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Abstract: Artificial neural network (ANN) prediction models can be considered as an efficient tool in predictions once 
they are trained from examples or patterns. These types of ANN models need large amount of data which 
should be at hand before thinking to develop such models. In this paper, the capability of ANN model to 
predict suspended sediment in 2-D flow field is investigated. The data used for training the network are 
generated from a pre-verified 2-D hydrodynamic and a 2-D suspended sediment models which were 
recently developed by the authors. About two-thirds of the data are used for training the network while the 
rest of the data are used for validating and testing the developed ANN model. Field data measured by 
hydraulic research Institute are used to compare the results of the ANN model. The conjugate gradient 
learning algorithm is adopted. The results of the developed ANN model proved that the technique is reliable 
in such field compared to both the results of the previously developed models and the field data provided 
that the trained network is used to generate prediction within the range of training data. 

1 INTRODUCTION 

The subject of sediment transport in alluvial streams 
gains its importance with the increasing of water 
resources utilization. Extensive researches had been 
done in this field. Generally, laboratory 
investigations to predict sediment transport are time-
consuming, costly and even not possible for many 
practical engineering problems. Therefore, 
mathematical models for predicting sediment 
transport were developed using different techniques.  
Several one dimensional models were developed, 
see for example (Thomas and Prasuhn, 1977), 
(Bhallamudi and Chaudhry, 1991) and (Guo and Jin, 
1999). Examples of 2-D models include those 
developed by (Lin and Shen, 1984), (Van Rijn, 
1986), (Celik and Rodi, 1988), (Van Rijn et al., 
1990) and (Elfiky et al., 2003). Instead of 
mathematical model, a relatively new computational 
tool, ANN, can be used to predict the suspended 
sediment load. 

Although many applications in the field of 
Hydraulic Engineering are available such as 
(Karunanith et al., 1994) and (Dibike et al., 1999) 
very few applications in the field of sediment 
transport were published. (Nagy, 1999) used ANN to 
estimate the natural sediment discharge in rivers in 
terms of sediment concentration. (Jain, 2001) used 
the ANN approach to establish an integrated stage-
discharge-sediment concentration relation. Also, 
ANN approach can successfully model the 
hysteresis effect that is associated with unsteady 
flow in open channels. (Nagy et al., 2002) used the 
ANN approach to estimate the natural sediment 
discharge in rivers in terms of sediment 
concentration.  

In the present paper, ANN, is used to predict the 
suspended sediment load in terms of the flow depth, 
the velocities components in x and y directions and 
the sediment carrying capacity. Since, the method 
learns from examples, a large set of data should be 
available. Practically, field data of different rivers 
should be used to train and validate the ANN but it 
is not available at the time being at the author hands 
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Therefore, the developed SED-2 numerical model by 
(Elfiky et al., 2003) is used to generate the required 
data for training and verification of the ANN to test 
and prove its capability to predict the suspended 
sediment concentration once it gets trained. 

2 OVERVIEW OF ANN  

Artificial Neural Network (ANN), is a structure 
composed of a number of interconnected units 
(artificial neurons) Each neuron has an input/output 
characteristics and implements a local computations 
or function, (Schalkoff, 2002). Hence, the overall 
ANN of interconnected neurons displays a 
corresponding functionality. A neural system should 
be capable of storing information through training. 
Thus the objective of training the ANN is to develop 
an internal structure enabling the ANN to correctly 
identify or classify new similar patterns. Thus, 
neural network is a dynamic system, its state 
changes over time in response to external inputs or 
an initial unstable state. Various types of ANN are in 
use and could be reviewed from (Schalkoff, 2002). 
Most of the applications of ANNs in fields of water 
Engineering were reviewed in (Negm, 2002). In this 
paper, the multilayer feedforward network or the 
multilayer perceptrons is used in modeling 
suspended sediment concentration in river flow. 

A typical ANN consists of three layers (4-10-1) 
is shown in Figure 1. The input variables determine 
the number of neurons in the input layer and the 
input data vectors are applied to the input layers 
from an external source. A bias neuron is normally 
used with input of unity to shift or scale the 
activation function. The output layer is where the 
output are processed and are sent to an external 
source for further analysis or extra treatments or 
plotting, .etc. The layers between the input and the 
output are hidden where the entire processing are not 
accessible. The most common nonlinear transfer 
functions are the sigmoidal functions including the 
logistic and the hyperbolic tangent. The latter 
function is given by Equation (2) 
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where Ihj is The input to the neuron j of the hidden 
layer and given by 

∑
=

+=
m

1j
jijij bwxIh    (2) 

where xi is the input of the neuron i in the input 
layer with m is the number of neurons in the input 
layer and bj is the bias of the unit. The wij is the 
weights vector of the connections between the 

neurons of the input layer and the neurons of the 
hidden layer.  

The outgoing singnal from the hidden neuron is 
then combined with the weights of the connections 
between the neurons of the hidden layers and those 
of the output layer yielding the output of the output 
layer, Ook, using a linear combine function defined 
by Eq. (3). 
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in which Cjk is weight of the connection between 
neuron j of the hidden layer and neuron k of the 
output layer and bk is the bias to the neuron k. 
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Figure 1: Typical three layers Feed-Forward ANN. 

