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Abstract:

Vcodex is a platform to compress and transform data. A standard interface, data transform, is defined to rep-

resent any algorithm or technique to encode data. Although primarily geared toward data compression, a data
transform can perform any type of processing including encryption, portability encoding and others. Vcodex
provides a core set of data transforms implementing a wide variety of compression algorithms ranging from
general purpose ones such as Huffman or Lempel-Ziv to structure-driven ones such as reordering fields and
columns in relational data tables. Such transforms can be reused and composed together to build more com-
plex compressors. An overview of the software and data architecture of Vcodex will be presented. Examples
and experimental results show how compression performance beyond traditional approaches can be achieved
by customizing transform compositions based on data semantics.

1 INTRODUCTION

Modern business systems routinely manage huge
amounts of data. For example, the daily volumes of
billing and network management data generated by an
international communication company involve tens to
hundreds of gigabytes (Fowler et al., 2004). Further,
certain of such data is required by laws to be kept on-
line for several years. Thus, data compression is a
critical component in these systems.

Much of compression research has traditionally
been focused on developing general purpose tech-
niques which treat data as unstructured streams of
bytes. Algorithms based primarily on either pattern
matching, statistical analysis or some combination
thereof (Huffman, 1952; Jones, 1991; Witten, 1987;
Ziv and Lempel, 1977; Ziv and Lempel, 1978) de-
tect and remove different forms of information re-
dundancy in data. Well-known compression tools
such as the ubiquitous Unix Gzip or Windows Winzip
are based on such general purpose techniques, for
example, the Lempel-Ziv compression method (Ziv
and Lempel, 1977) and Huffman coding (Huffman,
1952). A recently popular compressor, Bzip2 (Se-
ward, 1994), first reorders data by the famous BWT or
Burrows-Wheeler Transform (Burrows and Wheeler,
1994) to induce better compressibility before passing
it to other compressors.
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Structures in data often provide a good source
of information redundancy that can be exploited to
improve compression performance. For example,
columns or fields in relational data tend to be sparse
and may share non-trivial relationships. Buchsbaum
et al (Buchsbaum et al., 2003) developed the Pzip
technique that assumes some conventional compres-
sor such as Gzip and groups table columns to improve
their compressibility by such a compressor. Vo and
Vo (Vo and Vo, 2004; Vo and Vo, 2006) took a dif-
ferent approach to the same problem and showed how
to use dependency relations among table columns to
rearrange data for better compressibility. For a dif-
ferent class of data, namely XML, the Xmill com-
pressor (Liefke and Suciu, 2000) works in a similar
spirit to Pzip by grouping parts of a document with
the same tags to be compressed by some conventional
compressor.

In practice, data often consist of ad-hoc mix-
tures of structures beyond just simple tables or sin-
gle XML documents. For example, a log file gen-
erated by some network management system might
contain many records pertaining to different network
events. Due to their common formats, the records
belonging to a particular event might form a table.
As such, the compressibility of such a log file could
be enhanced by grouping records by event types first
before compressing each group by one of the above
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table compressors. Unfortunately, from the point of
view of building compression tools, it is hard, if not
impossible, to automatically detect and take advan-
tage of such ad hoc structures in data. Nonethe-
less, this points out that, in each particular circum-
stance, optimum compression performance may re-
quire the ability to form arbitrary compositions of
diverse data transformations, both generic and data-
specific. Indeed, this ability is implicitly needed even
in implementing general purpose compressors such as
Gzip and Bzip2 that combine distinct techniques deal-
ing with different aspects of information redundancy.
Thus, a major challenge to compression research as
well as to practical use of compression on large scale
data is to provide a way to construct, reuse and in-
tegrate different data transformation and compression
techniques to suit particular data semantics. This is
the problem that the Vcodex platform addresses.

