
ADDRESSING SECURITY REQUIREMENTS THROUGH
MULTI-FORMALISM MODELLING AND MODEL

TRANSFORMATION

Miriam Zia, Ernesto Posse and Hans Vangheluwe
School of Computer Science, McGill University, 3480 University Street, Montreal, Canada

Keywords: Multi-formalism modelling, model transformation, verification, security requirements, e-health.

Abstract: Model-based approaches are increasingly used in all stages of complex systems design. In this paper, we
use multi-formalism modelling and model transformation to address security requirements. Our methodol-
ogy supports the verification of security properties using the model checker FDR2 on CSP (Communicating
Sequential Processes) models. This low-level constraint checking is performed through model refinements,
from a behavioural description of a system in the Statecharts formalism. The contribution of this paper lies in
the combination of various formalisms and transformations between them. In particular, mapping Statecharts
onto CSP models allows for combination of the deterministic system model with non-deterministic models
of a system’s environment (including, for example, possible user attacks). The combination of system and
environment models is used for model checking. To bridge the gap between these Statechart and CSP models,
we introduce kiltera, an intermediate language that defines the system in terms of interacting processes. kiltera
allows for simulation, real-time execution, as well as translation into CSP models. An e-Health application is
used to demonstrate our approach.

1 INTRODUCTION

Model-driven approaches are becoming more preva-
lent in complex software systems engineering.
Methodologies are developed which control the com-
plexity of the software process and address system
specifications at higher levels of abstraction. Tools
are becoming available to automate the transforma-
tion between models, which possibly reside at differ-
ent abstraction levels (Muller et al., 2005; de Lara
and Vangheluwe, 2002), and to support their anal-
ysis (Bengtsson et al., 1995; Gardey et al., 2005).
By hiding implementation details, and manipulating
models described at an appropriate level of abstrac-
tion using suitable (possibly domain-specific) mod-
elling formalisms systems are developed from high-
level concepts, though model refinements and analy-
sis.

Model-based approaches are increasingly used in
all stages of systems design, and in recent years, have
evolved around the development of dependable sys-
tems that must respect safety or reliability require-

Figure 1: A model-driven engineering approach. We focus
on the verification branch.

ments, amongst others. While various methodolo-
gies have been designed to tackle these dependabil-
ity issues (Mustafiz et al., 2006), other emerging con-
straints, such as security and privacy, need to be ad-
dressed. Indeed, as the Internet evolves, from being
a basic communication mechanism to being a tool
for effective business operation and service provision,
more sensitive information is digitized. As a conse-

129
Zia M., Posse E. and Vangheluwe H. (2007).
ADDRESSING SECURITY REQUIREMENTS THROUGH MULTI-FORMALISM MODELLING AND MODEL TRANSFORMATION.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 129-137
DOI: 10.5220/0001347201290137
Copyright c© SciTePress



quence, various e-applications require the access to,
manipulation, and transfer of this digital data, thus
making it susceptible to third-party attacks, or even
user abuses. Such e-systems must, therefore, be: 1)
secure, and designed in such a way that agents (users
or programs) can only perform allowed actions; and
2) privacy-sensitive, and effectively protect personal
data from unauthorized access or disclosure.

Research has been carried out in the study of com-
puter security and electronic privacy, and has mostly
tackled problems in the network and communica-
tion domains. The work in that area is geared to-
wards representing security threats in terms of at-
tack graphs (Sheyner et al., 2002) and in developing
model-checking methods for the verification of the se-
curity of communication (Lowe, 1996) or registration
protocols (Germeau and Leduc, 1997). The latter re-
quire detailed model descriptions of the protocols, in
languages such as the Communicating Sequential Pro-
cesses (CSP) (Hoare, 1985) or LOTOS (ISO, 1989),
to be checked with verification tools, such as the Fail-
ures Divergences Refinement Checker (FDR2). How-
ever, what these approaches do not offer is a general,
application-independent methodology for represent-
ing a security problem at a high level, in such a way
as to abstract complex details from, for example, a
designer who needs to check that specific properties
hold on a new security protocol being developed.

