V3STUDIO: A COMPONENT-BASED ARCHITECTURE

DESCRIPTION META-MODEL

Extensions to Model Component Behaviour Variability

Cristina Vicente-Chicote, Diego Alonso

Division de Sistemas e Ingenieria Electronica, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

Keywords:

Abstract:

Franck Chauvel
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Model-Driven Engineering, Component-Based Architecture Description Language, Variability Modelling,
COTS Product Integration.

This paper presents a Model-Driven Engineering approach to component-based architecture description, which
provides designers with two variability modelling mechanisms, both of them regarding component behaviour.
The first one deals with how components perform their activities (the algorithm they follow), and the second
one deals with how these activities are implemented, for instance, using different Commercial Off-The-Shelf
(COTY) products. To achieve this, the basic V3Studio meta-model, which allows designers to model both
the structure and behaviour of component-based software systems, is presented. V3Studio takes many of its
elements from the UML 2.0 meta-model and offers three loosely coupled views of the system under develop-
ment, namely: a structural view (component diagrams), a coordination view (state-machine diagrams), and a
data-flow view (activity diagrams). The last two of them, concerning component behaviour, are then extended

in this paper to incorporate the two variability mechanisms previously mentioned.

1 INTRODUCTION

Component-Based Software Development (CBSD)
has proven to obtain highly reusable, extensible and
evolvable designs (Szyperski, 2002). According to
this approach, systems can be built by selecting and
assembling appropriate Commercial Off-The-Shelf
(COTS) components. However, integrating CBSD
(bottom-up) and software architecture design (top-
down) is a non-trivial task which commonly requires
adapting the architecture to make COTS components
fit.

The Model-Driven Engineering (MDE) approach
(Selic, 2003) offers an effective solution for bridg-
ing the gap between architecture design and CBSD.
This approach revolves around the definition of mod-
els and model transformations. Models represent part
of the function, structure and/or behaviour of a system
(Deelstra et al., 2003), and they are defined in terms
of formal meta-models. Each meta-model includes
the set of concepts needed to describe the system at a
certain level of abstraction together with the relation-
ships existing between these concepts. Model trans-
formations, commonly described as meta-model map-

Vicente-Chicote C., Alonso D. and Chauvel F. (2007).

pings, enable to automatically refine abstract mod-
els into more concrete ones. This process concludes
when the final application code is automatically ob-
tained from the lowest level models.

As stated in (Abouzahra et al., 2005), nowadays
there are two main trends in MDE. The first one
promotes the use of standard modelling languages
like UML 2.0 (OMG, 2005) or SysML (OMG,
2006), while the second one advocates the benefits
of Domain-Specific Languages (DSLs). The inclu-
sion of variability mechanisms into meta-models to
enable, for instance, the description of software prod-
uct lines, is currently one of the most active topics
in MDE. However, neither UML 2.0 nor SysML na-
tively support variability modelling, although some
UML profiles have been developed to support this
aspect (Ziadi et al., 2003). Nevertheless, as stated
in (Bézivin, 2005), commonly it is more difficult to
work by restriction (i.e. profiling UML) than by
extension (i.e. defining a new DSL). This is why
we decided to define V3Studio as a new meta-model
(not from scratch but incorporating many of the el-
ements already defined in UML), instead of defin-
ing yet another UML profile. Thus, V3Studio is a

437

V3STUDIO: A COMPONENT-BASED ARCHITECTURE DESCRIPTION META-MODEL - Extensions to Model Component Behaviour Variability.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 437-440

DOI: 10.5220/0001344704370440
Copyright © SciTePress

ICSOFT 2007 - International Conference on Software and Data Technologies

H Component

7 i

E ComplexCompanent H SimpleComponent

E Statemachine H Action

behaviour

= double
~ boolean

[DelegationPort [AssemblyPort H PseudoState H Vertex source H Transition ol SimpleActivity
= kind
target
l‘t\ onEntry fire l
H PartLink endA 5 Port H FinalState H State d H Activity
o
£ :
endB onExf]
prowdedJ’ l required
=
H Interface e PseydoSTmeKmd H LoopActivity Lo outia
= Initial
= History —T> H ComplexActivity H ActivityParameter
= Junction — dataType
~ Chi
el © ConditionalActivity >
E Service I sDulceT Tta\get
= DataType
= integer E ActivityLink

Figure 1: The basic V3Studio meta-model.

general-purpose component-based meta-model which
can deal with behavioural variability, and which can
not be considered a DSL, since it does not include any
domain-specific concept.

The rest of the paper is organized as follows.
Firstly, the component-based V3Studio meta-model
is presented in section 2. Secondly, the behavioural
variability extensions introduced in this meta-model
are described in section 3. Finally, section 4 outlines
the conclusions and futures research lines.