Central to Vcodex is the notion of data transforms
or software components to alter data in some invert-
ible ways. As it is beyond the scope of this paper,
we only mention that by taking this general approach
to data transformation Vcodex can also accommodate
techniques beyond compression such as encryption,
translation between character sets or just simple cod-
ing of binary data for portability. For maximum us-
ability, two main issues must be addressed:

e Defining a standard software interface for data
transforms: A standardized software interface
helps transform users as it eases implementation
of applications and ensures that application code
remains stable when algorithms change. Trans-
form developers also benefit as a standard inter-
face simplifies and encourages reuse of existing
techniques in implementing new ones.

e Defining a self-describing and portable standard
data format: As new data transforms may be
continually developed by independent parties, it
is important to have a common data format that
can accommodate arbitrary composition of trans-
forms. Such a format should allow receivers of
data to decode them without having to know how
they were encoded. In addition, encoded data
should be independent of OS and hardware plat-
forms so that they can be easily transported and
shared.

The rest of the paper gives an overview of the
Vcodex platform and how it addresses the above
software and data issues. Experiments based on
the well-known Canterbury Corpus (Bell and Powell,
2001) for testing data compressors shows that Vcodex
could far outperform conventional compressors such
as Gzip or Bzip2.
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2 SOFTWARE ARCHITECTURE

Vcodex is written in the C language in a style com-
patible with C++. The platform is divided into two
main layers. The base layer is a software library
defining and providing a standard software interface
for data transforms. This layer assumes that data are
processed in segments small enough to fit entirely in
memory. The library can be used directly by applica-
tions written in C or C++ in the same way that other C
and C++ libraries are used. A command tool Vczip is
written on top of the library layer to enable file com-
pression without low-level programming. Large files
are handled by being broken into chunks with suitable
sizes for in-memory processing.

2.1 Library Design

Transformation handle and operations
Vcodex _t — maintaining contexts and states

vcopen (),vcclose (), vecapply (), ..

Discipline structure
Vedisc_t

Parameters for data processing,
Event handler

Data transforms
Vcmethod-t
Burrows-Wheeler, Huffman,
Delta compression, Table transform, etc.

Figure 1: A discipline and method library architecture for
Vcodex.

Figure 1 summarizes the design of the base
Vcodex library which was built in the style of the Dis-
cipline and Method library architecture (Vo, 2000).
The top part shows that a transformation handle of
type Vcodex_t provides a holding place for contexts
used in transforming different data types as well as
states retained between data transformation calls. A
variety of functions can be performed on such han-
dles. The major ones are vcopen() and vcclose ()
for handle opening and closing and vcapply () for
data encoding or decoding. A transformation han-
dle is parameterized by an optional discipline struc-
ture of type vcdisc_t and a required data transform
of type vVemethod-t. Each discipline structure is sup-
plied by the application and provides additional infor-
mation about the data to be processed. On the other
hand, a data transform is selected from a predefined
set and specifies the transformation technique. Sec-
tion 2.2 describes a few common data transforms such
as Burrows-Wheeler, Huffman, etc. Complex data
transformations can be composed from simpler ones
by passing existing handles into newly opened han-
dles for additional processing.

Figure 2 shows an example to construct and use a
transformation handle for delta compression by com-
posing two data transforms: vcdelta and Vchuffman
(Section 2.2). Here, delta compression (Hunt et al.,
1998) is a general technique to compress a target



typedef struct _vedisc_s
{ void* data;

ssize_t  size;

_f eventf;

= { "Source data to compare against", 30, 0 };

7. Vcodex_t* huff = vcopen (0, Vchuffman, 0, 0, VC_ENCODE);
8. Vcodex_t* diff = vcopen(sdisc, Vedelta, 0, huff, VC_ENCODE);

9. ssize_t cmpsz = vcapply(diff, "Target data to compress", 23, &cmpdt);

Figure 2: An example of delta compression.

data given a related source data. It is often used to
construct software patches or to optimize storage in
revision control systems (Tichy, 1985). The trans-
form vcdelta implements a generalized Lempel-Ziv
parsing technique for both delta and normal compres-
sion whose data format was the subject of the IETF
(Internet Engineering Task Force) VCDIFF Proposed
Standard RFC3284 (Korn et al., 2002; Korn and Vo,
2002).