In (Yeung et al., 2005) and (Roscoe and Wu,
2006), transformations are defined, which trans-
late high-level behavioural models of a system into
models suitable for verification with FDR2. This
work represents a step towards a general method-
ology for the verification of requirements through
multi-formalism modelling and model transforma-
tion. An example of this approach has been pro-
posed for designing controlled anonymous applica-
tions (Naessens, 2006). Our contribution lies in in-
troducing a multi-formalism model-driven method-
ology which supports requirements analysis and re-
finement, simulation-based performance analysis, and
code synthesis. It is geared towards security con-
straint analysis and verification.

At each step of a multi-formalism design method-
ology, the system under consideration is modelled in
the most suitable formalism (Figure 1). At the high-
est level, a domain-specific model appropriately de-
scribes the domain problem. From this model, one
of two models can be derived. If the problem’s state-
space is too large for model-checking, a simulation
model is constructed in a formalism with strong sim-
ulation capabilities. The gathered simulation results
are used for performance analysis or are checked
against a set of rules derived from the requirements.

Figure 2: A model-based process for security requirement
analysis.

Alternatively, an analysis model may be constructed
in a formalism amenable to formal analysis and veri-
fication of the system requirements, covering all pos-
sible behaviours. Ultimately, an execution model is
synthesized from the domain model, thus providing
a continuous design process from the domain prob-
lem to the analysis model, and finally to the deployed
system. All steps in the evolution, from requirements
and constraints, to final application, represent the sys-
tem at different levels of abstraction. Transformations
between models represent refinements.

We present such a process to deal with security
requirements. As depicted in Figure 2, this pro-
cess allows for low-level constraint checking, through
model refinements, from higher-level system specifi-
cations. At a high level of abstraction, we have a be-
havioural description of the system in a known for-
malism, such as in Statecharts. At a lower level, ver-
ification of desired properties is performed with ex-
isting tools, such as FDR2, on CSP models. Since
models in Statecharts only depict required system
behaviour and not that of the environment actors on
this system, our approach introduces a middle step
in the design, which acts as a central hub for model
transformations. Although Statechart models could
be verified at this level, they are first translated into
a language which allows for the concise description
of non-deterministic (environment) behaviour. These
intermediate models are described in the modelling
language kiltera (Posse and Vangheluwe, 2007). The
nature of the kiltera language allows a straightforward
translation into a CSP model, which is subsequently
checked to ensure that, given the actors involved in
the environment, the original system design adheres

ICSOFT 2007 - International Conference on Software and Data Technologies

130



to the required security constraints.
The paper is structured as follows. Section 2

presents background concepts relating to the CSP and
the kiltera modelling languages, as well as the e-health
case study chosen to illustrate our methodology. Sec-
tion 3 proposes our modelling and verification pro-
cess, for designing a secure infrastructure. The steps
involved in this process are illustrated on an e-health
use case. Finally, we draw some conclusion about our
methodology in Section 4.

2 BACKGROUND

Since UML Sequence Diagrams (Rumbaugh et al.,
1999) and Harel’s Statecharts (Harel, 1987) are
widely used modelling formalisms, in this section we
focus, on the one hand, on giving an overview of the
CSP and kiltera languages, and on the other hand, on
introducing the e-health example used in this paper.

2.1 Multiple Formalisms

The Communicating Sequential Processes (CSP) and
kiltera languages were both designed for describing
systems of communicating components. In these lan-
guages, a process is described in terms of the possible
interactions it can have with its environment. Interac-
tions are described in terms of instantaneous atomic
synchronizations, or events. Each process is an in-
dependent computational unit and proceeds concur-
rently with all other processes. Furthermore, a pro-
cess is not necessarily a purely sequential computa-
tion, as it may be itself composed of parallel subpro-
cesses. In CSP, a process is defined by its interface,
grouping all the events it may engage in, and through
which it interacts with other processes. In kiltera, a
process is a modular component with a well defined
interface consisting of a set of ports, through which
all interactions occur.

In CSP, three semantic models are available to
reason about observable behaviour of processes, and
to provide foundations for specification and verifica-
tion techniques. The simplest of these mathematical
models is the traces model. In CSP, each process is
represented by its set of finite sequences of commu-
nications it can perform, or set of traces. In the traces
model, system constraints are specified on traces, by
characterizing which traces are acceptable, and which
are not. These specifications are then used for traces
refinement.

