
ASYNCHRONOUS REPLICATION CONFLICT
CLASSIFICATION, DETECTION AND RESOLUTION FOR

HETEROGENEOUS DATA GRIDS1

Eva Kühn, Angelika Ruhdorfer and Vesna Šešum-Cavic
Vienna University of Technology, Institute of Computer Languages

Space Based Computing Group, 1040 Vienna, Argentinierstraße 8, Austria

Keywords: Asynchronous replication, conflict detection and resolution, relational database, coordination space, data
grid.

Abstract: Data replication is a well-known technique in distributed systems, which offers many advantages such as
higher data availability, load balancing, fault-tolerance, etc. It can serve to implement data grids where large
amounts of data are shared. Besides all advantages, it is necessary to point to the problems, called
replication conflicts that arise due to the replication strategies. In this paper, we present an infrastructure
how to cope with replication of heterogeneous data in general for conflict detection and resolution and we
illustrate its usefulness by means of an industrial business case implementation for the domain of relational
databases and show further extensions for more complex resolution strategies. The implementation deals
with the special case of asynchronous database replication in a peer-to-peer (multi-master) scenario, the
possible conflicts in this particular domain and their classification, the ways of conflict detection, and shows
some possible solution methods.

1 The work was supported by the Austrian Federal
Ministry for Transport, Innovation, and Technology
under the FIT-IT Semantic Systems project Triple
Space Computing (TSC 809249).

1 INTRODUCTION

Replication is a practical and efficient technique,
commonly used in a distributed environment. The
benefits of replication include: improving data
availability, data access performance and load
balancing, providing fault-tolerance by maintaining
copies of data at different locations, etc. (Budiarto et
al, 2002; Dunlop et al, 2003; Gustavsson and
Andler, 2005). Generally, there are two approaches
of data copying: synchronous and asynchronous
replication (IBM DB2 Universal Database, 2002).
The decision which type of replication scenario is
appropriate to apply depends on the system’s
properties. The problem is that many systems are not
highly available and show inconsistent states,
include an enormously high number of sites and

have not high performance communication links
between the single sites. Such kind of system is a
candidate for asynchronous replication. The main
goal is that all data eventually becomes consistent.
Therefore we propose the following methodology
that can be used for the realization of asynchronous
data replication in general:
• classify all conflicts that might occur
• develop strategies for conflict prevention
• explain how all conflicts can be detected
• define strategies for conflicts resolution.

In this paper, we will apply these steps to the
special case of relational database replication. There
are different replication topologies for asynchronous
replication: master-copy, multi-tier, update
anywhere and multi-master (peer-to-peer) (IBM
DB2 Universal Database, 2002). The most complex

215

Kühn E., Ruhdorfer A. and Šešum-Cavic V. (2007).
ASYNCHRONOUS REPLICATION CONFLICT CLASSIFICATION, DETECTION AND RESOLUTION FOR HETEROGENEOUS DATA GRIDS.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 215-219
Copyright c© SciTePress

topology is peer-to-peer with asynchronous
replication. Each node in a peer-to-peer topology
publishes and subscribes to the same data. All nodes
are equal peers with equal ownership of the data.
The procedures for asynchronous replication are:
Dump and Reload, Snapshot Replication and
Incremental Refresh, where either the changed
tuples are transmitted to the target sites or the
transactions causing the tuples to be changed, are
transferred and applied at the target sites
(transaction-based replication). Examples for
replication facilities of the state of the art in
databases systems can be found in (Garmany and
Freeman, 2003; Oracle 9i, 2002; Chigrik, 2000; IBM
DB2 Universal Database, 2002; IBM DB2 Data
Propagator, 2003).

2 CONFLICT CLASSIFICATION

The following assumptions will be taken into
consideration: asynchronous replication in relational
databases in multi-master scenario (peer-to-peer),
supporting transaction-based replication with
incremental refresh mode. When we talk about the
SQL-operations, it must be clear that only write
operations (INSERT, UPDATE, DELETE) which
change tuples will be considered, because they have
a crucial impact on a successful synchronization. We
consider each SQL-operation of a transaction of
being decomposed into a series of so-called single-
operations. A single-operation is an operation that
involves one tuple only. Two operations of
transactions that are executed on different sites are
called conflicting operations, if they cause a
replication conflict. This might the case if they
operate on the same tuple or if they transform some
tuples which were previously different into the same
tuple. There are many different types of conflicts:
Insert/Insert, Insert/Update, Insert/Delete,
Update/Update, Update/Delete, Delete/Delete. More
detailed information about conflict classification can
be seen in Kühn at al., 2007; Ruhdorfer, 2005.