e Lines 1-6 show the type of a discipline structure
and disc, an instance of it. The fields data and
size of disc provide any source data available to
compare against in delta compression. Even if no
source data is given, the target data would still
be compressed in the usual Lempel-Ziv fashion,
i.e., by factoring out repeating patterns. The field
eventf of disc is optional and, if used, specifies a
function to process events such as handle opening
and closing.

e Lines 7 and 8 show handle creation and composi-
tion. The Huffman coding handle huff is created
first. The first and second arguments to vcopen ()
specify the optional discipline structure, e.g., disc
on line 8, and the selected data transform, e.g.,
Vchuffman on line 7. Variants or modes of a trans-
form can be given in the third argument (see the
examples in Figure 5). The fourth argument is
used to compose a transform with another one.
For example, on line 8, the handle huff is used
to further compress the output of diff. The last
argument of vcopen () must be one of VC_ENCODE
or VC_DECODE to tell if the handle is opened for en-
coding or decoding.

e Line 9 gives an example of calling vcapply () to
compress some given data. The compressed result
is returned in cmpdt while its size is returned by
the call. A transform such as Vcdelta creates mul-
tiple output data segments coding different types
of data (Section 3). Each such segment would
be separately passed to the follow-on transforma-
tion handle, in this case, huff. As such, huff can
generate the appropriate Huffman codes to match
with each segment and improve compression per-
formance. Note also that the source data in the
discipline structure disc could be changed before
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each vcapply () call to match with the data to be
compressed.

The above example shows the encoding side.
The decoding side is exactly the same except that
VC_DECODE replaces VC_ENCODE and the data passed
to vcapply () would be some previously compressed
data. An advantage in being able to write applica-
tion code based on a standard interface as provided is
that algorithmic enhancement of the data transform in
use does not require changes at the application level.
In addition, experimentation with different data trans-
forms only need minimal code editing.

2.2 Data Transforms

1. typedef struct _vcmethod_s

2. { ssize_t (*encodef) (Vcodex_t*, void*, ssize_t, void**);
3. ssize_t (*decodef) (Vcodex_t*, void*, ssize_t, void**);
4. int (*eventf) (Vcodex_t*, int, void*);

5 char* name;

6

K

.} Vecmethod_t;

Figure 3: The type of a data transform.

Figure 3 shows vcmethod_t, the type of a data
transform. Lines 2 and 3 show that each transform
provides two functions for encoding and decoding.
An optional event handling function eventf, if pro-
vided, is used to process certain events. For example,
some transforms maintain states throughout the life-
time of a handle. The structures to keep such states
would be created or deleted at handle opening and
closing via such event handling functions. Each trans-
form also has a name that uniquely identifies it among
the set of all available transforms. This name is en-
coded in the output data (Section 3) to make the en-
coded data self-describing.

Vcodex provides a large collection of trans-
forms for building efficient compressors of general
and structured data including a number that are
application-specific. Below are brief overviews of a
few important data transforms:

e vcdelta: This implements a delta compres-
sor based on a generalized Lempel-Ziv parsing
method. It outputs data in the Vcdiff encoding
format as described in the IETF Proposed Stan-
dard RFC3284 (Korn et al., 2002).

e vcsieve: This transform used approximate
matching to perform delta compression as well
as compression of genetic sequences, a class of
data notoriously difficult to compress (Manzini
and Rastero, 2004).

e vcbwt: This implements the Burrows-Wheeler
transform.
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e Vctranspose: This treats a dataset as a table, i.e.,
a two-dimension array of bytes, and transposes it.

e vctable: This uses column dependency (Vo and
Vo, 2006) to transform table data and enhance
their compressibility.

e vcmt £: This provides the move-to-front data trans-
form (Bentley et al., 1986) and a predictive vari-
ant of it. The predictive variant uses a heuristic
algorithm that keeps track of how often a charac-
ter follows another and, when favorable, moves it
to the front as soon as its predecessor is encoded.