2 THE V3Studio META-MODEL

The variability mechanisms presented in this paper
are built as an extension to a previously designed
meta-model called V3Studio (see figure 1). This
meta-model, which takes many of its elements from
UML 2.0 (OMG, 2005), enables a precise description
of component-based software architectures, including
both structural and behavioural features. Actually,
the meta-model encompasses three different views,
namely: a structural view, a coordination view, and
a data-flow view.

As we suggest a component-based approach, the
structural view defines the system in terms of com-
ponents (either simple or complex) and the intercon-
nections between them. Components provide (re-

438

quire) services to (from) other components by means
of interfaces, grouped into ports. Component be-
haviour, defined as the set of reactions derived from
its relationship with other components, is described
in terms of a state-machine. Finally, the activities per-
formed in each of the states defined in the component
state-machine are specified using an activity diagram.
These activities are defined in terms of some inter-
nal actions or making use of the services provided by
other components.

Next, the three views the V3Studio meta-model
has been divided into, are briefly described:

The structural view. System software architecture
can be defined using either a top-down or a
bottom-up approach. In the first case, the software
architecture is defined by grouping the main sys-
tem functionalities into high-level components.
Thus, the system is initially considered a com-
plex component built from very high level com-
ponents, assembled using connectors to link their
ports. These high level components are succes-
sively decomposed into simpler ones, until no
more refinements are possible. Conversely, a
bottom-up approach starts from simple compo-
nents, selected to fulfil part of the system func-
tionality. These components are linked together
to build more complex functional units, and this
process is incrementally repeated until the final

V3STUDIO: A COMPONENT-BASED ARCHITECTURE DESCRIPTION META-MODEL - Extensions to Model

system functionality is achieved.

The data-flow view. Once the system architecture
has been structurally defined, the behaviour of its
components must be described. Each service pro-
vided by a component is defined in terms of ac-
tivities. Activities represent functional units, such
as functions or blocks in imperative programming
languages. Activities can have input and output
parameters, each one associated to a certain data
type. Activities can be linked together to define
the execution path, and they can also be grouped
into complex structures to ease their reuse.

The coordination view. Finally, the designer has to
specify how components collaborate with each
other. This collaboration requires specifying
both (1) how components react to messages sent
by other components depending on their current
state, and (2) the (optional) communication pro-
tocol for sending messages or calling services.

The following section presents the modifications
introduced in the V3Studio meta-model to enable de-
signers to include both data-flow and implementation
variability into their component models.

3 VARIABILITY MECHANISMS

This section presents the data-flow and imple-
mentation variability mechanisms introduced in the
V3Studio meta-model. For the sake of clarity, two
figures containing the modified and newly added ele-
ments in the affected views of V3Studio are included
in each of the following sections.

3.1 Data-Flow Variability

As explained in the introduction, designers often need
to add some variability to the behaviour of compo-
nents. It would be desirable to specify that a ser-
vice can be performed in various ways, using differ-
ent algorithms. To achieve these objectives, the state-
machine part of the V3Studio meta-model is extended
with some new concepts, as shown in figure 2. As
it can be observed, the new meta-model enforces the
separation between a StatemachineDefinition and the
real Statemachine. It also adds two parallel concepts:
VariableActivity and ActivityBinding. The first one is
aimed at defining which activities can vary in those
components that share the same component defini-
tion. The second one specifies the particular activity
executed by the component. All these concepts are
highlighted in figure 2.

Component Behaviour Variability

[ComplexCompDef

B Component behaviour |__B StateMachine

type

5 SimpleCompbet behaviour E Stateliachinebef

[Componentbef

fype

El ActivityBinding

| C

B State source E Transition H VariableActivity
{gouree |

e T

target

o]
orEntry end®

‘Go | AbstractActivi B Activity

onExi

Figure 2: Extension to model data-flow variability.

With this mechanism, variants of the same be-
haviour can be designed by modelling some activi-
ties as parameters. As activities are used to describe
the reactions of components, the behaviour described
by the state-machine is preserved but these reactions
can be customised (Harel, 1987). Modelling compo-
nents this way allows designers to have various com-
ponents that, considered as black boxes, are all ex-
actly the same (so they can be replaced), but consid-
ered as white boxes they are all different, since they
use different algorithms.

3.2 Implementation Variability

Currently, the marketplace offers a wide variety of
COTS products that provide many of the functionali-
ties typically required when developing new applica-
tions. However, generally each of these products uses
its own defined data types, function calling conven-
tions and error handling mechanisms, making it diffi-
cult to use them together. In order to allow designers
to incorporate the functionality provided by all these
COTS products, the V3Studio meta-model includes a
wrapping mechanism aimed at encapsulating hetero-
geneous library functions to build homogeneous and
thus inter-connectable implementation units.