Training the network involves the determination 
of the weight vectors wij and Cjk such that the sum of 
squares of the error between the actual value of the 
output and the desired value of the output is 
minimal. The network weights are randomly 
assumed within a particular range. Then they are 
updated.  

3 COLLECTION OF DATA FOR 
TRAINING, VALIDATION AND 
TEST  

The numerical sediment transport model (SED-2) 
developed by (Elfiky et al., 2003) was used to 
generate the suspended sediment load ((kg/m.sec) 
for a canal reach of 830 m long. The two basic 
inputs of the SED-2 model (velocities) was obtained 
by running the HYD-2 model by Elfiky et al., 1997). 
The inputs to the SED-2 model include the velocities 
in x and in y directions and the flow depth. The 
output of the model is the suspended sediment 
concentration. Figure 2: shows a definition sketch 
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for the reach where the model was applied. The 
reach is confined between cross section (1) at KM 
57.000 and cross section (2) at KM 57.830 on El-
Noubaria canal. Also, El-Nasser canal was included 
in the simulation using SED-2. Each canal was 
simulated separately using the ANN because the 
change in the flow direction at the canal junction 
was misunderstood by the network leading to very 
poor neural network model. The effective total 
number of generated data points are 963 for El-
Nubraia canal reach. 

4 COLLECTION OF FIELD DATA 

The collected field measurements at two cross-
sections on EL-Nubaria main canal are used to 
compare the model results. The data were collected 
by the Hydraulic Research Institute (HRI), National 
Water Research Center NWRC), Delta Barrages, 
Egypt on November, 1998, (Saad et al., 1999). The 
average velocity and the suspended sediment load 
were measured at two stations along both of Sec. (1) 
at KM 57 and Sec. (2) at KM 57.83 on EL-Nubaria 
canal, see Figure 2. 
 

 
 
 
 
 
 
 
 

 
Figure 2: Definition sketch for the canal reach where the 
SED-2 numerical model was applied.  

5 BUILDING THE NETWORK 

Many factors affect the accuracy of the network. The 
most important factors will be discussed in the 
following paragraphs. 

Normalization of Data ensures that each input 
contributes equally to the decision or the prediction 
made by the network. If the input values were not 
normalized, an input data, which have large 
numbers, will be more significant than that which 
has small numbers. Several methods could be used 
for normalization. One of these methods the zero-
mean unit-standard deviation normalization method 
in which the mean and the standard deviation for 
each field is determined. Each field is then 

normalized such that the mean value for the field 
becomes zero and the values at plus and minus one 
standard deviation are mapped onto plus and minus 
one.  

According to the Neural Connection software, 
the normalized input data, which are provided to the 
neural network, are classified into three sets, i.e. 
training, validation and test data sets. The training 
data is used to train the proposed ANN and is taken 
as 70% of the total records (2/3 of the data may be 
enough for large set of data). Validation data is used 
to monitor neural network performance during 
training phase and it represents 15% of total input 
data. Test data is used to test the performance of a 
trained ANN in generating the required prediction. 
The test data set is unseen data to the ANN model 
and represents 15% of the total utilized records by 
the present application.  

The choice of the connections weights have a 
large effect on the performance of the network. The 
best initial values of the connections weight are 
found by trial and errors by conducting many 
computer experiments and the correlation 
coefficient, R, between the target and the output of 
the proposed network is computed for each 
experiment. Also, the root mean square error, rmse, 
is computed. The values of the weights that 
generate output with maximum R and minimum 
rmse are chosen. In the present application, the best 
initial weights was assumed to be in the range 
± 12.2.6. 

Generally, increasing the number of neurons in 
the hidden layer improves the performance of 
network on the training data, but not necessarily on 
the validation data. If so many hidden neurons are 
used in a network, the network will have enough 
weights to exactly represent all the training patterns. 
Such network will be poor network because it will 
be able to generalize the solution. This means that 
the network is overtrained. As the total number of 
hidden units is increased from one, the network 
performance on the validation data increases rapidly. 
This is because each new hidden unit starts to 
represent one of the underlying features in the data 
set. As more units are added, performance levels off. 
At that point, the training should stop. However, 
adding further units may then cause a decrease in 
performance because the power of generalization is 
lost and the network begins to learn the noise present 
in the data. It is always better to use as few neurons 
as possible to achieve the desired result. Generally, 
the number of neurons depends on the complexity of 
the data and on both the number of input and output 
variables. From experience, a rough initial 
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estimation to the number of neurons in the hidden 
layer may be the geometric mean of the neurons in 
both input and output layers. The procedure is 
achieved by conducting many computer 
experiments. In the present application, the best 
number of neurons in the hidden layer is 10. The 
results of the conducted experiments are presented in 
Figure 2 in terms of R and rmse. The best value of R 
and the minimum value of rmse are when the 
network has a size of 4-10-1. It should be noted a 
similar figure to figure 3 is prepared to select the 
optimal value of each of the important factors 
affecting the ANN performance but not presented 
here to avoid repetition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Typical performance of the proposed network in 
terms of (a) R and (b) rmse. 