In contrast, kiltera’s focus is on simulation of dy-
namic systems with an explicit notion of time and
structural change. Simulation is typically used for

performance analysis (non-functional requirements).
kiltera combines the interaction and mobility model
of the π-calculus (Milner et al., 1989) with the time
model of Timed-CSP (Reed and Roscoe, 1986) in a
single framework. Its formal semantics are given in
terms of timed-labelled transition systems, which pro-
vides a basis for formal system analysis as well as a
framework to relate kiltera to other languages and for-
malisms.

2.2 e-Health Case Study

adapID1 is a project aimed at developing a framework
for secure and privacy-preserving applications based
on the Belgian e-ID card. The electronic ID card in
Belgium is the first smart card with advanced pub-
lic key cryptology capabilities, and contains digital
personal data that may identify the card holder, and
possibly lead to some privacy risks for the individual
citizens. The focus of the project is on the develop-
ment of a framework for advanced secure applications
of the e-ID which do not reduce personal privacy of
the users. Our focus primarily lies in e-health appli-
cations, and the security constraints they need to ad-
dress.

E-health addresses the problem of improving the
quality and efficiency of health care, as well as the
reduction of corresponding costs, through the innova-
tion of information and communication technologies.
These advances all rely on the development of infor-
mation systems, which store patient related informa-
tion. Since a patient’s medical history is accessible by
care givers, it aids them in administering more appro-
priate services. However, abuses of the system pose
severe security and privacy risks, for example if the
e-health application is misused or if unauthorized ac-
cess to a medical record is obtained.

2.2.1 Use Case: Visiting a Pharmacist

The following introduces a simplified “visiting a phar-
macist” e-health system to be developed. We will use
this case study to illustrate the methodology described
in Section 3, and verify the security constraints it must
adhere to.

The actors in one of the use cases in this case study
are a pharmacist and a patient. A patient receives
an electronic prescription from a doctor, who signs it
with his e-ID card to guarantee its integrity. To get the
prescription filled, the patient visits a pharmacist who
uses his e-ID card to prove his pharmacist credential.
Once the pharmacist shows his recognition, the pa-
tient anonymously shows him the prescription, with-

1https://www.cosic.esat.kuleuven.be/adapid/

ADDRESSING SECURITY REQUIREMENTS THROUGH MULTI-FORMALISM MODELLING AND MODEL
TRANSFORMATION

131



out his or the doctor’s identity ever being revealed.
The drugs are issued to Patient upon verification of
the validity of the prescription.

The security requirements related to this use case
are as follows:

1. A malicious patient or pharmacist should not be
able to successfully show a non-valid credential;

2. A malicious patient should not succeed in submit-
ting a forged, altered or already filled prescription.

In either case of abuse, it should be possible to
deanonymize the culprits.

3 MODEL-BASED PROCESS

This section describes the multi-formalism modelling
process illustrated in Figure 3. Note that this is a con-
crete refinement of Figure 2 Note also that we only
describe a simple use case her. Related work (Whittle
and Schumann, 2000; Whittle and Jayaraman, 2006)
shows how use cases (representing requirements) can
be described using a collection of sequence diagrams
and activity diagrams. The latter show allowed se-
quences of use cases for subsequent translation into
Statecharts.

3.1 Overview

Initially, the functional software requirements of a
system, for which we want to address security con-
straints, are described by a Sequence Diagram. A
Statecharts functional system design model satisfy-
ing the requirements is derived from this description
to represent the structure and behaviour of the desired
system.

Secondly, we construct an environment model in
kiltera, to describe all possible interactions of the user
with the system. We now have two models: a de-
terministic Statechart model of the functional system
and a non-deterministic kiltera model of the system
environment. Then, the Statecharts model is trans-
lated into a kiltera one with an equivalent behaviour.
The kiltera functional system model is then integrated
with the system environment (actors) model. Grouped
together, these kiltera models are a representation of
the behaviour of environment and the system. At this
point, it is possible to carry out extensive simulations
(1) to gain insight into the dynamic behaviour of the
system and (2) to analyze performance metrics (non-
functional requirements). This aspect is not elabo-
rated further in this paper.

Thirdly, a second set of model transformation
rules is used to transform the kiltera behaviour and

environment model into an equivalent, but lower-level
CSP representation. Combined with a CSP descrip-
tion of security requirements, a system security verifi-
cation model is checked with the tool FDR2. Finally,
the output from the model checker confirms whether
the constraints are satisfied in the proposed design of
the system, or whether further modifications need to
be applied to the top level Statecharts model.