e vcrle: This provides the run-length encoder and
a variant that only encodes runs of zeros using a
special binary coding method (Deorowicz, 2000).

e vchuffman: This implements static Huffman cod-
ing.

e vchuffgroup: This is implemented on top of
Vchuffman. It divides data into short segments of
equal length and groups segments compress well
together with a single Huffman code table.

e vcama: This collects records with the same length
together to form tables that could then be com-
pressed via vctable. It was originally written to
deal with an arcane data format specific to tele-
phone data called AMA, hence the name. But it
can also handle other general record types.

e vcmap: This provides a collection of methods to
map data from one character set to another. For
example, different variants translate data between
ASCII and various versions of EBCDIC.

2.3 The Vczip Command

The Vczip command enables usage of the available
data transforms without low level programming. It
provides a syntax to compose different transforms to-
gether to process a data file. In this way, end users can
experiment with different combinations of transforms
on their data to optimize compressibility.

Figure 4 shows the transform composition syntax.
Lines 1 and 2 show that each transform is specified by
a name, e.g., delta or table, followed by an optional
sequence of arguments depending on the particular
transform. Lines 3 and 4 show that such arguments
are separated by periods. Lines 5 and 6 show that the
list of transforms can be empty to signify usage of a
default compression method defined by Vczip. But
if not, it must start with -m and follow by a comma-
separated sequence of transforms.

Figure 5 shows a snapshot of an experiment to
explore different ways to compress data using Gzip,
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Bzip2 and various compositions of Vcodex data trans-
forms. The file kennedy.xls was an Excel spreadsheet
taken from the Canterbury Corpus (Bell and Powell,
2001).

e Lines 1-6 show the raw size of kennedy.xls and
compression results by Gzip and Bzip2. Gzip
compressed the data by roughly a factor of 5 while
Bzip2 achieved a factor of 8 to 1.

e Lines 7-10 show Vczip instantiated as different
variations of a BWT compressor. The 0 argument
to the run length encoding transform rle meant
that only runs of 0’s were coded. The same argu-
ment to the move-to-front transform nt f restricted
it to moving a data byte only after access. As that
was analogous to Bzip2, about the same perfor-
mance resulted. On the other hand, line 9 used
a variant that aggressively predicted and moved
data (Section 2.2) resulting in a 12 to 1 compres-
sion factor.

e Lines 11-14 show the use of the table transform
vctable (Vo and Vo, 2006) to treat the data as a
2-dimensional array of bytes and reorder data by
column dependency before running same back-
end data transforms as earlier. The compression
factor improved to about 19 to 1 with that. Insert-
ing the Burrows-Wheeler transform after the table
transform further improved the compression fac-
tor to nearly 30 to 1.

e Line 15 shows that the compressed data was de-
coded into a file x and compared against the orig-
inal data to test correctness. As shown, decom-
pression would always be done with the option -u,
i.e., no knowledge of transforms used on encoding
required.

Figure 6 shows another experiment to compress
a large file of telephone data in a proprietary format
called ava. This type of data consists of records in
which the first 4 bytes of a record tell the length of
the record. The Vcama transform collected records of
the same length together before passing them to the
column dependency table transform vctable. Again,
this ability to exploit structures in data resulted in the
best compression performance.

3 DATA ARCHITECTURE

The output of a transformation is data to store or trans-
port. For maximal usability, the main issues to be ad-
dressed are: portability and self-description. Porta-
bility means that primitive types such as bits, integers
and strings should be standardly encoded so that data
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. Arglist (Transform) -> Nil
. Arglist(Transform) -> Arg(Transform)
TransformList -> Nil

oY U s W DN

Transform -> {delta, table, bwt, huffman, ama, ...}
Transform -> {delta, table, bwt, huffman, ama, ...}

. Arglist (Transform)

. Arglist(Transform)

TransformList -> "-m" TransformList , Transform

Figure 4: Language syntax to compose transforms.