Example: Let us assume that there are two sites:
A and B, and two operation: op1 and op2. Further,
we assume that op1 is Insert operation and op2 is
also Insert operation. Then op1/op2 means that op1
was executed and committed at site A and op2 was
concurrently executed and committed at site B.
Afterwards op1 is replicated to site B and op2 to site
A and executed there respectively, causing the
conflict that can be described as: tuples are entirely
the same (PRIMARY KEY and all the columns are
the same).

3 CONFLICT PREVENTION

Before we start discussion about conflict detection
and conflict resolution, it is important to know what
techniques/approaches can be used in order to avoid
replication conflicts. Of course it is much better to
avoid conflicts, if this is possible. For example,
modification of the database scheme can help where
unique numbers for each peer site are added to tables
that shall be replicated etc. However, the tradeoff is
a change of existing systems that possibly is not
acceptable. Another example would be to resign full
peer-to-peer replication and to use only one-way
read-only replication etc. Replication conflicts can
also be prevented by assigning the right to update
the data to a single site in one of the following
ownership types: static site ownership model,
dynamic site ownership model (workflow, token
passing), shared ownership model with some
strategies for avoiding specific types of conflicts
(avoiding uniqueness conflicts, avoiding delete
conflicts, avoiding ordering conflicts) (Oracle 9i,
2002; IBM DB2 Redbook, 2002).

4 CONFLICT DETECTION

The process of detecting constraint errors and the
process of detecting whether the same tuple was
modified concurrently by application programs at
more than one peer site during the same replication
cycle in a peer-to-peer replication configuration is
called conflict detection. Commercial databases
address this issue differently (Garmany and
Freeman, 2003; IBM DB2 Universal Database,
2002). We assume that in the full master replication
scenario, the peers communicate directly using a
shared coordination space (Kühn, 2001) which
provides reliable asynchronous, publish/subscribe
based flexible collaboration on shared and
distributed data structure, like the communication
with near-time event notification, the possibility of
reading the same data multiple times and according
to different coordination criteria in a flexible way.
Therefore we decided to use a space instead of
distributed hash tables, publish/subscribe systems or
message queues.Each database (DB) site is called a
peer site. With each DB a gateway process is
associated that interfaces both the DB and the space
and can be located on another site than the DB. For
each table to be replicated, triggers are installed that
track every write SQL-operation and store its single
operations together with the meta-information

ICSOFT 2007 - International Conference on Software and Data Technologies

216

necessary for conflict resolution in a log-table.
Applications need not be changed. The gateway
periodically reads the log-table and publishes the
single operations plus meta-information into a space
container i.e. a space data structure where the other
peers’ gateways subscribe; they apply these
operations to the destination databases in a
transaction. The transaction boundaries are not
violated; but with one publication step more than
one transaction could be published to the space
(called transaction “chunk”). If there is a site failure
the gateway can recover the data from the log-table.

Figure 1: Replication Architecture.

Figure 1 shows only the replication from DB1 to
DB2, DB3 and DB4. The full scenario would be
symmetric. The architecture is based on the
extensible virtual shared memory middleware
XVSM (Kühn at al., 2005) that generalizes Linda
tuple based communication (Gelernter and Carriero,
1992) by introducing shared containers that contain
entries and that can be bounded or unbounded.
Containers can exhibit different coordination types.
XVSM itself supports asynchronous replication and
is used to distribute the single operations of the
relational database transactions from one database
site to one or more target database sites.

What happens when two dependent operations
are executed is shown in (Kühn at al, 2007;
Ruhdorfer, 2005). Many conflicts can be detected so
that the DB returns an error on both sites. However,
there are “bad” cases where the conflict can’t be
detected at both sites. The treatment of these “bad”
cases are explained in (Kühn at al, 2007; Ruhdorfer,
2005). Mainly it foresees the support of all old
values for update changes.

In that scenarios the environment is limited to
two replication sites and at each site a transaction
has only one operation. For this simplified,

theoretically ideal situation we have explained how
to determine whether one of these two transactions
causes a conflict and which operations are involved,
at each site autonomously. But when we talk about a
real IT environment with a lot of different sites and
operations, combined in transaction, it is quite
difficult to detect the replication conflict exactly.
The detection of conflict can be eased if we can
assume the existence of transaction counters and
state vectors. A transaction counter is a unique
number assigned to each transaction. The provision
of counters can be done by (1) using a sequencer in
the database triggers to mark each database
transaction of local applications and (2) using the
same sequencer to generate a new number for each
transaction from a replication site executed by the
gateway and publish this number also to a space
container. Each transaction has a state vector
attached, which holds the current status of the
transaction counters of all sites including the current
site before the transaction is executed. The
determination of the first operation in a remote
transaction that causes a replication conflict is
crucial. After that, the next step is to find all the
other operations involved in the conflict (see next
section).