In most of the application one hidden layer will 
produce enough accuracy. However, more than one 
hidden layers can be used based on the complexity 
of the data structures. This can be achieved by 
conducting several computer experiments using 
single and multiple hidden layers and then a decision 
is taken based on the performance of the network. In 
this application, one hidden layer is found to be 
enough. 

The type of activation functions used in the 
hidden layer is chosen by trials. In this application 
the tansh activation function is found to be the best 
one compared to the linear or the sigmoid. 

The learning algorithm affects highly the 
performance of the networks. In the present 
application, the conjugate gradient is used to prevent 
the network from being trapped in a local minima. 
Unlike back-propagation, the conjugate gradient 
method does not proceed along the direction of the 
error gradient, but in a direction orthogonal to the 
one in the previous step. This prevents future steps 
from influencing the minimization achieved during 
the current step. In addition to the above factors, the 
maximum number of updates is important which is 
fixed when the validation error reaches to each 
minimum during training process. Keeping in mind 
the above discussed factors, building the network for 
the present application is well represented, see 
Figure 4. 

6 RESULTS OF THE 
DEVELOPED NETWORK 

Results of the developed network are presented in 
three figures. Figure 5 presents the comparison 
between the ANN estimation and the values 
predicted from the previously developed numerical 
model (SED-2) for training data set. The correlation 
coefficient, R is 0.9993. Clearly, perfect agreement 
is obtained for this set and this expected because the 
generated data from the numerical model was used 
to train the network. The very few data points which 
seem to deviate from the line of perfect agreement 
are those points where the velocities are affected by 
the entering flow to the El-Nasser canal and hence 
the suspended sediment is also affected because a 
remarkable portion of suspended sediment flow to 
El-Naser canal. It should be noted that El-Nasser 
canal was not included in the simulation using the 
neural network, in spite of its inclusion in the 
numerical model, because its inclusion interrupts the 
performance of the network. Figure 6 presents the 
ANN results for validation and test data versus those 
of the numerical model. The correlation coefficient 
is (R=0.9993) for validation data and equals 
(R=0.9992) for test data. The correlation coefficient 
for all data set is 0.9993. Figure 7 represents the 
variation of the residuals for all the three data sets 
versus the network predictions. The residuals seem 
to be distributed around the line of zero error, 
uncorrelated with the ANN outputs (estimated and 
predicted) and of very small values. The correlation 
coefficient of the residuals with the network 
prediction is very small and equals -0.0272. In this 
figure, the high values of the residuals are for the 
points that affected by El-Nasser canal where the 
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velocity component in x direction is suddenly 
affected (because it changes its direction and 
becomes in y direction as the flow enters El-Nasser 
canal) and the suspended sediment load is in turn 
reduced compared to the upstream sections. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flowchart showing the basic steps of building a 
neural network for an application. 

 
Figure 5: Comparison between predictions of ANN and 
those of SED-2 numerical model. 

 

 

 

 

Figure 6: Comparison between predictions of ANN and 
those of SED-2 numerical model. 

 

 

 
 
 
 
 
Figure 7: Variations of the residuals of all ANN data with 
the estimated values. 

7 COMPARISONS 

The collected field data at the two cross sections, 1 
and 2 are compared to both the predicted values 
using the numerical model and the neural network 
model in Figures 8 and 9 for sections (2) and (1). 
Clearly, good matching is observed between the 
field data and the models results at section (2). At 
Sec. (1), there are a great agreement at the left and 
right stations while a gab is noticed between the 
models results and the field data in the middle 
station, perhaps due to the inflow boundary effect, 
Elfiky et al.8). Comparisons between results of ANN 
model and the numerical model at other sections as 
(3) and (4) indicate very great agreement (not 
presented here to reserve space).  

 
Figure 8: Comparison between predictions of ANN, SED-
2 numerical model and field data. 
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Comparisons between results of ANN model and 
those of numerical model at the longitudinal sections 
as L.S.1, L.S.2 and L.S.3 show also very close 
agreement between both results. Indicated in Fig. 10. 

 
Figure 9: Comparison between predictions of ANN, SED-
2 numerical model and field data. 

 
Figure 10: Comparison between prediction of ANN and 
those of SED-2 numerical model at L.S.1. 

8 CONCLUSION 

A multilayer feedforward artificial neural network 
(4-10-1) is used to estimate the suspended sediment 
concentration efficiently based on four inputs 
including the depth of flow, the components of flow 
velocities in x and y directions and the sediment 
carrying capacity. Since, the field data are very 
limited, a 2-D numerical model (SED-2) was used to 
generate the required training and validation data for 
the developed neural network. The present paper 
proved that the ANNs are a powerful computational 
tool for computing the suspended sediment 
concentration in rivers provided that the trained and 
verified network should be used to predict values 
within the training range otherwise, poor predictions 
are obtained. 
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