1. ls -1 kennedy.xls

2. e 4 kpv 1029744 Nov 11 1996 kennedy.xls

gzip < kennedy.xls > out; ls -1 out

4. -rw-r--r-- 1 kpv 206767 Apr 11 12:30 out

5. bzip2 < kennedy.xls > out; ls -1 out

6. -rw-r--r-- 1 kpv 130280 Apr 11 12:30 out

7. vczip -mbwt,mtf.0,rle.0,huffgroup < kennedy.xls > out; ls -1 out

8. -rw-r--r-- 1 kpv 129946 Apr 11 12:31 out

9. vczip -mbwt,mtf,rle.0,huffgroup < kennedy.xls > out; ls -1 out

10. -rw-r--r-- 1 kpv 84281 Apr 11 12:31 out

11. vczip -mtable,mtf,rle.0,huffgroup < kennedy.xls > out; ls -1 out

12. -rw-r--r-- 1 kpv 53918 Apr 11 12:31 out

13. vczip -mtable,bwt,mtf,rle.0,huffgroup < kennedy.xls > out; ls -1 out

14. -rw-r--r-- 1 kpv 35130 Apr 11 12:31 out

15. vczip -u < out >x; cmp x kennedy.xls

Figure 5: Experimenting with different combinations of data transforms.

can be produced on one OS/hardware platform and
transparently decoded on another. Self-description
means that data can be decoded without knowledge
of how they were encoded.

3.1 Portable Data Encoding

Transform writers must take care to ensure portability
of output data. Vcodex provides a variety of func-
tions to encode strings, bits, and integers in portable
forms. String data are assumed to be in the ASCII
character set. When running programs on a platform
not based on ASCII, for example, IBM mainframes
with EBCDIC, a function vecstrcode () can be used
to transcribe string data from the native character set
into ASCII for storage. For example, the identifica-
tion string of a data transform is often constructed
from its name (Section 2.2). As the name is in the
native character set, it would need to be translated to
ASCII for portability.

For bit encoding, it is assumed that the fundamen-
tal unit of storage is an 8-bit byte. The bits in a byte

are position from left to right, i.e., the highest bit is at
position 0, the second highest bit at position 1, and so
on. Then a sequence of bits would be simply imposed
onto a sequence of bytes in that order. For example,
the 12-bit sequence 101010101111 would be coded in
the 2-byte sequence 170 240. That is, the first eight
bits, 10101010, are stored in a byte so that byte would
have value 170. The last four bits, 1111, are padded
with 0’s before storage so the representing byte would
have value 240.

Integers are unsigned and encoded in a variable-
sized format originally introduced in the Sfio li-
brary (Korn and Vo, 1991). Each integer is treated as
a number in base 128 so that each digit can be stored
in a single byte. Except for the least significant one,
each byte would turn on its most significant bit, MSB,
to indicate that the next byte is a part of the encoding.
For example, consider the integer 123456789 which
is represented by four digits 58, 111, 26, 21 in base
128. Below are the coding of these digits shown in
bits for clarity.
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1. 1s -1 ningaui.ama

2. -rw-r--r-- 1 kpv kpv 73452794 Sep 12 2005 ningaui.ama
3. gzip < ningaui.ama >out; 1lsl out

4. -rw-r--r-- 1 kpv kpv 30207067 Apr 11 12:55 out

5. bzip2 < ningaui.ama >out; lsl out

6. -rw-r--r-— 1 kpv kpv 22154475 Apr 11 12:57 out

7. vczip -mama,table,mtf, rle.0,huffgroup < ningaui.ama >out; lsl out
8. -rw-r--r-- 1 kpv kpv 20058182 Apr 11 13:00 out

Figure 6: Compression based on data-specific structures.

10111010
MSB+58

11101111
MSB+111

3.2 Self-describing Data

10011010 | 00010101
MSB+26 0+21

A large file might need to be divided into segments
small enough to process in memory. Each such seg-
ment is called a window. The internal representation
of a transformed window would depend on what data
transforms were used. But at the file level, that can be
treated simply as a sequence of bytes.