In the following, we further discuss the steps in-
volved in this proposed methodology, and illustrate
each step with an application to the use case described
in Section 2.2.1.

3.2 Capturing Requirements:
Modelling with Sequence Diagrams
and Statecharts

Our model-driven process begins with a specifica-
tion of the system requirements, in the form of a Se-
quence Diagram. The Sequence Diagram, illustrated
in Figure 4 summarizes the required behaviour of the
“Visiting a pharmacist” use case, and represents the
flow of actions between the two actors of the system
(the pharmacist and the patient). From this specifica-
tion, a Statechart model (Figure 5) is automatically
constructed as a very preliminary system design of
the final application. The sending and receiving of
events in the different orthogonal components corre-
sponds to message sending in Figure 4. The transla-
tion between Sequence Diagrams and Statecharts is
described in (Sun, 2007). Referring back to Figure 1,
another advantage of using this formalism is that we
can synthesize executable code from it (Feng, 2004).

3.3 Adding Non-deterministic
Environment Scenarios: Statecharts
and kiltera

At this point, properties of the design encoded in the
Statechart model could be verified directly. Non-
deterministic formalisms such as kiltera are more
suitable (than Statecharts) to describe large num-
bers of environment scenarios (corresponding to non-
functional constraints) compactly. We prefer not to
use Statecharts for verification. For this reason, we
propose a series of model transformations and refine-
ments, resulting in a CSP model ready for checking.
Note that we are currently working on a formalization
of these transformations. The first such transforma-
tion generates a description in kiltera. Here we pro-
vide a brief sketch of how Statecharts are translated
into kiltera processes. Each Statechart blob (AND
or OR state) is mapped to a kiltera process, preserv-

ICSOFT 2007 - International Conference on Software and Data Technologies

132



Figure 3: From behaviour models to verification models: a multi-formalism and model transformation approach for addressing
security constraints.

ing the nesting structure of the Statechart. For each
composite blob, we create an additional kiltera pro-
cess called a “relay”, which keeps track of the cur-
rently active substate(s), takes care of events relevant
to that blob, and forwards messages intended for other
“blobs”. Each kiltera process corresponding to a blob
has two ports: one which connects it to its parent “re-
lay” and one output port. All messages go through
these ports and therefore the structure of the overall
kiltera process is completely modular, unlike a State-
chart which may have transitions that cross a blob’s
boundaries. Finally, the obtained kiltera model gets
simplified. This simplification can increase simula-
tion and verification performance, albeit at the cost of
sacrificing some modularity. The advantage of us-
ing kiltera at this level is due to its simulation engine.
Such simulation capability is not supported for CSP
models, for which the closest equivalent to a simula-
tor would be the tool ProBE (Formal Systems Europe
Ltd., 2003), an animator for CSP processes allowing
the user to manually explore the behaviour of models.

Running simulations of a kiltera model is useful
for exploring a subset of the system’s entire state-
space, or for performance analysis. As a matter of
fact, we can define performance metrics to be checked
on the simulation results. Examples of a performance
metric are the likelihood that a security constraint
in breached, or an estimate of how many security
breaches occur over the simulated time interval. The
system modelled in Statecharts (Figure 5) consists
of self-contained interacting components, which can
conceptually be considered as communicating pro-
cesses. The flow of actions between these processes
defines the sequence and type of interactions that can
occur between them, and is used to define the pro-

Figure 4: UML Sequence Diagram representing the “Visit-
ing a pharmacist” system requirements.

cess event interface. These processes can be seen as
synchronizing over the set of events which are com-
mon to the orthogonal Statechart components. Note
that we are using Statemate Statecharts for histori-
cal reasons. Future work will map onto UML Stat-
echarts. This has the advantage that it will make
classes (whose instances appear in Figure 4) explicit.
Currently, those classes are implicitly associated with
the Statemate Statecharts’s orthogonal components.
From Figure 4, we note that the interactions taking
place between the two actors of the system, can be
viewed as occurring between a Pharmacist and a Pa-
tient processes. Below is the description of the Patient
process in kiltera:

ADDRESSING SECURITY REQUIREMENTS THROUGH MULTI-FORMALISM MODELLING AND MODEL
TRANSFORMATION

133



Figure 5: A Statechart. model of a design satisfying the requirements.