5 CONFLICT RESOLUTION

The main goal is that all data at all replicated sites
eventually is consistent. Of course, this is still an
open issue to work on and the intention of this
section is to show some strategies and possibilities
that can be applied.

Conflict resolution determines which operations
are the winners and which ones are the losers, and
then takes the right steps in case of a committed
loser operation in order to annul its effect (“undo”
the operation). The different strategies for conflict
resolutions in databases are discussed in (Garmany
and Freeman, 2003; Oracle 9i, 2002). Nevertheless,
the conflict resolution strategies cannot be
generalized – many parameters of the replication
environment should be taken into consideration
(database schema, type of replication scenario,
conflict detection method, and also the semantics of
the data to be replicated). When a conflict is
detected and the loser operations were identified by
the conflict resolution strategy, the appropriate
“undo” operations must be applied. As we have
mentioned in the section 2, the standard operations
for database manipulation – INSERT, DELETE,
UPDATE – were transformed into a canonical form,

ASYNCHRONOUS REPLICATION CONFLICT CLASSIFICATION, DETECTION AND RESOLUTION FOR
HETEROGENEOUS DATA GRIDS

217

i.e. each operation that affects multiple tuples was
split into single operations, affecting only one tuple
each. Also, the old data values were included to
enhance the conflict detection mechanism. In this
way, we deal with “restricted” operations. The
“undo” operation means the realization of
INVERSE-* operations (INVERSE-INSERT,
INVERSE-DELETE, and INVERSE-UPDATE).
Every INVERSE-* operation refers to restricted
operations only; it replaces the original operation
that has already been committed during the previous
transaction and was later marked as loser operation
by the conflict resolution strategy.

In the following we will develop one resolution
strategy for the database replication scenario. If a
conflict occurs, the strategy foresees that this site
can autonomously resolve the conflict by querying
data from the shared space. We assume that the
same conflict resolution strategy is used at each site,
and that each transaction has a transaction counter
and a state vector. When a transaction is transferred
to a target site for replication, it contains these two
parameters.

Furthermore we require the existence of a global
rule for the determination of winner/loser operations
that assigns priorities between all sites. Very
important aspect is to be able to identify past
operations in transactions not originating from the
same site, and remaining operations in the current
transaction (after the conflicting operation). Let us
first define the notions of anchor-operation and
anchor-chain. The anchor-operation is a replicated
operation conflicting with another operation, and it
belongs to the current transaction, originating from a
remote site. The anchor-chain-operations are
operations associated with an anchor-operation in
that they conflict with the anchor-operation, and
they belong to the current or previous transaction.
This way, in the series of operations of some
transactions, the interdependency between
operations can be established.

When a replicated transaction fails to be
executed at a target site, conflict detection starts with
identification of the anchor-operation and anchor-
chain-operations. For this determination, each
transaction’s operation must be investigated and
analyzed. After the anchor-chain-operations have
been identified, the conflict resolution strategy is
applied as follows:

1) if the anchor-operation is a winner over all
other anchor-chain-operations:
a. for each opi ∈ anchor-chain-operations in

buttom-up order do: apply the INVERSE-
* operation to opi

b. execute opi
c. execute the remaining operations of the

current transaction
2) else (the anchor-operation is a looser):

ignore this operation and execute the
remaining operations of current transaction

6 REALIZATION

An implementation was performed in cooperation
with industry that implemented this peer-to-peer
database replication scenario used by major clients
in Austria (Kühn, 2003). However, instead of the
resolution strategy described in section 5, a simpler
one has been implemented that does not use
transaction counters, state vectors, anchor
operations, nor anchor-chain-operations.

Figure 2: Peer-to-Peer Replication with complex Conflict
Resolution Strategy.

The resolution strategy provides:
• manual conflict resolution, providing the

administrator all old and new values, and
• locally built-in rules at each site S where for any

other site S’ and each possible conflict the
looser/winner relationship is explicitly defined
plus a resolution action.