This starts with Size, the length in bytes of the
rest of the section. Each transform consists of an
identification string which, by convention, must
be in ASCII followed by any additional data.

e Lines 9-13 show the list of Window sections.
Each window section starts with an Indicator
byte which can be one of the values vC_RAW,
VC_SOURCEFILE and VC_TARGETFILE. VC_RAW means
that the encoded data were not transformed. The
latter two values are as defined in the Vcdiff Pro-
posed Standard RFC3284 (Korn et al., 2002) to
indicate that the data was delta compressed (Hunt

1. [ID_file:] 0xd6 0xc3 0Oxc4 0xd8 et al., 1998) against data from either the source or
2. [Reserved:] Size Data . . ]
3. [Transforms:] Size targeF file respectively. Following the Indicator
4. [Transforml:] ID_transform byte is the transformed data.
5. [Argument:] Size Data
6. [Transform2:] ID_transform
7. [Argument:] Size Data 0xd6 0xc3 0Oxcd 0xd8 [ID_file]
8. e 0 [Reserved size]
9. [Windowl:] Indicator 16 [Transforms size]
10 [Transformed data]: Size Data delta\0 [ID_transform]
11. [Window2:] Indicator 0 [Argument size]
12 [Transformed data]: Size Data huffman\0 [ID_transform]
13. 0 [Argument size]
Figure 7: The self-describing format of transformed data.
| VCDH || DELTA ‘ ‘ HUFF MR | | WIND W | | WIND VY2 |

Figure 7 shows the structure of encoded data in
which each file consists of a set of header data fol-
lowed by one or more Window sections and gives an
example of header data.

e Line 1 shows that each file is identified by four
starting bytes which are the ASCII letters v, ¢, D
and x with their high bits on.

e Line 2 shows a Reserved section usable by an ap-
plication to store additional data. As shown here
and later, each data element is represented by a
Size and Data pair that tells number of data bytes
followed by the data itself.

e Lines 3-8 show the Transforms section which
encodes the original composition of transforms.
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DELTA — Lempel-Fiv Coding

| HUIFFMAN — Detta Instructiors ‘

| HUFF MaN — Matched Addresses ‘

| HUFFM&HN — Linmatched Dats ‘

Figure 8: Header data and data schema of a delta compres-
SOT.

Figure 8 gives an example based on a delta
compressor resulted from composing the transforms
Vedelta and Vchuffman. The top part shows first the
literal bytes defining the header data which essen-



tially only coded the names of the transforms. The
bottom part shows pictorially the various components
of a compressed file. Each file starts with the header
data which tells the file type via the four magic bytes
vcpx and the transform composition sequence. The
compressed data are divided into a sequence of win-
dows. The raw data in each window is processed
first by vcdelta to generate the so-called delta in-
structions defined in the IETF RFC3284 (Korn et al.,
2002). In this method, three different sections of data
are generated, instructions, addresses of matches and
unmatched data. Each section would then be pro-
cessed separately by the following Huffman compres-
sor Vchuffman. Partitioning of data by types in this
way helps to improve compression as the different
sections often have distinct statistical properties.

4 PERFORMANCE

An experiment was done to test compression perfor-
mance by tailoring transform compositions to partic-
ular data. The small and large files from Canterbury
Corpus (Bell and Powell, 2001) were used to compare
Vczip, Gzip and Bzip2. Sizes were measured in bytes
and times in seconds. Timing results were obtained
on a Pentium 4, 2.8GHZ, with 1Gb RAM, running
Redhat Linux.

Figure 9 presents compression and timing data in
two tables. The top and bottom parts of each ta-
ble show results of the small and large files respec-
tively. The Algs entries show the algorithm composi-
tions used to compress the files. Below are the algo-
rithms:

e B: The Burrows-Wheeler transform vcbwt.

o M: The move-to-front transform vemt £ with predic-
tion.

o Rr: The run-length encoder vcrle with coding only
runs of 0’s.

e h: The Huffman coder vchuf fman.

e H: The Huffman coder
Vchuffgroup.

with  grouping

e T: The table transform vctable.

e 5: The delta compressor Vcsieve using approxi-
mate matching.

e D: The transform vcsieve with reverse matching
and mapping of the letter pairs A and T, G and ¢,
etc.