process Patient[secureComm, authority]

(PatientCredential, Prescription):

sync send PatientCredential to secureComm ->

sync receive PharmacistCredential from secureComm ->

if PharmacistCredential = "pharmacistCred" then

sync send Prescription to secureComm ->

sync receive result from secureComm ->

if result = "FillPres" then

Prescription := "filledpres" ->

Patient[secureComm, authority]

(PatientCredential, Prescription)

else

send "reportPhCredFraud" to authority

The system environment is introduced into the model
in the form of attack threats by the system actors.
As such, the environment is not modelled in external
components, but also inside the system components.
In the case of our e-health application for example,
the system actors may present invalid credentials, or
attempt to produce fraudulent prescriptions.

A simulation run on the kiltera behaviour and en-
vironment model generated for the “Visiting a phar-
macist” use case, generates the following trace2:
<t=0.004 send patientCred port=secureComm in Patient>
<t=0.004 receive patientCred port=secureComm in Pharmacist>
<t=0.005 send ptValidatedCred port=authority in Pharmacist>
<t=0.007 send pharmacistCred port=secureComm in Pharmacist>
<t=0.007 receive pharmacistCred port=secureComm in Patient>
<t=0.008 send phValidatedCred port=authority in Patient>
<t=0.009 send filledpres port=secureComm in Patient>
<t=0.009 receive filledpres port=secureComm in Pharmacist>
<t=0.011 send FillPres port=secureComm in Pharmacist>

In this output, we notice a suspicious sequence of
events, probably reflecting a breach of a security con-
straint. Indeed, it appears as though a previously pro-
cessed prescription is being refilled. This could rep-
resent a flaw in the system design, and certainly in-
dicates that the Statechart model should be reviewed.

2The trace syntax has been altered from its original and
made more concise for clarity.

We can now perform the kiltera to CSP model trans-
formation, and do full model checking of all possi-
ble behaviours using FDR2. Since both languages
define similar constructs (though kiltera adds variable
structure –not used here– and time), the translation
between models is mostly concerned with the trans-
lation of time into a CSP clock process. Note that
if we did not require efficient simulation capabilities,
we could skip the intermediate kiltera step and directly
translate Statecharts to CSP.

3.4 Verification with FDR2 of the
Generated CSP Model

We perform verification of security constraints on a
model translated from the behaviour and environment
model described in Section 3.3. Following CSP ter-
minology, this model is referred to as the implemen-
tation of the desired system.

Security requirements are directly captured in
terms of restrictions on traces that the implementation
process may engage in. These restrictions on traces
are referred to as CSP trace specifications: either a
description of a set of permissible traces, or alterna-
tively, a set of unacceptable traces leading to an er-
roneous (security-breaching) state. Either way, this
description is given in terms of a process (which we
refer to as security specification process), which cor-
responds to a set of traces it can exhibit. We take this
set to give precisely that secure behaviour which is
required.

The specification process, along with the imple-
mentation model, are input into the FDR2 tool and its
traces-refinement checker will verify whether the im-
plementation trace-refines the security specification.

ICSOFT 2007 - International Conference on Software and Data Technologies

134



In CSP trace-refinement, an implementation process
is said to refine the specification if all possible se-
quences of communication which it can perform are
also possible for the specification process.

If the required security constraints are not effec-
tively implemented in the original Statecharts model,
in the case where the specification process described
the permissible secure behaviour, FDR2 will reflect
the failure to pass the CSP security trace specifica-
tions. In fact, the tool outputs a counter-trace, result-
ing from a sample execution that led to a security-
violating state. In the case that the specification pro-
cess described unacceptable behaviour, the breach of
security is revealed if FDR2 finds that the implemen-
tation refines the erroneous behaviour description.

Therefore, in either case, the verification indicates
a flaw in the original design, and points out the ar-
eas which need to be further tuned to achieve secu-
rity. Design changes are directly made to the top-level
Statecharts model, which is again transformed into a
CSP model for further verification.