This variability mechanism has been added to the
data-flow view of the V3Studio meta-model (see fig-
ure 3). Although the multiplicity of the relationships
is not shown in the diagrams because of a limitation of
the tool, in this case all simple activities contain only
one action. Each action represents a functional block
which might have been imported from one of the ex-
isting COTS libraries. To allow designers to join ac-
tivities containing actions from different COTS, the
PinParamLink connection between activity parame-
ters and action pins must (1) perform the correspond-
ing data type conversion, (2) pass the data to the ac-

439

ICSOFT 2007 - International Conference on Software and Data Technologies

E SimpleActivity H Activity B ComplexActivity
v <
inParam outParam
[l PinParamLink B ActivityParameter |source B ActivityLink
endA 72
| endAl"s dataType
frarget

endB H Pin

= dafaType

H Action

inPin

outPin

Figure 3: Extension to model implementation variability.

tion using the correct calling convention, and (3) cor-
rectly interpret and handle all possible errors during
the execution.

Allowing only one action into each simple activ-
ity could seem quite restrictive and inefficient (i.e.
linking activities containing actions from the same
COTS will require unnecessary data conversions).
However, designers are free to use actions as com-
plex as they wish into Activities (i.e. complex algo-
rithms implemented using several functions from a
single COTS). Regarding efficiency, activity models
built using V3Studio can be easily optimized using a
simple model transformation which avoids unneces-
sary data type conversions when possible.

4 CONCLUSIONS

In this paper we propose an extension to the V3Studio
meta-model, which allows designers to model compo-
nent behaviour variability at early design stages. The
major contribution of this proposal is to enable the
inclusion of variability aspects both into design and
implementation models. Several variants of the same
component can be easily built, while most of the ex-
isting approaches focus on component substitutability
to support product line development.

This approach allows designers to build complete
component definitions (in which both structural and
behavioural characteristics are fixed) and, optionally,
they can define the activities that may change be-
tween different components of the same type, by
means of parameterised state-machines. The ex-
tended V3Studio meta-model also considers imple-
mentation variability, that is, how to deal with dif-
ferent implementations of the same functionality pro-
vided, for instance, by different COTS products avail-
able in the marketplace. In this sense, the meta-model
reinforces black-box component reuse.

440

The work presented in this paper has consider-
ably enriched the previous versions of the V3Studio
meta-model. However, there are still some open is-
sues which must be addressed. Currently we are
working in two main directions, namely: (1) defin-
ing structural variability mechanisms, similar to those
defined in this paper regarding component behaviour,
and (2) including some operational semantics in the
meta-model using KerMeta (Muller et al., 2005).

ACKNOWLEDGEMENTS

This research has been partially funded by the Span-
ish CICYT project MEDWSA (TIN2006-15175-C05-
02) and the PMPDI-UPCT-2006 program (Technical
University of Cartagena, Spain).

REFERENCES

Abouzahra, A., Bézivin, J., Didonet, M., and Jouault, F.
(2005). A practical approach to bridging domain spe-
cific languages with uml profiles. In Proceedings of
the OOPSLA 2005.

Bézivin, J. (2005). On the unification power of models.
Journal of SoSyM, 4(2):171-188.

Deelstra, S., Sinnema, M., van Gurp, J., and Bosch, J.
(2003). Model driven architecture as approach to
manage variability in software product families. In
MDAFA 2003, pages 109-114.

Harel, D. (1987). Statecharts: A visual formalism for com-

plex systems. Science of Computer Programming,
8(3):231-274.

Muller, P-A., Fleurey, F., and Jézéquel, J.-M. (2005).
Weaving executability into object-oriented meta-
languages. In Proceedings of UML MoDELs 2005,
volume 3713 of LNCS. Springer.

OMG (2005). Unified modeling language 2.0: Superstruc-
ture specification. Official specification formal/05-07-
04, Object Management Group, Needham, MA, USA.

OMG (2006). Systems modeling language (sysml”™) spec-
ification. Final Adopted Specification ptc/06-05-04,
Object Management Group, Needham, MA, USA.

Selic, B. (2003). The pragmatics of model-driven develop-
ment. /[EEE Trans. Soft. Eng., 20(5):19-25.

Szyperski, C. (2002). Component Software - Beyond
Object-Oriented Programming. Addison-Wesley.

Ziadi, T., Hélouét, L., and Jézéquel, J.-M. (2003). Towards
a UML profile for software product lines. In Soft-
ware Product-Family Engineering, 5th International
Workshop, PFE 2003, Siena, Italy, November 4-6,
2003, Revised Papers, volume 3014 of Lecture Notes
in Computer Science, pages 129-139. Springer.