The Bits entries show the average number of bits
needed to encode a byte with each row’s overall win-
ner in bold. Vczip only lost slightly to Bzip2 on

VCODEX: A DATA COMPRESSION PLATFORM

cp.html and to Gzip on grammarlsp. Its weighted
compression rates of 1.21 bits per byte for the small
files and 1.68 for the large files outdid the best re-
sults of 1.49 and 1.72 shown at the Corpus website.
The pure Huffman coder vchuffman outperformed its
grouping counterpart Vchuffgroup on small files as
the cost of coding groups became too expensive in
such cases.

The best cases of Vczip typically ran somewhat
slower than Bzip2 and Gzip. Although some speed
loss was due to the general nature of transform com-
position, the major part was due to sophisticated al-
gorithms such as move-to-front with prediction. In
practice, applications often make engineering choices
between faster data transforms with worse compres-
sion vs. slower ones with better compression.

For any collection of transforms, the number of
algorithm combinations that make sense tend to be
small and dictated by the nature of the transforms.
For example, Huffman coding should never be used
before other transforms as it destroys any structure in
data. Thus, although not done here, it is possible to
find an optimal composition sequence by trying all
candidate composition sequences on small data sam-
ples.

S RELATED WORKS

Vcodex introduces the notion of data transforms as
standard software components to encapsulate com-
pression algorithms for reusability. A variety of
library packages such as zlib (Gailly and Adler,
2005) or bzlib (Seward, 1994) also aim at improving
reusability. However, except for their overall external
compression interface, the constituent algorithms in
these packages are buried in the implemented code.
For example, although Huffman coding is required
in both z/ib and bzlib, different versions were hard-
coded with incompatible data formats. By contrast,
new Vcodex data transforms are often crafted from
existing ones via either composition or direct usage
in implementation. Application systems with propri-
etary data types may also develop special data trans-
forms for such types to enhance compressibility. In
this way, exotic compositions of compression algo-
rithms can be made to fit any particular data semantics
and gain optimal compression performance.

A side of data compression often overlooked is the
design of the output data. If not carefully done, such
data may not be sharable across machines due to dif-
ferent architectures or may become stale and unusable
over time due to algorithm evolution. Unfortunately,
few compression tools have ever published their cod-
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Vezip Bzip2 Gzip
File Size Algs Cmpsz Bits Cmpsz Bits Cmpsz Bits
alice29.txt 152089 BMRH 42654 | 2.24 43202 | 2.27 54423 | 2.86
ptts 513216 TBMRH 33149 | 0.52 49759 | 0.78 56438 | 0.88
fields.c 11150 BMRh 3036 | 2.18 3039 | 2.18 3134 | 225
kennedy.xls 1029744 TBMRH 35130 | 0.27 130280 1.01 206767 1.61
sum 38240 SBMRH 12406 | 2.60 12909 | 2.70 12920 | 2.70
Icet10.txt 426754 BMRH 105778 | 1.98 107706 | 2.02 144874 | 2.72
plrabn12.txt 481861 BMRH 143817 | 2.39 145577 | 2.42 195195 | 3.24
cp.html 24603 BMRh 7703 | 2.50 7624 | 2.48 7991 | 2.60
grammar.lsp 3721 BMRh 1274 | 2.74 1283 2.76 1234 | 2.65
xargs.1 4227 BMRh 1728 | 3.27 1762 | 3.33 1748 | 3.31
asyoulik.txt 125179 BMRH 39508 | 2.52 39569 | 2.53 48938 | 3.13
Total 2810784 426183 | 1.21 542710 | 1.54 733662 | 2.09
E.coli 4638690 DH 1137801 | 1.96 1251004 | 2.16 1341243 | 231
bible.txt 4047392 BMRH 786709 | 1.55 845623 1.67 1191061 | 2.35
world192.txt 2473400 BMRH 425077 | 1.37 489583 | 1.58 724593 | 2.34
Total 11159482 2349587 | 1.68 2586210 | 1.85 3256897 | 2.33
Vezip Bzip2 Gzip