Applying this step to our example, the following
is the CSP process equivalent to that described in Sec-
tion 3.3:
PATIENT(PatientCredential, prescription) =

secureComm!PatientCredential

-> secureComm?PharmacistCredential ->

if PharmacistCredential == pharmacistCred

then pharmacistAccredited

-> session!Prescription -> PATIENT

else pharmacistNotAccredited

-> contactAuthority -> PATIENT

The security constraints described in Section 2.2.1 are
translated into permissible sequences of event occur-
rences, which describe a secure behaviour of the sys-
tem. For the second security constraint, relating to the
validity of the prescription, the following three speci-
fication processes are described:
VALID_PRES_FILLING = patientAccredited

-> pharmacistAccredited -> prescriptionIsValid

-> fillprescription -> commit

-> VALID_PRES_FILLING

FORGED_PRES_FILLING = patientAccredited

-> pharmacistAccredited -> prescriptionIsForged

-> deanonymizePatient -> FORGED_PRES_FILLING

FILLED_PRES_FILLING = patientAccredited

-> pharmacistAccredited -> prescriptionIsFilled

-> deanonymizePatient -> FILLED_PRES_FILLING

The CSP implementation model generated above
was refinement-checked against these speci-
fication processes, and was found to fail the
FILLED PRES FILLING specification. In fact, the
kiltera simulation in Section 3.3 had already warned
us regarding this problem. The prescription-related
security requirements were not fully addressed
in the initial system design. This resulted in the

Figure 6: An FDR2. screenshot, reflecting the
successful check of a security requirement. Here,
FILLED PRES FILLING is the specification process, filled-
Prescription SECURITY PROPERTY is the security asser-
tion, and the remaining are implementation processes.

unsuccessful check of the FILLED PRES FILLING
specification, and the following counter event trace
was produced by FDR2 to reflect the execution of a
sequence of events leading to this outcome:

pharmacistLocalAuthentication

patientLocalAuthentication

secureComm.patientCred

patientAccredited

secureComm.pharmacistCred

pharmacistAccredited

session.filledpres

prescriptionIsFilled

fillprescription

The counter-example shows that although a prescrip-
tion was verified and found to have previously been
filled, the system allowed a refilling of the prescrip-
tion. A second implementation of this system is gen-
erated from a modified Statecharts design where the
issue of filled prescriptions is dealt with by reporting
the fraud. When FDR2 is run on this design specifi-
cation, it outputs a successful assertion of the security
requirement, as shown in Figure 6.

4 CONCLUSION

In most e-applications today, it is crucial to guaran-
tee that security requirements are successfully im-
plemented. Methods should be provided which can
check if security has been attained in a system design.
In this paper, we have presented a process based on
multi-formalism modelling and model transformation

ADDRESSING SECURITY REQUIREMENTS THROUGH MULTI-FORMALISM MODELLING AND MODEL
TRANSFORMATION

135



targeted towards verification of domain-specific secu-
rity constraints, and have demonstrated it through the
application on an e-health case study.

At the highest level, we started from a Se-
quence Diagram representation of software require-
ments, used these to obtain, through automatic trans-
formation, an initial design of the system in State-
charts, transformed this model into a kiltera model,
then extended and modified it to consider the system
environment. Then, we further transformed the ex-
tended kiltera model into a CSP description and, fi-
nally, refined it with a CSP specification of the se-
curity requirements. The refinement checking tool
FDR2 was used to verify that security was respected
in the system implementation. A negative response
by the checker indicated that the original Statecharts
model neglected to address all security-related re-
quirements. Note that after the above analysis (and
possible modification of the design), the Statecharts
model can be used for code synthesis of the final ap-
plication.

We have shown how a multi-formalism approach
can be useful for designing secure systems. The ver-
ification results gave us increased confidence that se-
curity requirements were effectively addressed. Pro-
ductivity is increased as many of the steps in the pro-
cess can be automated.

We are working on a toolchain which imple-
ments the modelling and transformation steps de-
scribed above. Using the toolchain will allow us to in-
vestigate how well our approach scales to a full-blown
application using the Belgian e-ID card. This work is
done using our meta-modelling and model transfor-
mation tool AToM3 (de Lara and Vangheluwe, 2002).

ACKNOWLEDGEMENTS

This work was made possible thanks to the support of
the Flemish government (IWT-Vlaanderen) through
the adapID project. Hans Vangheluwe greatfully ac-
knowledges partial support for this work through his
National Sciences and Engineering Research Council
of Canada (NSERC) Discovery Grant. We thank the
anonymous reviewers for their pertinent and construc-
tive comments.

