998) and (Foss et al., 1995). In 
(Azimadeh et al., 1998) a set of linear space state 
models is chosen in a given trajectory. In (Foss et 
al., 1995) a set on nonlinear space state models is 
chosen (and a nonlinear predictive controller is 
designed). 

A closed loop metric, that guarantee the global 
stability,  is proposed in (Aslan et al., 2004). In that 
case, a set of PI controllers is projected and, for each 
instant, the distance from the current point in a 
chosen trajectory to a tabled operating regime is 
calculated. 

In this paper, a similar idea to (Foss et al., 1995) 
is proposed. In this case, a set of local bilinear 
models is identified. The global model is build with 
a wheigthing sum of the identified local models. The 
wheigthing factor is calculated based in a proposed 
metric. This metric consists of  use a 2-norm to 
measure the distance from the current point (in a 
chosen monotonic trajectory) and a tabled operating 
regime. A case study in a debutanized distillation 
column is presented in order to show an application 
of the proposed controller. 

The next step of this research is the stability and 
robustness analisys (to presents a stable algorithm 
proposal). 
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2 MULTIVARIABLE MULTI-
MODEL 

The designed controller is based in quasilinear 
multivariable generalized predictive control 
(QMGPC). This controller is based in multivariable 
bilinear NARIMAX (Non Linear, Auto-Regressive, 
Moving Average, with exogenous input) models. 

The basic idea of QMGPC algorithm is calculate 
a control effort sequence, based in the minimization 
of a multi-step objective function, in a defined 
prediction horizon. 

2.1 Multivariable Multi-Model 

The multivariable multi-model bilinear NARIMAX 
model with p-inputs and q-outputs is given by: 
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where qRky ∈)(  is the process output vector, 
pRku ∈)(  is the process input vector and qRke ∈)(  

is the gaussian white noise with zero mean and 
covariance )( 2σdiag . The matrices )( 1)( −qA k ,  

)( 1)( −qB k  and )( 1)( −qC k  are polynomials matrices in 
shift operator 1−q  and are defined by: 
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where: 

qqk RqA ×− ∈)( 1)( , pqk RqB ×− ∈)( 1)( , qqk RqC ×− ∈)( 1)( , 
pqk

e RqD ×− ∈)( 1)(  and qpk
d RqD ×− ∈)( 1)( . The matrix 
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The generic polynomial matrix )( 1)( −qP k  in (1) 
represents this matrix in instant k.  

The first step to build (1) is decompose the 
system's operating range into a number of operating 
regimes that completely cover the chosen trajectory. 
Second, for each operating regime, a local model 
structure must be developed as showed in (Foss et 
al., 1995). In this case, the model structure is chosen 
by using the Akaike criterion.  

The last step is to identify the parameter's model 
for each local model. The estimation algorithm is the 
Multivariable Recursive Least Squares (MRLS). 

2.2 Building the Global Model 

The global model is built as a weighting sum of the 
bilinear models in each chosen operating regime. 
The generic polynomial matrix )( 1)( −qP k  is built as: 
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where )( 1

)(
−qPi  is the polynomial matrix in ith 

operating regime, kiw ,  is the ith weighting factor 
calculated in instant k, NOR  is the number of 
operating regimes. The computation of kiw ,  is 
showed in the section 3 of this paper. 

2.3 The Quasilinear Multivariable 
Multi-Model 

The nonlinear model presented in (1) is 
quasilinearized to be used in QMGPC (Quasilinear 
Multivariable Generalized Predictive Control). The 
multivariable quasilinear multi-model must be 
obtained by rewriting the expression (1) of the 
following form: 
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The polynomial matrix ),( 1)( uqA k −  is calculated 

considering its parameters as constant in prediction 
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horizon. The polynomial matrix )( 1)( −qA k  is 
considered diagonal in this paper. 

2.4 The Predictor 

The output prediction i-step ahead may be calculated 
multiplying the expression (1) for iq  as in the 
following expression: 
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where )(),(),(~ 11)(1)( −−− Δ= quqAuqA q
kk . 

In this case, the polynomial matrix ppIqC ×
− =)( 1  

is uncorrelated (white noise). Considering the 
following Diophantine equation: 
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Pre-multiplying (11), with ppIqC ×

− =)( 1 , for 

),( 1 uqEi
−  we obtain: 
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Rewriting (12) of the following form: 
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Substituting (16) in (15) we obtain: 
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As the degree of ),( 1)( uqE k

i
−  is 1−i , then the 

sub-optimal prediction of )( iky +  is: 
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Make: 
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As the degree of  ),( 1 uqH i

−  is less than 1−i , 
the predictor may be written as: 

 

)1()(),(

)1()(),()(),()(ˆ
11)(

11)(1)(

−+Δ

+−Δ+=+
−−

−−−

ikuquqH

kuquqHkyuqFiky

p
k

i

p
k

ipa
k

i

 

(20) 

The last term of (20) considers the future inputs 
(forced response) and the two first terms consider 
only past inputs (free response). Define: 
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2.5 The Objetive Function 

The objective function is given by: 
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where 1N  is minimum prediction horizon, NY  is 
prediction horizon, NU  is the control horizon, )(kR  
and )(kQ  are weighting matrices of error signal and 
control effort in instant k in the chosen trajectory, 
respectively, )(ˆ iky +  is the sub-optimum i-step 
ahead predicted output, )( ikr +  is the future 
reference trajectory. 

2.6 The Control Law 

The control effort is obtained, without constraints, 
by the minimization of the objective function. This 
minimization is obtained by the calculation of its 
gradient (making it equals zero), of the following 
form: 
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where: 
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The objective function (23) may be rewritten of 

the following form: 
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The computation of an element )(k

ix  of )(kR  and 

)(kQ  is given by: 
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where jix ,  is the ith element of weigthing matrix 

( )(kR  or )(kQ ) for the jth operating regime and kiw ,  

is the ith weighting factor calculated in instant k. 