In Figure 2 we sketch the implementation of the

conflict resolution strategy as proposed in section 5.
Basically, the coordination data structures in the
space for the replication of one table from site1
(DB1) to site2 (DB2) are shown. The full peer-to-
peer replication scenario assumes these for all peer
sites in a symmetric way.

ICSOFT 2007 - International Conference on Software and Data Technologies

218

7 CONCLUSION

Although asynchronous replication offers well-
known advantages in distributed IT systems, many
obstacles appear during their realization. As the
main goal remains that all data at all peer sites must
be consistent at the end, our task is to surpass these
problems. In this paper, we focused on a general
coordination infrastructure for asynchronous data
replication. We showed its application for the
replication of data for relational databases. We
analyzed conflicts that can appear, classified them,
described the ways of appropriate conflict detection
and proposed some methods for conflict resolution.
The proposed solution works for heterogeneous
databases from different vendors.

Our next work will be to extend the coordination
data stored in the space infrastructure by using
semantics. The objective is to make use of an
extension to space based computing called “triple
computing” (Riemer at all, 2006) that provides RDF
data which can be used to share the rules for conflict
resolution.

As conflict resolution for asynchronous
replication in general is still an open research issue,
our future work will deal with finding a generalized
solution for different types of user data, using the
proposed space-based replication pattern that
provides a convenient way to access replication
changes and meta-data for coordination, and
investigate further resolution strategies. This work is
a first step to achieve conflict classification,
detection and resolution onto the abstract level.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers
for their valuable comments.

REFERENCES

Budiarto, Nishio S., Tsukamoto M., 2002,.Data
management issues in mobile and peer-to-peer
environments, Data & Knowledge Engineering 41, pp.
183–204.

Chigrik A., 2000. Setting Up Transactional Replication: A
Step-by-step Guide, Database Journal,
http://www.databasejournal.com/features/mssql/article
.php/1438201.

Dunlop N., Indulska J., Raymond K., 2003. Methods for
Conflict Resolution in Policy-Based Management
Systems, EDOC'03, p.98.

Gelernter D., Carriero N., 1992. Coordination Languages
and Their Significance, Comm.of ACM, 35, pp.97-
107.

Garmany J., Freeman R., 2003. Oracle Replication.
Snapshot, Multi-Master & Materialized Views Scripts,
Rampant TechPress, Kittrell, North Carolina.

Gustavsson S., Andler S.F., 2005. Continuous Consistency
Management in Distributed Real-Time Databases with
Multiple Writers of Replicated Data, IPDPS'05
Workshop 2, p. 137.

IBM DB2 Universal Database, 2002. Replication Guide
and Reference, Version 8, SC27-1121-00,
http://publib.boulder.ibm.com/cgi-bin/bookmgr/
library.

IBM DB2 Redbook, 2002. A Practical Guide to DB2 UDB
Data Replication V8, http://www.redbooks.
ibm.com/redbooks/SG246828.html

IBM DB2 DataPropagator, 2003.
http://www-306.ibm.com/software/data/

integration/replication/
Kühn e., 2001. Virtual Shared Memory for Distributed

Architecture, Nova Science Publishers, 2001.
Kühn e., 2003. The Zero-Delay Data Warehouse:

Mobilizing Heterogeneous Databases, VLDB Conf.
Berlin.

Kühn e., Riemer J., Joskowicz G., 2005. XVSM
(eXtensible Virtual Shared Memory) Architecture and
Application, Technical Report TU-Vienna, E185/1.

Kühn e., Ruhdorfer A., Sesum-Cavic V., 2007.
Classification and Detection of Resolution Conflicts
for Relational Databases, Technical Report TU-
Vienna, E185/1.

Oracle 9i 2002. Advanced Replication Release, 2 (9.2),
Part No.A96567-01, http://www.lc.leidenuniv.nl/
awcourse/oracle/server.920/a96567/title.htm,

Riemer J., Martin-Recuerda F., Ding Y., Murth M.,
Sapkota B., Krummenacher R., Shafiq O., Fensel D.,
Kuehn e., 2006. Triple Space Computing: Adding
Semantics to Space-based Computing,. Proc. 1st Asian
Semantic Web Conf., Beijing, China.

Ruhdorfer A., 2005. Conflict Detection and Conflict
Resolution for Asynchronous Database Replication,
Diploma Thesis, TU-Vienna, E185/1.

ASYNCHRONOUS REPLICATION CONFLICT CLASSIFICATION, DETECTION AND RESOLUTION FOR
HETEROGENEOUS DATA GRIDS

219