REFERENCES

Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, P., and
Yi, W. (1995). UPPAAL — a Tool Suite for Automatic
Verification of Real–Time Systems. In Proc. of Work-
shop on Verification and Control of Hybrid Systems
III, number 1066 in LNCS, pages 232–243. Springer.

de Lara, J. and Vangheluwe, H. (2002). AToM3: A tool
for multi-formalism and meta-modelling. In FASE
’02: Proceedings of the 5th International Conference
on Fundamental Approaches to Software Engineer-
ing, pages 174 – 188. Springer.

Feng, H. (2004). DCharts, A Formalism For Modeling and
Simulation Based Design of Reactive Software Sys-
tems. Master’s thesis, McGill University.

Formal Systems Europe Ltd. (2003). ProBE User Manual.
Technical report.

Gardey, G., Lime, D., Magnin, M., and Roux, O. H. (2005).
Romeo: A Tool for Analyzing Time Petri Nets. In
Etessami, K. and Rajamani, S. K., editors, Com-
puter Aided Verification, 17th International Confer-
ence, pages 418–423. Springer.

Germeau, F. and Leduc, G. (1997). Model-based Design
and Verification of Security Protocols using LOTOS.

Harel, D. (1987). Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Program-
ming, 8(3):231–274.

Hoare, C. A. R. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall.

ISO (1989). LOTOS — a formal description technique
based on the temporal ordering of observational be-
haviour. ISO IS 8807.

Lowe, G. (1996). Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In Tools
and Algorithms for the Construction and Analysis of
Systems, volume 1055, pages 147–166. Springer.

Milner, R., Parrow, J., and Walker, D. (1989). A Calculus
of Mobile Processes, Parts I and II. Reports ECS-
LFCS-89-85 86, Computer Science Dept., University
of Edinburgh.

Muller, P.-A., Fleurey, F., and Jézéquel, J.-M. (2005).
Weaving Executability into Object-Oriented Meta-
Languages. In Briand, L. and Williams, C., editors,
MODELS’05, pages 264–278. Springer-verlag.

Mustafiz, S., Sun, X., Kienzle, J., and Vangheluwe, H.
(2006). Model-Driven Assessment of Use Cases for
Dependable Systems. In MoDELS’06, pages 558–
573.

Naessens, V. (2006). A Methodology for Anonymity Control
in Electronic Services using Credentials. PhD thesis,
K.U.Leuven.

Posse, E. and Vangheluwe, H. (2007). kiltera: a simula-
tion language for timed, dynamic-structure systems.
In Proceedings of the 40th Annual Simulation Sympo-
sium. SpringSim’07, pages 293 – 300.

Reed, G. M. and Roscoe, A. W. (1986). A Timed Model
for Communicating Sequential Processes. In Kott, L.,
editor, ICALP, volume 226 of Lecture Notes in Com-
puter Science, pages 314–323. Springer.

Roscoe, A. W. and Wu, Z. (2006). Verifying Statemate Stat-
echarts Using CSP and FDR. In Liu, Z. and He, J., ed-
itors, ICFEM, volume 4260 of LNCS, pages 324–341.
Springer.

ICSOFT 2007 - International Conference on Software and Data Technologies

136



Rumbaugh, J., Jacobson, I., and Booch, G., editors (1999).
The Unified Modeling Language reference manual.
Addison-Wesley Longman Ltd., Essex, UK.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing,
J. M. (2002). Automated Generation and Analysis of
Attack Graphs. In SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy, Washing-
ton, DC, USA. IEEE Computer Society.

Sun, X. (2007). A Model-Driven Approach to Scenario-
Based Requirements Engineering. Master’s thesis,
McGill University.

Whittle, J. and Jayaraman, P. K. (2006). Generating Hier-
archical State Machines from Use Case Charts. Pro-
ceedings of the 14th IEEE International Requirements
Engineering Conference (RE’06), 0:16–25.

Whittle, J. and Schumann, J. (2000). Generating statechart
designs from scenarios. In ICSE, pages 314–323.

Yeung, W. L., Leung, K. R. P. H., Wang, J., and Dong,
W. (2005). Improvements Towards Formalizing UML
State Diagrams in CSP. In APSEC, pages 176–184.
IEEE Computer Society.

ADDRESSING SECURITY REQUIREMENTS THROUGH MULTI-FORMALISM MODELLING AND MODEL
TRANSFORMATION

137