The minimization of (30) produces the following 
control law: 
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Because of the receding control horizon, only the 
first p rows of (34) are computed. 

3 THE PROPOSED METRIC 

The proposed metric is based in a 2-norm. Norms, in 
general, gives a notion of distance in a vectorial 
space. In multivariable case, in a process with p-
inputs and q-outputs, the output is qRky ∈)(  and the 
input is pRku ∈)( . In a known trajectory of process 
output, the distance of the process’s output from the 
first operating regime to the last operating regime is 
given by: 

 

21,1 yyd NORNOR −=  (35) 
 

where NORy  is the process's output in last operating 
regime and 1y  is the process's output in the first 
operating regime. 

To measure the distance from the current 
process's output (in instant k) to the ith operating 
regime, we can use the expression: 
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where )(ky  is the process's output in instant k and 

iy  is the process's output to the ith operating regime. 
The weighting factor for the ith operating regime 

in instant k is given by: 
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4 APPLICATION OF THE  
MULTI-MODEL APPROACH 

4.1 Distillation Column 

In this paper, an application in a debutanizer 
distillation column is showed. Debutaziner 
distillation column is usually used to remove the 
light components from the gasoline stream to 
produce Liquefied Petroleum Gas (LPG). The 
column is showed in Figure 1. 
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Figure 1: Distillation Column simulated in Hysys 
Software. 

The most common control strategy is to 
manipulate the reflux flow rate and the temperature 
in column's bottom and, to control the 
concentrations of any product in butanes stream and 
in C5+ stream as showed in (Almeida, et al., 2000) 
and (Fontes, et al., 2006). The chosen process 
variables are: concentration of i-pentane in butanes 
stream (y1) and concentration of i-butene in C5+ 
stream (y2). 

The reflux flow rate (u1) is manipulated through 
the FIC-100 controller and the temperature of 
column's bottom (u2) is manipulated through the 
TIC-100 controller.  The reflux flow rate is given in 
m3/h and the temperature of column's bottom is 
given in oC. 

In this case study, three operation regime were 
chosen, as showed in Table 1. The identified bilinear 
models were obtained using the multivariable 
recursive least squares algorithm and the model's 
structure has been chosen by using the Akaike 
criterion.  In all models, the chosen sample rate is 4 
minutes. 

The trajectory of 1y  is monotonically increasing 
and the trajectory of 2y  is monotonically 
decreasing. 

Table 1: Chosen Operating Regimes. 

Operation 
Regime Input Output 

(Mass Fractions) 

u1 = 40 m3/h y1 = 0.014413 1 u2 = 147 oC y2 = 0.001339 
u1 = 37 m3/h y1 = 0.017581 2 u2 = 147.5 oC y2 = 0.001161 
u1 = 34 m3/h y1 = 0.021994 3 u2 = 148 oC y2 = 0.001004 

 
The operating regimes must be chosen based in a 

knowledge of the process. 

4.2 Results 

In this simulation, the process is in the 3rd operating 
regime and a deviation in reference is applied in the 
proposed controller. With this reference deviation, 
the process will come to close to the 1st operating 
regime. The proposed quasilinear multi-model is 
compared with quasilinear single-model (using the 
model of the 3rd operating regime). Figures 2 and 3 
show the output comparison. 
 

 
Figure 2: Process Output 1. Comparison between single-
model and multi-model approach. 

 
Figure 3: Process Output 2. Comparison between single-
model and multi-model approach. 

Figures 4 and 5 show the control effort 
comparison between the quasilinear single-model 
and multi-model approaches. 

The figures show the better performance of 
multi-model approach when compared with single-
model approach. 
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Figure 4: Reflux Flow rate. Comparison between single-
model and multi-model approach. 

 
Figure 5: Temperature in column's bottom. Comparison 
between single-model and multi-model approach. 

In order to quantitatively asses the performance 
of multi-model quasilinear GPC, some indices like 
showed in (Goodhart, et al., 1994) are calculated. 
Theses indices may be extended to multivariable 
case, of the following form: 

 
Nkuii /)(,1 ∑=ε  (38) 

 
where pi ,,1=  and N  is the amount of control 
effort applied in the process to achieve the desired 
response. The index showed in (38) is the account of 
total control effort to achieve a given response. The 
variance of controlled actuators is: 
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The deviation of the process of integral of 

absolute error (IAE) is: 
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where qj ,,1= . 

The overall measure of effectiveness is defined 
as: 
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where qj ,,1= . The factors iα , iβ  and jρ  are 
weightings chosen to reflect the actual financial cost 
of energy usage, actuator wear and product quality, 
respectively. In this case, we consider 1.0=iα , 

15.0=iβ  and 5.0=jρ .  

Table 2: Comparison of Performance indices between 
Quasilinear single-model and Quasilinear multi-model 
with N=100. 

I/O Model 1ε  2ε  3ε  ε  
Single 40.47 2.61 499.46 269.00 1 
Multi 38.72 0.31 486.20 261.80 
Single 147.38 0.63 242.40 140.47 2 
Multi 146.88 0.62 197.71 117.56 

 
Table 2 shows the performance of quasilinear 

multi-model approach in terms of less energy usage, 
less actuator wear and better product quality in 
relation to quasilinear single-model performance. 

5 CONCLUSIONS 

The multi-model approach is a good alternantive of 
controller to systems that operate in a large 
operation range. The indices has shown that this 
approach presents better performance in relation of 
quasilinear single model. 
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