File Cmptm  Dectm Cmptm  Dectm Cmptm  Dectm

alice29.txt 0.05 0.01 0.03 0.01 0.01 0.01

ptt5 0.27 0.08 0.03 0.01 0.02 0.01

fields.c 0.01 0.01 0.01 0.01 0.01 0.01

kennedy.xls 0.27 0.18 0.23 0.07 0.11 0.01

sum 0.03 0.01 0.01 0.01 0.01 0.01

Icet10.txt 0.17 0.08 0.12 0.06 0.05 0.01

plrabn12.txt 0.21 0.11 0.15 0.09 0.08 0.01

cp.html 0.01 0.01 0.01 0.01 0.01 0.01

grammar.lsp 0.01 0.01 0.01 0.01 0.01 0.01

xargs.1 0.01 0.01 0.01 0.01 0.01 0.01

asyoulik.txt 0.04 0.01 0.02 0.01 0.01 0.01

E.coli 7.85 0.10 1.92 1.03 1.93 0.08

bible.txt 2.47 1.04 1.64 0.72 0.55 0.06

world192.txt 1.31 0.62 1.04 0.42 0.23 0.03

Figure 9: Compression size (bytes), rate (bits/byte) and time (seconds) for the Canterbury Corpus.

ing formats. Two rare exceptions are the Deflate For-
mat (Deutsch, 1996) used in Gzip and the Vcdiff For-
mat (Korn et al., 2002) for delta encoding which have
been standardized and sanctioned by the Internet En-
gineering Task Force to facilitate transporting of com-
pressed data over the Internet. An appealing feature
of the Vcodex self-describing data architecture is that
the data format of each transform can be kept in-
dependent from others that may be composed with
it in applications. This allows any specification and
standardization effort to focus on the format of each
transform independently from others. This should be
contrasted, for example, with Deflate which must de-
fine in details both the output of its main Lempel-Ziv
coder and also that of the low level Huffman coder
used to clean up any remaining statistical redundancy
in the Lempel-Ziv output.
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6 CONCLUSION

Advances in compression are continually pulled by
two opposing forces: generalization to devise tech-
niques applicable to all data types and specialization
to devise techniques exploiting specific structures in
certain classes of data. General techniques such as
Lempel-Ziv or Burrows-Wheeler Transform are easy
to use and do perform well with most data. How-
ever, as seen in our experiments earlier, such tech-
niques could seldom match the performance of algo-
rithms specifically designed for classes of data such
as tables, DNA sequences, etc. Unfortunately, the
cost to develop data-specific compression tools can
quickly become prohibitive considering the plethora
of arcane data types used in large application systems.
Vcodex provides a unique solution to this problem by
applying a software and data engineering approach to
compression. Its data transform interface frees algo-
rithm designers to focus only on the data transfor-



mation task at hand without having to be concerned
with other transforms that they may require. Further,
users of compression also have the opportunity to mix
and match data transforms to optimize the compress-
ibility of their data without being locked into some
compositional sequences picked by the tool design-
ers. The best indication of success for Vcodex is that
the platform has been in use for a few years in a num-
ber of large data warehouse applications handling ter-
abytes of data daily. Tranform compositions properly
tailored to data types help achieving compression ra-
tios up to hundreds to one, resulting in significant cost
savings. A variety of data transforms have been con-
tinually developed along with new data types without
disrupting ongoing usage. Further, as the number of
data types is limited per application system, simple
learning algorithms based on training with small sam-
ples of data could often be developed to automatically
find optimal combinations of transforms for effective
compression. In this way, the platform has proven to
be an effective tool to help advancing compression not
just in specialization but also in generalization.
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